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Goals and class structure

Goal: After these lectures, you should

e Know some basic theory for stability and stabilization of hybrid systems
e Be familiar with the computational methods for piecewise linear systems
e Understand how the tools can be applied to (relatively) practical systems

Three lectures:

1. Stability theory

2. Computational tools for piecewise linear systems
3. Applications
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Part I — Stability theory

Outline:

e A hybrid systems model and stability concepts
e Lyapunov theory for smooth systems
e Lyapunov theory for stability and stabilization of hybrid systems

Acknowledgements: M. Heemels, TU/e
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A hybrid systems model

We consider hybrid systems on the form
z(t) = f(x(),i(1))
i(tT) = v(x(t),i(t))

where
z(t) € R™ is the continuous state vector
i(t) € {1,2,..., M} is the discrete state

The discrete state indexes vector fields f(z,7) = f;(z) while v(z,1)
is the transition function describing the evolution of the discrete state.

Unless stated otherwise, we will assume that i(t) is piecewise continuous
(i.e., that there is only a finite number of mode changes per unit time)

For now, disregard issues with sliding modes, zeno, ... (see refs for details)
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Example: a switched linear system

(numerical values for matrices A, are given in notes for Lecture 2)

Hycon Summer School, Siena July 2007 Mikael Johansson mikaelj@s3.kth.se

Stability concepts

Focus: stability of equilibrium point (in continuous state-space)xz = 0

Global asymptotic stability (GAS): ensure that

tlim x(t) =0 for all initial states (z(0),4(0))
—00

Global uniform asymptotic stability (GUAS): ensure that

limz(t) =0 for all initial states (x(0),:(0))
t=o0 and for all piecewise continuous i(t)

(i.e., uniformly ini(t) )
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Three fundamental problems

Problem P1: Under what conditions is
z(t) = f(z(t),i(t))
GAS for all (piecewise continuous) switching signals|i(t)?

Problem P2: Given vector fields f(x,i) = f;(x), design strategyv(z,1):
z(t) = f(z(t),i(t))
i(tT) = v(@(t),i(t))
is globally asymptotically stable.

Problem P3: determine if a given switched system

() = f(x(1),i(1))
i(tF) = v(a(),i(1))

is globally asymptotically stable.
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Part I — Stability theory

Outline:

e A hybrid systems model and stability concepts

e Lyapunov theory for smooth systems

e Lyapunov theory for stability and stabilization of hybrid systems

Aim: establishing common grounds by reviewing fundamentals.
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Lyapunov theory for smooth systems

Theorem. Let x = 0 be an equilibrium point of © = f(x), and let
V :R"+— R be a continuously differentiable function such that
(i) V(z) — oo as ||z]| — o© (radially unbounded)
(ii) V(0O)=0and V(z) >0 ifz#0 (positive definite)
(i) V(x) = 8%f(:c) < 0 for aii x # 0 (decreasing)

then x = 0 is globally asymptotically stable.

Interpretation: Lyapunov function is abstract measure of system energy,

system energy should decrease along all trajectories.
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Converse theorem

Under appropriate technical conditions (mainly smoothness of vector fields)

Theorem. If x = 0 is a GAS equilibrium of & = f(x), then there
\exists a radially unbounded Lyapunov function V (x)

Consequence: worthwhile to search for Lyapunov functions

Remaining challenge: how to perform Lyapunov function search?
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Stability of linear systems

Theorem. The following statements are equivalent:

(i) The linear system = = Ax is asymptotically stable

(ii) There is a quadratic Lyapunov function
V(z) = 2! Px
for some positive definite matrix P > 0 such that

ATP 1L PA -0
4 A Fa |J..4(A.\\J

Moreover, for every asymptotically stable A and for any Q > O there

IS a P > 0 such that the tollowing Lyapunov equality holds
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Partial proof

(ii)—(i): Assume that th

Than tharo oavicte an -
1INt Liilv v UATOoLOo A ©

ATP+PA+eP <O
Letting V(z) = 2" Px, then for all t € R

%V(m(t}) 4+ eV(z(t)) = 2T () (ATP + PA)x(t) + ex (t) Pz (t)

TN(ATP L PA L cPYx(+) < 0O
SVACENE I AT S ey =Y

iz
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After integration, this yields for all t < tg,
2T () Pz(t) < 27 (to)Px(to)e
Now use that Amin(P)]|z||? < 27 Pz < Amax(P)||z||? to infer

2Amax(P) _y
)\min(P)
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Stability of discrete-time systems

o ] r— 0 ho an oaatiilibritim point of »(+., . .Y — £(+(+.))
LI ] A0 — N | S ) i \4\4’”""\/’ ruanrn ’.JU"'L i W\UK—‘— / J \W\U’{://’
anad let V/ n, MR ho a continnorichy difforontiabhle fiinction < +
(“N A} I v v FIAN ' 7UN M U bvl'L'l'uVuJ'] dilTici viiLidrvie TuUIIcCLIvVii 9. L.

