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Preface
During the last decade, model predictive control (MPC) has emerged as preferred control technology
for many multi-variable and constrained control problems in a range of industries. The first heuristic
applications of model-predictive control ideas were reported in the 70’s, and much of the theory to
guarantee stability and performance of MPC controllers was worked out already 20 years ago. Still,
one can argue that it is the advances in computing hardware and efficient optimization algorithms
that has enabled the broader use of the technology. Early applications of MPC considered systems
with sampling intervals of several minutes and required a specialized computer for solving the
associated planning problems. Today, model-predictive controllers are routinely implemented on
inexpensive embedded hardware with sampling intervals on the millisecond scale.

These lecture notes were written for EL2700 – Model Predictive Control, given for the first
time at KTH during the fall of 2017. One may ask if it is worth the while to write lecture notes
when there are already many good books on model predictive control. For example, the ones by
Maciejowski [18], Borrelli, Bemporand and Morari [6], and by Rawlings and Mayne [21] are
excellent texts that we have often used as supplementary references in EL2700. Still, these books
do not contain all the material that we want to teach, and they do not always present the concepts in
the way or on the level that we would like. EL2700 attracts strong and ambitious students, but they
come from diverse engineering programs. In addition, the course runs over seven weeks and 28
lecture hours, which is a short time for digesting all the essential aspects of MPC. We have also
made an effort to develop a comprehensive set of exercises, and to promote open source software.
All code listings in these lecture notes use open source packages in Python, and all exercises can be
solved fully with free software.

Courses are almost never developed from scratch. Instead, they are often based on knowledge
acquired from others, and the way we present different ideas is inspired by the way others have
presented similar material to us. In this spirit, these notes draw on excellent lecture slides on
linear dynamical systems (ee363) by Prof. Stephen Boyd at Stanford University, on discrete-time
linear systems by Prof. Alberto Bemporad at IMT Lucca, on model predictive control by Prof.
Mark Cannon at Oxford University, and by control systems design by Profs. Bo Bernhardsson
and Karl-Johan Åström at Lund University. Dr. Stefano di Cairano and Prof. Vladimir Havlena
generously shared ideas and insight into the topic ahead of the first edition of the course. Last, but
not least, a continuous stream of outstanding teaching assistants, including Pedro Lima, Valerio
Turri, Martin Biel, Jezdimir Milosevic, Linnea Persson, Abhishek Maji, Pedro Roque, Hamed
Taghavian and Erik Berglund have all been essential to the development of EL2700.

Finally, this is still a living and partly incomplete document, but it has now reached a level of
maturity that could make it helpful also outside of the context of EL2700. If you find the document
useful, please acknowledge it, and if you have suggestions or ideas of how it can be improved,
please do not hesitate to reach out to me directly.



A few words about EL2700
At KTH, a typical seven-week course teaches linear systems (Chapter 1) in week 1, finite-horizon
optimal control (Chapter 3) in week 2, and linear-quadratic control (selected parts of Chapter 4) in
week 3. To be able to prove stability of the linear-quadratic control law, we also teach Lyapunov
theory (part of Chapter 2). The rest of the course is devoted to MPC (Chapter 5, and the remaining
parts of Chapter 2). In week 4, we develop the basic model predictive control policy and prove
its stability. Advanced linear MPC concepts, such as reference tracking, offset-free MPC and
constraint softening, are discussed in week 5, and practical aspects of MPC in week 6. Week 7 is
devoted to project guest lectures and a course summary.

In parallel to lectures and exercise sessions, a sequence of home works develops increasingly
advanced solution to a design problem. Four basic hand-ins cover classical output feedback control
based on pole placement design of state feedbacks and observers, finite-horizon optimal control,
linear quadratic control and linear MPC, while a final hand in is formulated as a competition on a
nonlinear model using nonlinear MPC techniques (not covered in these notes).



Contents

I Part One: System Theory

1 Discrete-time linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 State-space equations, system response, and stability 11

1.2 Reachability and state transfer 15

1.3 Observability and state reconstruction 19

1.4 State feedback and observers 21

1.5 Discrete-time descriptions of continuous-time systems 26

1.6 Design example: level control of a double tank 30

1.7 Input-output properties of discrete-time linear systems* 33

1.8 Exercises 38

2 Stability and invariance of nonlinear systems . . . . . . . . . . . . . . . . . . . 45

2.1 Stability concepts 45

2.2 Lyapunov stability 47

2.3 Positively invariant sets 52

2.4 Exercises 59

II Part Two: Control Design

3 Finite-time optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 A standard form for finite-time optimal control problems 65



3.2 Open-loop optimal control via convex optimization 66

3.3 Optimal feedback policies via dynamic programming 80

3.4 Exercises 89

4 Linear-quadratic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 Finite-horizon linear-quadratic optimal control 97