(1) V(z) — o0 as [[z|| — oo
(i) V(0) =0 and V(z) >0 ifz # 0

xr) — T\lk))) — V T\ Tk x

then x = 0O is globally asymptotically stable.

Interpretation: energy should decrease at each sampling instant (event)
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Performance analysis

Lyapunov techniques also useful for estimating system performance.

Neorem. Aefre ex cl
age function V (z) satisfying
8‘/(1:) Y4 \ 21 1) 0w n?2 \y
; J\z,w) = vy lwll™ — 1yl VT, w
ox
then the smooth nonlinear system
4+ — P+ ()
T\U) = J\T\L),w\1l))
y(t) = g(z(t))
N . . N . et o) ~ S 2 o} \
has T,-gain less than ~ (i.e., JIO ly(s)lleds <~ Jlo lw(s)l[=ds Vit )
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Part I — Stability theory

Outline:

e A hybrid systems model and stability concepts

e Lyapunov theory for smooth systems

e Lyapunov theory for stability and stabilization of hybrid systems

Content:
- Guaranteeing stability independent of switching strategy
- Design a stabilizing switching strategy
- Prove stability for a given switching strategy
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Switching between stable systems

Q: does switching between stable dynamics always create stable motions?

A: no, not necessarily.

Subsystems are stable and share the same eigenvalues,
but stability depends on switching!
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P1: Stability for arbitrary switching signals

Problem: when is the switched system
z(t) = f(x(t),i(t)) = fiy(x(t))

GAS for all (piecewise continuous) switching signals i(t) ?

Claim: only if each subsystem
z(t) = fi(z(t))

admits a radially unbounded Lyapunov function.

(can you explain why?)
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The common Lyapunov function approach

In fact, if the submodels are smooth, the following results hold.

T heorem Tf all cithmodels chare 2 common nositivve doefinite radiallyv
L] TINGVT Nl d . LT CAIT DUNITTINVUNCITID DTl v U A S NN NN A r/vululvw AN TITTITT LN luulull_y

unbounded Lyapunov function, then the switched system is GUAS.

Theorem-If the switched-system-is GUAS, thenall submodels share

a positive definite radially unbounded common Lyapunov function.

Hence, common Lyapunov functions necessary and sufficient.
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Switched linear systems

For switched linear systems

z(t) = Ay (x(1))

it is natural to look for a common quadratic Lyapunov function
V(z)=2"Px  withP>0

V() is a common Lyapunov function if
V(z) =ax"(ATP+ PA)xz <0 foralli=1,2,...,.M

Such a Lyapunov function can be found by solving linear matrix inequalities

P>0 AP+ PA; <0 foralli=1,2,....M

(systems that admit quadratic V(x) are called quadratically stable)
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Infeasibility test

It is also possible to prove that there is no common quadratic Lyapunov fcn:

Theorem. If there exist positive definite matrices R; > 0 such that

M
\ D AT 1+ A D <N
> RiA; + AiRi >0
=1

then there is no P > 0 such that

AP 4L pA. <0 /4
7 T A4 \4

171
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Example

Question: Does GUAS of switched linear system imply existence of a
common quadratic Lyapunov function?

Answer: No, the system given by
_ (-1 -1 _ (-1 -10
Al_(l —1) A2—(0.1 —1)
is GUAS, but does not admit any common quadratic Lyapunov function since

Ry = 0.2996 0.7048 Ro — 0.2123 -0.5532
1= 10.7048 2.4704 27 \-0.5532 1.9719

satisfy the infeasibility condition.

(there is, however, a common piecewise quadratic Lyapunov function)
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Example

Sample trajectories of switched system
(under two different switching strategies)

Even if solutions are very different, all motions are asymptotically stable
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P2: Stabilization

Problem: given matrices A, find switching rule v(x,i) such that

z(t) = Ajx(t)
(tT) = v(z(t),i(t)

is asymptotically stable.
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Stabilization of switched linear systems

Theorem. If there exist o; > 0 with ZZ a; = 1 such that

B = arda(t) = A

is globally asymptotically stable, then there exists a switching strat-
egy that makes the switched system globally asymtotically stable.

2L I C adoy LUl c

Note: if only two subsystems, then condition is also necessary.
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Stabilizing switching rules (I)

State-dependent switching strategy designed from Lyapunov function for A,
Solve Lyapunov equality AZqP + PAeq = —Q . It follows that

Z «; :UT(AiTP + PA)x = .CUT(quP 4+ PAeq)z = —2'Qz < 0

Thus, for each x, at least one mode satisfies =’ (A P + PA;)xz(t) < 0

This implies, in turn, that the switching rule

v(x) = arg min a:T(AZ-TP + PA)x

is well-defined for all x and that it generates
globally asymptotically stable motions.

Hycon Summer School, Siena July 2007 Mikael Johansson mikaelj@s3.kth.se

Stabilizing switching rules (II)

Alternative switching strategy: activate mode i fraction o, of the time, e.g.,

(1 ifo<t<yT

If\ .~ r— - . . Ve 1 N\ rm

2 IT 1 <1 1
i) = 1 apl St < (o1 +a2)

v if St <t<T
(strategy repeats after duty cycle of T seconds). “"Average dynamics” is
T = Aeqx
and for sufficiently small T the spectral radius of

exp(Aja1T) exp(AranT) - - -exp(AyanT)

is less than one (i.e., state at beginning of each duty cycle will tend to zero)
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Example

Consider the two subsystems given by
_(—-05 1 _ (-1 -—-100
A1 = (100 —1) A2 = (—0.5 ~1 )
Both subsystems are unstable, but the matrix A,,=0.5A;+0.5A, is stable.

State-dependent switching: set Q=I, solve Lyapunov equation to find

P = 0.5700 0.0015
— \0.0015 0.5728

Time-dependent switching: choose duty cycle T such that spectral radius of
exp(A;T/2) exp(A2T/2)

is less than one. Alternate between modes each T/2 seconds.
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Example cont’d

Time-driven switching

State-dependent switching

WAV AWARIW WA,
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P3: Stability for a given switching strategy

Problem: how can we verify that the switched system
z(t) = f(x(t),i(t))
i(tT) = v(xz(t),i(t))

is globally asymptotically stable?
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Stability for given switching strategy

For simplicity, consider a system with two modes, and assume that

1 2
i, £

N
N
o~

are globally asymptotically stable with Lyapunov functions V,

Even if there is no common Lyapunov function, stability follows if

WNlk—1 A3 ) y

where t, denote the switching times.

Reason: V, is continuous Lyapunov function for the switched system.
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Multiple Lyapunov function approach

fi(x) are globally asymptotically stable with Lyapunov functions V;.

Suppose that for each pair of swtiching times (ti,t;), k < l with
i(ty) =i(t)) =7 and i(ty) 1 for t, < t, < t;, we have

Vi(z(t)) < Vi(z(te)) — p(lz(te)])
then the swtiched system is globally asymptotically stable.
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Multiple Lyapunov function approach

Weaker versions exist:

- No need to require that submodels are stable, sufficient to require that
all submodels admit Lyapunov-like functions:

Vi(z) >0 for x € X;

5 fi(z) <0 for z € X;
X

where X; contains all x for which submodel f, can be activated.

- Can weaken requirement that V, should decrease along trajectories of f,

See the references for details and precise statements.
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Summary

A whirlwind tour:
e selected results on stability and stabilization of hybrid systems

Three specific problems

e Guaranteeing stability independent of switching signal
e Design a stabilizing switching strategy (stabilizability)
e Prove stability for a given switching strategy

Focus has been on Lyapunov-function techniques
e Alternative approaches exist!

Strong theoretical results, but hard to apply in practice

e Can be overcome by developing automated numerical techniques
(Lecture 21)
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Part II — Computational tools

e Piecewise linear systems

e Well-posedness and solution concepts
e Linear matrix inequalities

e Piecewise quadratic stability

e Extensions
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Computational stability analysis: philosophy

Aim: develop analysis tools that
- are computationally efficient (e.g. run in polynomial time)
- work for most practical problem instances
- produce guaranteed results (when they work)

system computer [ stable
description rogram . ,
P Prog —(X) inconclusive
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Piecewise linear systems

Piecewise linear system:

1. a subdivision of R" into regions|X;

M
U X; CR"
=1

we will assume that X; are polyhedral and disjoint
(i.e. that cells only share common boundaries)

2. (possibly different) affine dynamics in each region

fx(t) = A;x(t) + a; + B;u(t) £
Ly(t) = Cix(t) + ¢ + Diu(t)
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Example

Saturated linear system: & = Az +bsat(v), v==~k'x

Three regions: negative saturation, linear operation, positive saturation

Ax —b T € X1
T = (A—bk:T)x z € Xo
Ax +b T € X3

Cells are polyhedral (i.e., can be described by a set of linear inequalities)
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Well-posedness and solutions

Definition. Let z(t) € U;c; X; be an absolutely continuous function
We say that x(t) is a trajectory of the system

f2(t) = Aix(t) + a; + Biu(t) ,
forxz(t) e X; i€l
y(t) = Ciz(t) + ¢ + Diju(t) ®) '

te [to,tf] the equation z(t) = A;xz(t) +
h
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Trajectories: existence and uniqueness

Observation: trajectories may not be unique, or may not exist.