4.2 Infinite-horizon linear-quadratic control: optimality and stability 100

4.3 Tuning of the LQ-optimal control law 105

4.4 Reference-tracking in the linear-quadratic framework 112

4.5 Least-squares optimal state estimation 118

4.6 Output feedback control 122

4.7 Disturbance modeling and compensation 124

4.8 Exercises 129

5 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1 Model-predictive control: two basic ideas 140

5.2 Linear-quadratic receding-horizon control 145

5.3 Stability and recursive feasibility of MPC 149

5.4 The MPC policy is a static nonlinear state feedback law 154

5.5 A few practical enhancements to the basic MPC policy 156

5.6 Model predictive control for reference tracking 160

5.7 Disturbance compensation and offset-free MPC 165

5.8 Tuning rules 172

5.9 Exercises 175

III Appendix

A Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.1 Sequences and series 193

A.2 Linear systems of equations 194

A.3 Eigenvalues and eigenvectors 197

A.4 Vector and matrix norms 197

A.5 The matrix exponential 198

A.6 Quadratic forms and functions 200

A.7 Positive definite matrices and functions 200

B Polyhedra and ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.1 Polyhedra and polytopes 203

B.2 Ellipsoids 205



C Mathematical programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

C.1 Optimality conditions for unconstrained optimization 207
C.2 Convexity and optimization 207
C.3 Constrained convex optimization problems 210
C.4 Modeling decision problems as quadratic programs 210
C.5 Optimality conditions for constrained convex optimization 213
C.6 A brief overview of quadratic programming solvers 215
C.7 Exercises 222

D Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.1 Proofs from Chapter 1 227
D.2 Proofs from Chapter 2 228
D.3 Proofs from Chapter 4 228

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233





I

1 Discrete-time linear systems . . . . . . . . . . . . . . . . 11
1.1 State-space equations, system response, and stability
1.2 Reachability and state transfer
1.3 Observability and state reconstruction
1.4 State feedback and observers
1.5 Discrete-time descriptions of continuous-time systems
1.6 Design example: level control of a double tank
1.7 Input-output properties of discrete-time linear systems*
1.8 Exercises

2 Stability and invariance of nonlinear systems . 45
2.1 Stability concepts
2.2 Lyapunov stability
2.3 Positively invariant sets
2.4 Exercises
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1. Discrete-time linear systems

This first chapter summarizes basic theory for discrete-time linear systems that will be essential for
our later developments. Particular attention is given to understanding how the state equations can be
used to predict the future evolution of the system, and under what conditions we can find a control
signal that transfers the state from any initial value to any future target. We also discuss stability
concepts, how pole and zero locations affect the transient response, and how to design linear
controllers using pole placement. In parallel, we explore how we can estimate the complete state
vector from system output measurements. Finally, we elaborate on how the theory for discrete-time
linear systems can be used to design controllers for continuous-time systems.

1.1 State-space equations, system response, and stability
We consider discrete-time linear systems on the form

xt+1 = Axt +But

yt = Cxt +Dut
t = 0,1, . . . (1.1)

Here, A,B,C and D are constant matrices, xt ∈ Rn is the state vector at time t, ut ∈ Rm is the
control vector, and yt ∈ Rp is the output vector. The time index t ∈ Z≥0 is integer valued, and the
model typically describes how an underlying physical system evolves between sampling instances.
Specifically, for a given initial state x0, the model describes how an input sequence {u0,u1, . . . ,}
affects the sequence of states {x1,x2, . . .} and the corresponding outputs {y0,y1, . . . ,}. We use the
shorthand notation (A,B,C,D) for a system whose state space representation is given by (1.1).

The free system response
Let us first consider the response of the system when ut ≡ 0 for all t. This free (or unforced) system
response is simply given by

xt+1 = Axt . (1.2)

If we start from an initial state x0 at t = 0, then x1 = Ax0, x2 = Ax1 = A2x0, and more generally,

xt = Atx0
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This means that the future states are completely determined by the initial state and the system
matrix A. This behavior is easiest to understand for a scalar system

xt+1 = axt

It is then clear that

xt = atx0

can have three distinct behaviors. If |a|< 1, the state will converge to zero; if |a|> 1 then it will
grow exponentially, and if |a|= 1, it will stay bounded but neither converge nor diverge.

Definition 1.1.1 — Stability properties. The autonomous linear system (1.2) is asymptotically
stable if its solution {xt} satisfies xt → 0 as t → ∞ for all x0 ∈ Rn; it is stable if there exists
ε > 0, dependent on x0, such that ‖xt‖ ≤ ε for all t; and it is unstable if ‖xt‖→ ∞ as t→ ∞.

When the system has multiple states, the stability properties are still determined by the system
matrix A. In the special case that A is diagonal,

xt+1 =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

xt

each component of the state vector evolves as an independent scalar linear system. Therefore, if
|aii|< 1 for all i, the system is asymptotically stable; if |aii| ≤ 1 for all i, it is stable; and if |aii|> 1
for some i, the system is unstable.

A similar result holds when A is a full n×n matrix with n linearly independent eigenvectors.
We denote the eigenvectors by vi and the corresponding eigenvalues by λ , so that Avi = λivi for
all i = 1, . . . ,n. By introducing the matrices V =

(
v1 · · · vn

)
and Λ = diag(λ1, . . . ,λn), we can

write these conditions compactly as AV = V Λ. Now, since the eigenvectors are assumed to be
linearly independent, V is invertible, A =V ΛV−1, and

xt = Atx0 = (V ΛV−1)tx0 =V Λ
tV−1x0.

Since V is a constant matrix, At vanishes as t→ ∞ if Λt vanishes, i.e. if |λi|< 1 for all i = 1, . . . ,n.
This suggests that the eigenvalues of A determine the stability properties of the system. As the next
result shows, this is indeed the case, even if A is not diagonalizable.

Theorem 1.1.1 — Stability of linear systems. The discrete-time linear system xt+1 = Axt with
A ∈ Rn×n is asymptotically stable if and only if all eigenvalues of A have magnitude strictly less
than one, i.e. if

|λi(A)|< 1, ∀i = 1, . . . ,n. (1.3)

The system is stable if |λi(A)| ≤ 1 and the eigenvalues that satisfy |λi(A)| = 1 have as many
linearly independent eigenvectors as their multiplicity; and it is unstable otherwise.

Matrices A whose eigenvalues satisfy (1.3) are called Schur stable. Although it is sometimes
possible to compute the eigenvalues of the matrix A analytically, e.g. as solutions to the characteristic
equation p(λ ) = det(λ I−A) = 0, we will typically rely on numerical calculations to assess stability.

Geometrically, the condition (1.3) requires that all eigenvalues lie inside the unit circle in
the complex plane. Hence, the unit circle defines the stability boundary for discrete-time linear
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systems. A few examples of eigenvalue locations and the corresponding free system responses are
shown in Figure 1.1. A system with multiple eigenvalues on the unit circle can be either stable or
unstable. For example, xt+1 = Ixt has n eigenvalues at λ = 1, but also n independent eigenvectors
(the Euclidean basis vectors). Hence, it is stable. However, there are also systems with multiple
equal eigenvalues on the unit circle that are unstable; see Exercise 1.2.
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Figure 1.1: Eigenvalue locations (left) and associated unforced responses (right): eigenvalues on
the positive real axis inside the unit circle give a well-damped response; eigenvalues close to the
stability boundary results in an oscillatory response; one or more eigenvalues outside the unit circle
results in an unstable system.

In contrast to continuous-time linear systems, where the free response can only tend to zero
asymptotically but never reaches the origin in finite time, there are discrete-time linear systems
whose state converges to zero in a finite number of steps. One such example is xt+1 = Axt with

A =

(
0 1/2
0 0

)

It is easy to verify that A2 = 0, so that x2 = 0 for all initial values x0. Matrices A such that Ak = 0
for some finite value of k are called nilpotent, and have all their eigenvalues at origin.
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The driven response
Let us now consider the response of the system driven by the input u. We can proceed in the same
way as we did for the free response, i.e. by simply iterating the system equations forward:

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A(Ax0 +Bu0)+Bu1 = A2x0 +ABu0 +Bu1

...

xt = Atx0 +
t−1

∑
k=0

AkBut−1−k

We note that the response is divided into two terms: the free response Atx0 (accounting for the
effect of the initial value) and the driven response ∑

t−1
k=0 AkBut−1−k (accounting for the effect of the

system input). Since the output is just a linear combination of the state and the input, we have

yt =Cxt +Dut =CAtx0 +
t−1

∑
k=0

CAkBut−1−k +Dut (1.4)

One important property of the driven response is that it is linear in x0 and the input sequence
{u0,u1, . . .}. It is convenient to represent this relation in vector form

xt = Atx0 +
(
At−1B At−2B . . . AB B

)


u0
u1
...

ut−1


:= Atx0 +CtUt (1.5)

The matrix Ct is called the controllability matrix over horizon t and will play an important role in
our developments.

State transformations
It is sometimes useful to represent the state vector in another basis, i.e. to make a coordinate change

z = T−1x

for some full rank matrix T ∈ Rn×n. In the new coordinates, the system state evolves according to

zt+1 = T−1xt+1 = T−1(Axt +But) = T−1AT zt +T−1But

yt =CT zt +Dut

so it can be represented by the discrete-time linear system (T−1AT,T−1B,CT,D). When A is
diagonalizable, we have already seen how T = V , where V is a matrix of the eigenvectors of A,
makes T−1AT diagonal and simplifies the analysis. However, as we will see later, coordinate
changes are useful in many other contexts.

Intuitively, a proper transformation of the state vector should not alter the input-output behavior,
which the following result asserts.

Theorem 1.1.2 Let T ∈ Rn×n be a full rank matrix. The two discrete-time linear systems

xt+1 = Axt +But

yt =Cxt +Dut
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and

zt+1 = T−1AT zt +T−1But

yt =CT zt +Dut

realize the same input-output behavior, given that z0 = T−1x0.