Example:
Vs N
S NN
;’/ / N
. 7/ AR
{-’L'l = —2x1 — 2z25gn(z1) 17 ™
o = x2 + 4x15gn(x1) F A
rt Pt
H t 1
LI ,rw
I_t_s_‘._._ 1 _,__J_'_‘

Initial values in S = {z | z1 = 0 Axz2 <0} create non-unique trajectories.

Trajectories that reach S = {z | 21 = 0 Az» > 0} cannot be continued
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Attractive sliding modes

Would like to single out situations with non-existence of solutions.

Definition. T

(2(t) = Aix(t) + a; + Biu(t)
w(t) = Cix(t) + ¢ + Diut)
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Generalized solutions

Solution concepts for systems with sliding modes typically averages
dynamics in neighboring cells

w(t) € €O {Apx(t) + ar + Bru(t)}
ke K (t)

for almost all t, where K is the set of indicies such that z(t) € X.

Note: Filippov solutions may remain on cell boundaries,
and are not necessarily unique.
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Equivalent dynamics on sliding modes

Example: Piecewise linear system

T R
. v A%
21 = —2x1 — 2x25gn(x1) 1 N
- ’ \
122 = 22 + 4x15gn(z1) 5 NNR
7 TN
+ ooy [
on 8" ={z|z1=0Az2 >0} [ B
| il

Filippov solutions satisfyu:(t) € aA12(t) + (1 — a)Asx(t) for some a € [0, 1]

If x(t) should stay on S;*, we must have z:(t) =0, i.e.,

The only solution is given by a=1/2, resulting in the unique sliding dynamics

r1 =0, T2 = X2
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Non-uniqueness of sliding dynamics

Observation: sliding dynamics on intersecting boundaries often non-unique

Example:

x3=10

- IR T T IR 1)
=) S R

‘ AN ERREE

| o Xi= Aox 4 ay | X

I,

| NNNNNNNNN 4 /L

]
LR S

1 = x2 —sgn(z1)

ks ° ‘ NNNNNNNNNS A A A AL
T2 —$3—Sgn(1‘2) ) NENNSNSNN/SsLs000
. —~ Y Y , N , N o8 | L RRRNNANNN
[ — — — — + FAELELFFINNNNNANNY
(I/‘3 - Z'T;:I. 4‘/1’.2 43:3 I3Sgnkm2)sgnkw1 l) LIPS SN
AR
T Xi= Asx + ay Xi= Asx + ag
. ) R e e e R
=2 RN EREAS SRR
< [EEEENEREE XIS XRRRAN
X1 EENEN NN
a

Filippov solutions onS1o ={« {21 =0A22=0A|x3} <1} are not unique.
(can you explain why?)

Valid Filippov solutions on S;, differ in time constants of a factor four or more.
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Establishing attractivity of sliding modes

Note: non-trivial to detect that a pwl system has attractive sliding modes

Example: The piecewise linear system

z1 = —sgn(z1) + 2sgn(z2)
& = —2sgn(z1) — sgn(z2)

has a sliding mode at the origin.

However, determining that it is attractive is not easy

- Vector field inspection or quadratic Lyapunov functions can’t be used
(why?)

- Finite-time convergence to the origin can be established by noting that
GRS R
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Key points

Piecewise linear systems: polyhedral partition and locally affine dynamics

[(t) = Ajx(t) + ai + Biu(t) :
4 Y N A R T s WA forz(t) e Xi i€l
WY\l) = U ) T G T Lju\l)

For general piecewise linear systems, solution concepts are non-trivial
- Trajectories may not be unique, or may not exist (unless continuous)

- Meaningful solution concepts for attractive sliding modes exist
(e.g. Filippov solutions)

Introducing “"new modes” on cell boundaries with sliding dynamics not easy
- Sliding modes may occur on any intersection of cell boundaries
- Hard to determine if potential sliding mode is attractive
- Dynamics of sliding modes may be non-unique and non-linear
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Part II — Computational tools

e Piecewise linear systems

e Well-posedness and solution concepts
e Linear matrix inequalities

e Piecewise quadratic stability

e Extensions
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Linear matrix inequalities

Linear matrix inequality (LMI): An inequality on the form

n
F(z) = Fy+ Z:L’Z'FZ'>O
=1

where F, are symmetric matrices, X>0 denotes that X is positive definite.