Proof. The input-output behavior for (A,B,C,D) is given by (1.4). For (T−1AT,T−1B,CT,D),

yt =CT (T−1AT )tz0 +
t−1

∑
k=0

CT (T−1AT )kT−1But−1−k +Dut =

=CAtx0 +
t−1

∑
k=0

CAkBut−1−k +Dut

which proves the equivalence. �

1.2 Reachability and state transfer

Many control problems concern state transfer: given an initial state x0, we would like to find a
control sequence {u0,u1, . . . ,ut−1} that brings the system state to a target xtgt at time t.

For now, we will only consider the basic question of if a given discrete-time system admits a con-
trol sequence that performs the requested state transfer. Later, we will try to find control sequences
that perform the state transfer in an optimal way (for example, using minimal energy or in minimal
time) while respecting various constraints. We begin with the following definition.

Definition 1.2.1 — Reachability. Consider the discrete-time linear system (1.1). We call a
specific target state xtgt ∈ Rn reachable in k steps if there is an input sequence {u0,u1, . . . ,uk−1}
that drives the system from initial state x0 = 0 to xk = xtgt. We say that the system (1.1) is
reachable if there exists a finite value of k such that all xtgt ∈ Rn are reachable in k steps.

By Equation 1.5, a control sequence that drives x0 = 0 to xt = xtgt must satisfy

xtgt = CtUt (1.6)

This equation has a solution if and only if xtgt lies in the range of Ct . In particular, we can reach any
xtgt if and only if Ct has n linearly independent columns. This observation leads to the next result.

Theorem 1.2.1 — Reachability. The linear system (1.1) is reachable if and only if

rank(Cn) = n

Proof. If the controllability matrix over horizon n has rank n, then the system of linear equations

xtgt = CnUn (1.7)

admits a solution for every xtgt. In other words, there exists a control sequence Un that drives the
system from x0 = 0 to xn = xtgt for every xtgt, so the system is reachable.

To show that reachability of a system implies reachability in n steps, note that the definition of
the controllability matrix implies that

Ct =
(
At−1B At−2B · · · AB B

)
=
(
At−1B Ct−1

)
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Figure 1.2: Vertical dynamics of a quadcopter: we can control the lift force Fl generated by the
rotors to counteract the downwards force due to gravity, mg. The model uses the vertical position
and velocity as states, and considers the net lift Fl−mg as control signal.

since we add new columns to the reachability matrix when we increase t, the range of Ct+1 is
greater or equal to the range of Ct . However, by the Cayley-Hamilton theorem (see Appendix A)

An = αn−1An−1 +αn−2An−1 + · · ·+α1A+α0I (1.8)

for some scalars α0,α1, . . .αn−1. Hence,

range(Cn+1) = range(
(
AnB Cn])

)
since the new columns added to Cn+1 are linear combinations of the columns already present in Cn.
Repeated use of the Cayley-Hamilton theorem reveals that range(Ct) = range(Cn) for all t ≥ n. �

An important consequence of Theorem 1.2.1 is that if a discrete-time system is reachable, then
for every target state, there exists a control sequence that drives the system state from the origin to
that target in exactly n steps. The next example elaborates on some of these ideas.

� Example 1.1 The vertical dynamics of a quadcopter is given by

mÿ(t) = Fl−mg

where y denotes the vertical position, Fl(t) is the lift force generated by the rotors, and g is
acceleration due to gravity; see Figure 1.2 for an illustration. With u(t) = Fl(t)−mg and m = 1, a
corresponding discrete-time model is given by

xt+1 =

(
1 1
0 1

)
xt +

(
0.5
1

)
ut

yt =
(
1 0

)
xt

We can verify that the model is reachable, since

C2 =
(
B AB

)
=

(
0.5 1.5
1 1

)
has full rank. In addition to guaranteeing that it is possible to reach every target state, the reachability
argument also provides an open-loop control strategy for doing so. Assume that we want to drive
the quadcopter from rest at time zero, x0 =

(
0 0

)
, to rest at the height of one meter, xtgr =

(
1 0

)
.

Then, we can do so using(
u1
u0

)
= C−1

2

(
1
0

)
=−

(
1 −1.5
−1 0.5

)(
1
0

)
=

(
−1
1

)
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We thus apply u0 = 1, followed by u1 =−1. If we want to move to rest at an arbitrary height h,
i.e., let xtgt =

(
h 0

)
, the reachability result states that this can also be done in n = 2 steps. The

associated control is u0 = h followed by u1 = −h. In any practical system, the control signal is
limited in magnitude, and we cannot hope to steer the state arbitrarily far in n steps. �

In the reachability definition, we have assumed that x0 = 0. However, it is clear that if the
system is reachable then we can find a sequence Un that transfers the system state from any initial
state to any final state, since

xtgt−Anx0 = CnUn

admits a solution for any left-hand side argument.
When a system is not reachable, there are states, or linear combinations of states, which we

cannot influence with the controls. The following example illustrates this fact.