Example: The condition P > 0 on standard form:

|r‘| )-i I— -i I—( )
P11 |LO OJ + p12 ‘Ll OJ + p2o \LO 1

—
=

]
|>O

d
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LMI features

e Optimization under LMI constraints is a convex optimization problem

- Strong and useful theory, e.g. duality
(we have already used it once - when?)

e Multiple LMIs is an LMI

- Example: Lyapunov inequalities P >0, ATP+ PA <0
equivalent to single LMI

A

0 —ATp_—pA

o Efficient software and convenient user interfaces publicly available
- Example: YALMIP interface by J. Léfberg at ETHZ

e S-procedure, Shur complements, ... and much more!
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Example: Quadratic stabilization

Recall from Lecture 1 that V(z) = «? Pz guarantees that
z(t) = Ay (z(t))

is GAS for all switching signals i(t) (i.e., GUAS) if P satisfies

P>0
ATP4+ PA; <O Vie{1,2,..., M}

an LMI condition!

Consequence: quadratic Lyapunov function found efficiently (if it exists)!
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Quadratic stability of PwL systems

V(z) = z! Pz is a Lyapunov function for the piecewise linear system

T = A;x x € X;

if we have
T -~
" Fxr >0 Ve = 0
T(4TB| PA )z <0 Vo e X\0
3 2 7

Note: not necessary to require that A’ P+ PA; <0

How can we bring the restricted conditions into the LMI framework?
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S-procedure

When does it hold that, for all x,

(i.e., non-negativity of quadratic form =7 Rz implies non-neagivity of =’ Pz )

Simple condition: there exists 7 € Ry satisfying the LMI P > 7R

Extension to multiple quadratic forms: if there exist 7, > 0 such that
P—-Y 1R, >0
7
then (¢TRyz > 0)A(zTRoz >0)--- =z Pz >0

(non-trivial fact: simple condition is necessary if there exists u: v’ Ru > 0 )
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Bounding polyedra by quadratic forms

Example: The polyhedron

X={z||z|<1}={{z|(@>-DDA(z<D)}={z|(xz+1>0)A(1—-2>0)}

can be described by the quadratic form

gz) =7(z+1)(1-2)=7(1-2°)>0

forr>0

In general: for polyhedra X; = {z | Eix +e; = 0} the quadratic form

w=( ) u(s af]) - e

is non-negative for all z € X; if W; has non-negative entries
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Quadratic stability cont’d

Consider the piecewise linear system
x = Az fOI’xEXi:{J:’EZwEO}

(no affine terms, all regions contain the origin). Then,

Theorem. If there exists a positive definite matrix P and matrices

CAISLS O pUSIivIVe uThinniee i LA VN

U; with non-negative entries such that

ATP+ PA,+ E'UE; <0

then every Filippov solution tends to zero exponentially.
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Example

Recall the switched system

jiy Y

_(-01 1 _(-01 10
Al_(—lo —0.1) A2—(—1 —0.1)

from Lecture 1. Applying the above procedure, we find

with

P=1, egq., V(ZE) = ZET:E. ::" :;." *:_J_Jl \‘l'.

(stability cannot be verified without S-procedure - can you explain why?)
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Piecewise quadratic Lyapunov functions

Natural to consider continuous, piecewise quadratic, Lyapunov functions

otr = [2]7 B @] [2]
S R Co e

A oY

(- — -1 D 1 D~ v
VAZL) = T 14T T &4 101

+ = X
r & Ay

Surprisingly, such functions can also be computed via optimization over LMIs.

Relation to multiple Lyapunov functions:

e Local expressions for V(x) are Lyapunov-like functions for
associated dynamics (stronger relationship will emerge in the extensions)
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Convenient notation

Use the augmented state vector

#= i

and re-write system dynamics as

r:;U-l [ Aq a; i Bq 1 r:E-l r le | B 7 Fx‘l
= Oixn O | O1xm = L L
o) = [ o | o = [ D) 1)

When analyzing properties of the equilibrium z =0 we let

~ C T ho the cot nf indicoc far roninne rontainina ANrinin
J.U : Az [ il Ov L Vi nmivviIcveo 1w I\«ylullq \.«\Jllbullllllg \Jllylll
I C I be the set of indices for regions that do not contain origin

and assume that a; = ¢ =0 for i € Ip
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Enforcing continuity

How to ensure that the Lyapunov function candidate

T rp. _ _
o= [§ GHl=rm reex

is continuous across cell boundaries?

Proposition. 2T P,z = 2T Pjz for all z € X;N X; = {z | hLz = 0}

if and only if there exists t;; € R+ such that
‘ £z L £ J | U,L]ULJ | U,L]IULJ

Enforce one linear equality for each cell boundary.
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Enforcing continuity (II)

Alternative: direct parameterization

For each region, construct continuity matrices F; = [F; fi] such that
F;z = Fjz for all z € X; N X
and consider Lyapunov functions on the form
V(z) =z E'TFx for x € X;
(the free variables are now collected in the symmetric matrix T)
To make Lyapunov function quadratic in regions that contain origin,
we also require
fi=0 for : € Io

(construction automated in, for example, Pwltools)
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Piecewise quadratic stability