� Example 1.2 Consider the system

xt+1 =

(
a11 a12
0 a22

)
xt +

(
b1
0

)
ut (1.9)

Clearly, ut cannot affect the second state, neither directly nor indirectly through the first state. We
can come to the same conclusion by computing the controllability matrix

C2 =
(
AB B

)
=

(
a11b1 b1

0 0

)
.

With this controllability matrix, any solution to (1.7) must have the second component of xtgt equal
to zero. Hence, we cannot steer the second state away from its inital value. �

It is not always this straightforward to determine reachable and unreachable states by visual
inspection. However, as the next result shows, it is possible to construct a state transformation that
reveals the reachable and unreachable subsystems.

Theorem 1.2.2 Let rank(Cn) = nr < n. Then there exists a state transformation z = T−1x such
that the system in the transformed coordinates has the form

zt+1 =

(
Ar A12
0 Ar

)
zt +

(
Br

0

)
ut

yt =
(
Cr Cr

)
zt +Dut

(1.10)

where (Ar,Br) is reachable.

The following theorem, known as the Popov-Belevitch-Hautus test gives an alternative way
to verify reachability. It is a convenient theoretical tool that adds some geometrical insight.

Theorem 1.2.3 — PBH test for reachability. The system (1.1) is unreachable if and only if
there exists λ ∈ C and w ∈ Cn with w 6= 0 such that

w>A = λw> w>B = 0 (1.11)

i.e. if one of the left eigenvectors of A is orthogonal to the columns of B.

Proof. If w 6= 0 satisfies (1.11), then w>B = 0, w>AB = λw>B = 0 and similarly w>AtB = 0 for
all t. Hence, w>Cn = 0, i.e. the controllability matrix does not have full rank, and the system is
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therefore unreachable. Conversely, if the system is unreachable, then there is a state transformation
z = T−1x which brings the system to the form (1.10). Now, let wr be a left eigenvector of Ar with
eigenvalue λ , i.e. w>r Ar = λw>r . Then w> =

(
0 w>r

)
satisfies (1.11) for the transformed system,

and w′ = T−>w for the original one. �

Note. When w is complex-valued in Theorem 1.2.3, w> denotes the complex conjugate transpose
of w (which is often written as w∗ rather than w>).

To demonstrate the use of the PBH test, we return to the system in Example 1.2.

� Example 1.3 To show that (1.9) is unreachable using the PBH test, we need to find λ and

w =

(
w1
w2

)
that satisfy (1.11). First note that w>B = w1b1 = 0 implies that w1 = 0. Next, the condition

w>A =
(
0 w2a22

)
= λw> = λ

(
0 w2

)
is satisfied with w2 = 1 and λ = a22. Hence, we have found a valid solution to (1.11) and the
system is unreachable. In the proof of the PBH test, we noted that any w that satisfies the conditions
(1.11) also satisfies w>C2 = 0. Hence, any solution to (1.7) must fulfill

w>xtgt = w>C2 = 0

The w vector that we have determined above, therefore, implies that the second component of xtgt
must be zero. This is consistent with our observations in Example 1.2. �

It may appear strange that we call Cn the controllability matrix and not the reachability matrix.
After all, we use it to determine the reachability properties of the underlying system. The reason
for this naming convention is historical: for continuous-time linear systems, reachability coincides
with the following concept of controllability:

Definition 1.2.2 — Controllability. Consider the discrete-time linear system (1.1). We say that
the state xtgt ∈ Rn is controllable in k steps if there exists an input sequence {u0,u1, . . . ,uk−1}
that drives the system from initial state x0 = xtgt to xk = 0. If there exists a finite time k so that
all xtgt ∈ Rn are reachable in k steps, we say that the system (1.1) is controllable.

Controllability implies the existence of a k and a Uk ∈ Rm×k such that

−Akxtgt = CkUk

Clearly, any reachable system will also be controllable, since Cn is guaranteed to be of full rank.
However, since A may be nilpotent (i.e., there is a finite t0 such that At = 0 for all t ≥ t0), there are
systems that are controllable but not reachable. One such system is

xt+1 =

(
0 1/2
0 0

)
xt +

(
1
0

)
ut

This system is a special instance of the systems studied in Example 1.2, and hence not reachable.
However, it is controllable since ut ≡ 0 ensures that xt = 0 for all t ≥ 2. In fact, one can show that a
system is controllable if and only if all eigenvalues of its unreachable subsystem are equal to zero.
The concept of controllability can be weakened further by the notion of stabilizability:
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Definition 1.2.3 The discrete-time linear system (1.1) is stabilizable if there exists an input
sequence {uk}∞

k=0 such that limt→∞ xt = 0.

The fact that we no longer require the state to reach the origin in finite time means that we
can allow for systems whose unreachable modes are asymptotically stable. We summarize the
observation in the following theorem, left without proof.

Theorem 1.2.4 The system (1.1) is stabilizable if all eigenvalues λi of its unreachable subsystem
satisfy |λi|< 1, i.e. if any w ∈ Cn with w 6= 0 which satisfies

w>A = λiw>, w>B = 0

does so for |λi|< 1.