Theorem (Piecewise Quadratic Stability). Consider symmetric ma-
trices T, U; and W; such that U, and W; have nonnegative entries,
while P; = F!'TF; and P, = F! TF; satisfy

0> AP, + PA; + EIUE; il

0< P,— ETW,E;

0 < P — ETW;E;
Then every trajectory z(t) € U;c1 X; satisfying

= A;x + a; for x € X;

tends to zero exponentially.
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Example

Piecewise linear system with partition shown below,

Az

|
o
w
|
L
>
I €
o
N

|

S
IS

I

|
s
o
&

and a=5, w=1,e¢=0.1

(=3
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Potential sources of conservatism

. Quadratic Lyapunov functions necessary and sufficient for linear systems,
but piecewise quadratic Lyapunov functions not necessary for stability of
PWL systems.

. S-procedure terms EZTW,E, effectively the sum of several quadratic forms

' EIW,Eix = ZZU)W(@ )T (e T)

hence, S-procedure is not guaranteed to be loss-less (better tools exist)

Use of affine terms and strict inequalities can also be conservative.
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Extensions

Many extensions possible:

e determining regions of attraction (i.e. non-global stability properties)

e Lyapunov functions that guarantee stability of potential sliding modes

e nonlinear and uncertain dynamics in each region

e performance analysis (e.g. L,-gains)

e (some) control synthesis

e hybrid systems (overlapping regions) and discontinuous Lyapunov fncs.
e Lyapunov functionals and Lagrange stability

e stability of limit cycles

e similar tools for discrete-time hybrid systems

(too much to be covered in this lecture!)

We will sketch a couple of extensions
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Performance analysis

Theorem (Upper Bound on L, Gain). Suppose there exist symmet-
ric matrices 1T, U; and W; such that U; and W; have non-negative
entries, while P, = FI'TF;, and P, = FI'TF, satisfy
’ 7 7
i = 4 L RSN A~ o~y g Al P ~ 3y 7]
o PAH+ AP+ C Ci+E UFE;,  PB; foriel
0
L BI'P; —21 |
DA, AT . AT . FTrr B P
O> 2A2+Ai Z-i:TC"i 1+EiUZ 1 Pz-gz for’iefl
L Bz R - I_

The best upper bound on the Lo induced gain is achieved by mini-
mizing v? subject to the constraints defined by the inequalities.

Proof. Pre/postmultiply with (x, u), note that LMIs imply dissipation inequality
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Example

Saturated linear system (unit saturation)

s—3
i) =52
. s+ 7
G2(8) = 253, 712

Quadratic storage functions fail to bound L,-gain.

Piecewise quadratic storage function yields bounds

5.52 < v < 5.54
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Linear hybrid dynamical systems

Linear hybrid dynamical system (LHDS)

‘ Q\f(t\ = ‘4~/.\_"’c(t\ —l— A -7\
| \¥/ ()" \"/7 1} (T

i(tT) = v(z(t),i(t))

v described by finite automaton whose state changes
when x hits transition surfaces

Sij = A{=z | fijz = 0}

and for each i, the feasible x bounded by a polyhedron X; = {z | E;z > 0}

S = {J ‘ ]?11;}:()}

So1 = {J ‘ f;li:()}
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Discontinuous Lyapunov functions

Multiple quadratic (discontinuous, pwq) Lyapunov function via LMIs

Theorem. Consider symmetric matrices U;, W; with non-negative
entries, symmetric matrices P;, P;, and vectors tj;, t;; such that

T rr

O< P, — E;TWzEZ

0 < P;j— P+ Fully + TS, (j,k)eT, jeliorkel, (3)
0 < Pj— Py + fith, + tinfh (G,k) €T, j4,k€ I (4)
LY SR Ik JRYJ K \J 7 7 Y JI v \ "/

Then every trajectory of the LHDS tends to zero exponentially.

Note: conditions (3,4) imply that V(t) decreases at points of discontinuity
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Example

Linear hybrid system
x(t) == Az(t)m(t)

2 if 2(t) =1 and > = —10x1
1 if i(t) =2 and zo = 221
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Discrete-time versions

Discrete-time piecewise linear systems

VATl — A1 D T2 1 94T A T2.] 1 . 1.1 ~
VAZL|R]) — LR] 13X |R] T «4; TIR] T T4 TIR] T vy
We have
AV (x[k]) = V(z[k + 1]) — V(x[k])
=2l AT P AxlET - 2(al P:Ax + of A2kl 4+ af Pia: + 2at a; + 1
L] Ay Lyl v] T £\U; L0058 T j A JL ] T Gy 505 T £ j Ug T Ty
T T
— z[k]” Pixl[k] + 2q; x[k] +
T
_ [z[k]] [AIPjAi - P, AiPjai+q;—a ] [z[#]
— 4 Al AR S f -
1 )* a: Pa; F2q;a; ¥ — 71 | 1 |
L A L N7 J J LJ J Jd L

for :E[]{I]EXU:{LB|33€Xi/\AZ‘CI}+aiEXj}:{x|E¢ftO/\EjA¢ftO}
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Discrete-time versions