1.3 Observability and state reconstruction
When we cannot measure the complete state vector xt but only observe the output yt , it is useful to
be able to estimate the current state from the observed input and output sequences, {y0,y1, . . . ,yt}
and {u0,u1, . . . ,ut−1}. We will address this problem in more detail later in these notes, but will now
consider the simpler problem of reconstructing the initial state x0 from measured input and output
sequences. At least conceptually, once we know the initial state, we can use the model (1.1) and the
applied input sequence to compute the present state.

To understand when we can estimate the initial state, we re-write (1.4) as

CAtx0 = yt −
(

t−1

∑
k=0

CAkBut−1−k +Dut

)

and note that εt = CAtx0 can be computed from the measured output yt and the past inputs
u0,u1, . . . ,ut . To be able to reconstruct the initial state, the system of equations

ε0
ε1
...

εt−1

=


C

CA
· · ·

CAt−1

x0 :=Otx0

must admit a unique solution x0 for all values of {ε0, . . . ,εt−1}, i.e. Ot must have full rank. We
refer to Ot as observability matrix over horizon t.

Definition 1.3.1 — Observability. A state xinit 6= 0 is said to be unobservable over k steps if,
x0 = xinit and ut = 0 for t = 0, . . . ,k−1 imply that yt = 0 for t = 0, . . . ,k−1. The system (1.1)
is called unobservable if it has some unobservable state, and called observable otherwise.

By this definition, if x0 is an observable state and ut = 0 for all t, then εt = 0 for all t. But
the same holds for x0 = 0, so an unobservable state cannot be distinguished from x0 = 0 based on
the observed output sequence {yt}. The development of observability criteria parallels the one on
controllability. Specifically, the rank test for observability takes the following form.

Theorem 1.3.1 — Observability. The linear system (1.1) is observable if and only if

rank(On) = n

The proof uses the Cayley-Hamilton theorem in an analogous manner to the proof of Theo-
rem 1.2.1 and is left as an exercise. Any pair of matrices (A,C) that yield an observability matrix of
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full rank is called an observable pair. In this way, (A,B,C,D) is observable if and only if (A,C) is
an observable pair. We also make the following observation: if, for an observable linear system, ut

and yt are both zero over n consecutive samples t = 0,1, . . . ,n−1, then x0 must be identical to zero.
The PBH test for observability takes the following form.

Theorem 1.3.2 The linear system (1.1) is unobservable if and only if there exists v ∈ Cn with
v 6= 0 and λ ∈ C such that

Av = λv Cv = 0

i.e., if one if the right eigenvectors of A is orthogonal to the rows of C.

The next example demonstrates how the PBH test can be used to verify observability.

� Example 1.4 To verify observability of the quadcopter model from Example 1.1, we form

O =

(
C

CA

)
=

(
1 0
1 1

)
Since the observability matrix has full rank, the system is observable. Let us instead assume that
we can only measure the vertical velocity, i.e. that C =

(
0 1

)
. Then,

O =

(
0 1
0 1

)
which implies that this system is not observable. This conclusion is intuitive: if we only measure
the velocity of the quadrotor, there is no way that we can figure out its initial position. �

Similarly to the decomposition into reachable and unreachable subsystems, a linear system can
also be decomposed into an observable and an unobservable subsystem.

Theorem 1.3.3 Let rank(On) = no < n. Then there exists a state transformation z = T−1x such
that the system in the transformed coordinates has the form

zt+1 =

(
Ao A12
0 Ao

)
zt +

(
Bo

Bo

)
ut

yt =
(
0 Co

)
zt +Dut

where (Ao,Bo,Co,Do) is observable.

Analogously to the discussion about reachability, controllability and stabilizability, we can
weaken the notion of observability to systems that are reconstructable and detectable.

Definition 1.3.2 The discrete-time linear system (1.1) is reconstructable in k steps if, for
every initial condition x0, it holds that xk is uniquely determined by {u0,u1, . . . ,uk−1} and
{y0,y1, . . . ,yk−1}.

One can prove that a system is reconstructable if and only if the eigenvalues of its unobservable
subsystem matrix are null. The concept of detectability allows for systems where the unobservable
modes are asymptotically stable:

Definition 1.3.3 The discrete-time linear system (1.1) is detectable if it is asymptotically
reconstructable in k steps as k→ ∞.

As the next PBH test states, a system is detectable if and only if its unobservable subspace is
asymptotically stable.
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Theorem 1.3.4 The system (1.1) is detectable if all eigenvalues λi of its unobservable subsystem
satisfy |λi|< 1, i.e. any solution v ∈ Cn with v 6= 0 to

Av = λiv, Cv = 0

has |λi|< 1.

� Example 1.5 Let us return to the quadrotor dynamics, but instead assume that we can only
measure the vertical velocity, i.e. let C =

(
0 1

)
. To determine if the system is detectable, we use

the PBH test and look for v 6= 0 such that(
1 1
0 1

)
v = λv,

(
0 1

)
v = 0

From the second of these conditions, we see that [v]1 = 0. Any such v satisfies the first equality,
provided that λ = 1. Hence, the system is not detectable. �

1.4 State feedback and observers

Most control design techniques for state-space models are based on state feedback. The control
signal is then simply a linear combination of the system states, ut = −Lxt . The classical design
technique is to choose the gain matrix L to assign desired eigenvalues to the closed-loop system
matrix, but many modern design techniques find the optimal L with respect to a precise performance
criterion, such as energy-efficiency, robustness to model uncertainty, or disturbance suppression.

If the full state vector cannot be measured, then one can use the model and the measured system
inputs and outputs to compute an estimate x̂t of the state vector. An observer uses the model to
predict the state vector and the associated output ŷt . If the measured output yt disagrees with the
prediction, the state estimate is corrected in proportion to the error K(yt − ŷt). The observer gain
matrix K is designed in a similar manner as the state feedback gains.

Combining the state estimator with feedback from estimated states results in an output feedback
strategy, i.e. a controller that measures the system output yt and produces a control signal ut .

In this section, we will review a design approach for state feedback and estimator gains based
on eigenvalue assignment. Later in these notes, we will derive optimal gains with respect to a
quadratic cost function that accounts for both transient performance and the required control effort.

State feedback
Let us begin by studying the linear state feedback

ut =−Lxt . (1.12)

If we insert this expression into the state-space model (1.1) we find the closed-loop dynamics

xt+1 = (A−BL)xt

yt = (C−DL)xt

Thus, the state evolution of the closed-loop system is characterized by the matrix (A−BL). As the
next result shows, the eigenvalues of this closed-loop matrix can be assigned to arbitrary locations
as long as the open-loop system is reachable.

Theorem 1.4.1 The state feedback (1.12) allows to assign the eigenvalues of A−BL to arbitrary
complex conjugate locations if and only if the open-loop system is reachable.
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The feedback gains can thus be designed by equating the closed-loop characteristic polynomial

λ (s) = det(sI− (A−BL))

with a polynomial whose roots are the desired eigenvalue locations. The next example demonstrates
the approach on the simple quadcopter model.

� Example 1.6 Let us design a state feedback controller ut =−Lxt =−
(
l1 l2

)
xt for the quad-

copter model considered in earlier examples. For simplicity, we assume that we would like the
closed-loop eigenvalues to be located at λ = 0.5. The closed-loop system matrix is

A−BL =

(
1 1
0 1

)
−
(

0.5
1

)(
l1 l2

)
=

(
1−0.5l1 1−0.5l2
−11 1− l2

)
with characteristic polynomial

λ (λ ) = det
(

λ −1+0.5l1 −1+0.5l2
l1 λ −1+ l2

)
= λ

2 +λ (l2 +0.5l1−2)+0.5l1− l2 +1

Equating it with the desired pdes(λ ) = (λ −0.5)2 = λ 2−λ +0.25 gives

l1 = 1/4, l2 = 7/8.

�

The approach that we have used in the example works well for systems of low dimension and
allows us to get analytical expressions for the feedback gains. However, since the resulting system
of equations may be tedious to solve, we will often resort to numerical computations.

A limitation of pole placement design is that it does not generalize well to systems with multiple
inputs. If the system has n states and m control signals, L has m×n entries, while the closed-loop
system still only has n eigenvalues. In contrast, the design methods that we will develop in Chapter 4
extend seamlessly to systems with multiple inputs and outputs.

State estimation
When the full state vector is not measurable, it is natural to try to find an estimate x̂t of the state
vector and use the control strategy ut = −Lx̂t in place of the nominal state feedback law. State
estimates can be computed in several ways. If we were to have a perfect model of the system and
knew the initial state x0, we could set x̂0 = x0 and estimate future states by simply simulating the
system under the applied control sequence {ut}

x̂t+1 = Ax̂t +But

ŷt =Cx̂t +Dut

In practice, x0 is rarely known and our model is only an approximation of the true system dynamics.
It is then more reliable to use a state estimator which corrects the predicted state x̂t+1 based on
discrepancies between the estimated output ŷt and the measured yt :

x̂t+1 = Ax̂t +But +K(yt − ŷt)

ŷt =Cx̂t +Dut

Here, K ∈ Rn×p is a gain matrix to be determined. We refer to this particular estimator as a
Luenberger observer. Note that it uses the input and output sequences, {u0,u1, . . . ,ut−1} and
{y0,y1, . . . ,yt−1}, together with the system model to predict the state at time t.
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The aim of the estimator is to drive the estimation error et = xt − x̂t to zero. Since et evolves as

et+1 = xt+1− x̂t+1 =

= Axt +But −Ax̂t −But −KC(xt − x̂t) =

= (A−KC)et ,

the error dynamics of the observer are characterized by the eigenvalues of the matrix A−KC, which
we can alter using the observer gain K. In particular, if we choose K so that A−KC is Schur stable,
then the estimation errors will decay to zero. The next result asserts that we can assign arbitrary
error dynamics to the observer if (A,C) is an observable pair.