Discrete-time globally asymptotically stable if there exist matrices P, q;, r;, U;
where W;; has non-negative entries, and a non-negative scalar ¢>0, such that

ATPA; — P, Al Pjai +qj — qi =Trr —el 0
[ l ()T a?ﬂa; + 2gja; +7j — 7‘1} + BBy < [ 0 O}

(note: in most solvers, you will need to treat Xi, ¢« € Io separately)

Observations:
e Again, LMI conditions, hence efficiently verified!
e Potentially one LMI for every pair (i,j) of modes.
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Comparison with alternatives

Biswas et al. generated optimal hybrid controllers for randomly generated
linear systems, and compared performance of several computational methods

Typical results:

Partitions obtained for 3™ order LTI systems, 2 norm objective
50 Stable Systems, N =1 50 Unstable Systems, N =1
Method Sucecess | Solution Time | Setup Time | Success | Solution Time | Setup Time
Quadratic 45/50 0.7 sec. 0.4 sec. 43/50 1.1 sec. 0.5 sec.
Piecewise Quadratic 50/50 0.7 sec. 1.3 sec. 50,50 1.9 sec. 2.5 sec.
Common SOS order 4 | 42/50 7.6 sec. 82.2 sec. 32/50 11.4 sec. 141.9 sec.
Piecewise SOS order 4 | 35/50 12.1 sec. 100.0 sec. 31/50 80.6 sec. 263.8 sec.

Table 2. The nmumnber of regions were between 9 and 15 with 9-47 transitions.

Very strong performance, but computational effort increases rapidly
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Summary

Computational tools for stability analysis of one class of hybrid systems

Piecewise linear systems

Partition of state space into polyhedra with locally affine dynamics
Solution concepts: trajectories and Flippov solutions
Given a pwl model, it is non-trivial to detect attractive sliding modes

Piecewise quadratic Lyapunov functions

Efficiently computed via optimization over linear matrix inequalities
Potentially conservative, but strong practical performance

Many extensions, but much work remains!
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Part III — Examples

e Constrained control via min-max selectors
e Substrate feeding control

e Automatic gear-box control

e A simple relay system
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Constrained control via min-max selectors

Common “pre-HYCON" approach for constrained control

Aim: tracking primary variable (y), while
keeping secondary variable (z) within limits

L PV u

Znax Cmax d r————~———=——f~-—-—-——--— A

SP : !

1 1

Vs M i i
- u, I| , , L
¢ M N = ] G FH— G, : i

A | |

X I |

1 1

Zmin I Process !

—=|sp u,; [N it a

C‘min
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Numerical example

Specific example with
Py 5 $2+3s+3

40
CE 3 52 o5 a0 )= 35— F C)= T
0.55% + 252 + 225+ 40 2+ 75+5 0.02s2 4+ s+ 0.01

5

1. (8)
i\8)

and proportional constraint controllers.

Control without constraint handling Control with constraint handling

2 2
L [i = D F7 N 3
Ly o \ : [ Ly o ' | ;
\ - S
2 2
o] 10 20 30 40 0 10 20 30 40
20
L u,v .
u 0 0 _ _
10 20
0 10 20 30 40 10 20 30 40
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A loop transformation

Linear system interconnected with 3-input/1-output nonlinearity

Loop transformation reduces dimension of nonlinearity by one:

1
Zmax Cmax | e It =
p
n :

I
1
|
1
1
I
|
I
1
|
1
1
1
-

Process

still, few techniques apply to such systems
(e.g. small gain and LDI do not work)
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Stability analysis

However, nonlinearity (and hence system) is piecewise linear:

Zmax— Vi

Ysp —=

Zmin—» Vil

LMI computations return quadratic Lyapunov function
(but S-procedure needed)
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Part III - Examples

e (Constrained control via min-max selectors
e Substrate feeding control

e Automatic gear-box control

e A simple relay system
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Fed-batch cultivation of E. coli

Recombinant (genetically modified) E. coli bacteria used to produce proteins.
Bioreactor control: Add feed (nutrition) and oxygen to maximize cell growth.

Fed-batch: feed added continuously, at limiting rate

Stirrer

[Velut, 2005]
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Control objective

Objective: maximize feed rate while ensuring that

oxygen level does not drop too low (acetate production, inhibited growth)
glucose is not in excess (“overflow metabolism”)

Feed rate

Oxygen Transfer

Overflow
metabolism | ey

transfer

F(t) = 227

Time
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Probing control

Control strategy: increase feed while no acetate formed, decrease otherwise

Acetate formation detected by probing:

- add pulse in feed, observe if oxygen consumed
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A piecewise linear abstraction

Simplified model of reactor dynamics
z=ax~+ bf(v)

Yy =cx

where f(v) is a piecewise linear function

u

R
v(t) = u, +up(t) te kT, (k+ 1)T] v {

t + t
kT kT+T, (k+1)T

Integrating the response over a pulse period,
we find the discrete-time model

[ flur) ]

B pun+u)

k] = Calk +D | ;14 0)|

S
?u
_|._
[y
I
s
&:‘
=

Piecewise linear if u, is a linear in x.
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Control strategy

Assume a linear integral control

ulk + 1] = ulk] + K (yrer [k] — y[k])

fixed length of probing cycle T and probing pulse T-T,

To model saturation in glucose uptake, consider
f(v) = min(v,r%)

This results in a piecewise linear systems with three regions
(why not two?)

Control objective is now to drive system towards saturation.
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Control to saturation

The formulation in Lecture 2 does not return any feasible solution
e integrator dynamics in unbounded regions - not exponentially stable

Two potential approaches:

e Prove convergence for initial values within (large but bounded) region
(can be done by adding S-procedure terms)

e Remove implicit equality constraints by state-transformation
(more satisfying, but more complex; see Velut)

With modifications, stability can (often) be proven VIA pwq Lyapunov fncs.
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Numerical results

Stability regions for one specific problem instance (reactor parameters)
e red dots bound region where stability can be established numerically
e shaded regions are shown to be unstable (via local analysis)
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Performance analysis

Stability often not enough with stability — would like to optimize performance
e for example, the ability to track time-varying saturation level

Can compute bound y on performance

for all reference trajectories r[k] via LMI computations.

Note: typically large system descriptions...
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Numerical example

Simulations for specific r[k] y for all rate-limited references

Kr14 T.~1.3

Parameter contours suggest optimal parameters
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Tuning rules

Similar behavior observed for various parameter values of the process.

Based on this observation, Velut suggests the following tuning rules

1
ST (T -1
_o(T—-Te) ¢
Yref = Tup
1<ales<?2

where o(t) is the unit step response of the linear dynamics.
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Part III — Examples

e (Constrained control via min-max selectors
e Substrate feeding control

e Automatic gear-box control

e A simple relay system
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A simple model for car dynamics

Simple model:

Inputs: motor torque T and road incline o; output ®

1 L~

0 = —Tu — —v°signv — gsina
M M

w = vu

where v = p/r is the discrete input, determined by the current gear

To emphasize this dependence, we write

u=u; = p;/r; when using gear i
[Pettersson, 1999]
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Gear-switching strategy:

i) =i(t)+1 if w> wg‘(it)
ity =i(t) -1 if w < Wiy

Can be represented by hybrid automaton with four discrete states
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Torque control and bumpless transfer

Base controller: non-linear PI

k
T=P+ I+ —v%signv

%
P = K;y(vrer — v)
d K,
al = TZ( )('Uref - U)
i)

Changes in acceleration when shifting gears avoided via bumpless transfer:

uiKz- = quj
I(t+) - Yige) I(t)
i(et)

for all feasible gear changes i-2>j.
( compatible values of K;, changes in integral state)
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Hybrid system model

Need extended hybrid model that allows for jumps in the continuous state

L(1) = (D). i(0)
z(tT) = p(a(t),i(1))

LMI formulation possible if jump map is affine in x.
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Numerical example

Closed loop system is switched linear system

r1

7 r - el

a el _ |—u;/M —p;/M e
gyl = | T/L/, /err. 31 | I for e = X’L
ar(t] [ St > U

where e = v f —v and

u; = {50, 32,20, 14}

(2 * ) * Y * Y

M = 1500, T, = 40, T,K; = 187.5

Simulation for veer = 30
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Stability

If affine reset maps

then, z(¢t 1T P.z(+T) < z(¢t)TP,z(¢) is guaranteed by solution to LMI

Can extend discontinuous Lyapunov function computations from Lecture 2

Gear-box example: solution found - exponential convergence to v, .

Remark: analysis needs to be repeated for each value of v
(as in bioreactor example)
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Part III - Examples

e (Constrained control via min-max selectors
e Substrate feeding control

e Automatic gear-box control

e A simple relay system
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More of a theoretical challenge...

Consider a linear control system under hysteresis relay feedback...

[Hassibi, 2000]

(82 ) ()

Simulations suggest system is stable, yet no pwqg Lyapunov function found.
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The challenge

Q: why do piecewise quadratic methods fail, how can they be improved?

The more general challenge:

Put the methods to the test of challenging engineering problems, and
help to contribute to the development to improved analysis tools!
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