Theorem 1.4.2 For the linear system (1.1), there exists K ∈ Rn×p so that the n eigenvalues of
A−KC can be assigned to arbitrary real or complex conjugate locations if and only if the system
is observable.

Similarly to the state feedback case, we can design the observer gains by comparing the characteris-
tic equation of A−KC with a polynomial whose roots are the desired eigenvalue locations for the
estimation error dynamics.

A limitation of the Luenberger observer is that x̂t is only based on measurements up until time
t−1. In fact, the observer is a one-step-ahead predictor rather than an estimator of the current state.
When D = 0, a more efficient state estimate is obtained by correcting x̂t rather than x̂t+1, i.e. using

x̂t|t−1 = Ax̂t−1|t−1 +But−1

ŷt|t−1 =Cx̂t|t−1

x̂t|t = x̂t|t−1 +K(yt − ŷt|t−1)

In these expressions, x̂t|s denotes the state estimate at time t based on information until time s. Note
that x̂t|t now makes use of the most recent measurement of the system output. A state estimator that
uses information up until the present time to estimate the present state is called a filter. Note that
D = 0 is needed for us to be able to make a one-step prediction of the output when ut is unknown.
By a similar calculation as above, the estimation error et = xt − x̂t|t evolves according to

et = (I−KC)(xt − x̂t|t−1) = (I−KC)Aet−1 = (A−KC̃)et−1

where C̃ =CA. We can thus design K just as we did for the Luenberger observer, i.e. by assigning
eigenvalue locations for A−KC̃. One can also verify that (A,C̃) is observable whenever (A,C) is.

� Example 1.7 Let us design a state estimator for the quadcopter model from earlier examples,
and design the estimator gain so that the estimation error dynamics have eigenvalues in λ = 0.5.
For the Luenberger observer we determine K such that

A−KC =

(
1 1
0 1

)
−
(

k1
k2

)(
1 0

)
=

(
1− k1 1
−k2 1

)
has desired eigenvalues. Since its characteristic polynomial is

p(λ ) = det
(

λ −1+ k1 −1
k2 λ −1

)
= λ

2 +(k1−2)λ +1− k1 + k2

Equating it with the desired pdes(λ ) = λ 2−λ +0.25 gives the observer gains

k1 = 1, k2 = 1/4
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If we, instead, want to design a filter, then we should place the eigenvalues of

A−KCA
(

1 1
0 1

)
−
(

k1
k2

)(
1 1

)
=

(
1− k1 1− k1
−k2 1− k2

)
The characteristic polynomial is

det
(

λ + k1−1 k1−1
k2 λ + k2−1

)
+1− k1λ

2 +λ (k1 + k2−2)+1− k1

For the desired characteristic equation, we find the gains

k1 = 3/4, k2 = 1/4.

It is instructive to look at the velocity estimates produced for the two observers. Recall that
in the absence of inputs, the system dynamics describes a double-integrator system moving up or
down with a constant velocity. We can measure the position but not the velocity, so the main task
for the observer is to produce a velocity estimate. Straight-forward but tedious computations show
that the velocity estimate of the Luenberger observer is on the form

v̂t+1 = v̂t +
1
4
(yt − ŷt)

Roughly speaking, if the present velocity estimate is too small, ŷt will be smaller than yt , and the
estimate will be increased. The filter, on the other hand, uses

v̂t|t = 0.75v̂t−1|t−1 +0.25(yt − ŷt−1|t−1)

and hence maintains a moving average of the velocity estimates obtained by “differentiating” the
position signal. This allows the filter to react faster to velocity changes than the one-step ahead
predictor. �

Output feedback
The combination of a state estimator and static linear feedback from the estimated states results in
the following output feedback controller:

x̂t+1 = Ax̂t +But +K(yt −Cx̂t)

ut =−Lx̂t

To emphasize that the controller is an output feedback strategy, i.e. it takes yt as input and produces
ut as output, we re-write the equations as

x̂t+1 = (A−BL−KC)x̂t +Kyt

ut =−Lx̂t .

The closed-loop dynamics of (1.1) under this control law is given by(
xt+1
x̂t+1

)
=

(
A −BL

KC A−BL−KC

)(
xt

x̂t

)
yt =

(
C −DL

)(x(t)
x̂t

)
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These dynamics is easier to analyze in terms of the system state and the estimation error:(
xt+1
et+1

)
=

(
A−BL BL

0 A−KC

)(
xt

et

)
y(t) =

(
C−DL DL

)(xt

et

)
Since the system matrix is block-diagonal, its eigenvalues equal those of its diagonal blocks. Hence,
if we design L so that A−BL is Schur stable, and K so that A−KC is Schur stable, then the
closed-loop system will be asymptotically stable. Of course, these conclusions are drawn under the
assumption that the model used in the estimator design is a perfect description of the true system.

Coping with disturbances: integral action and feed-forward
Many control systems are affected by disturbances. In some cases, we can measure them and
adjust the control signal to counteract their effect. In other cases, we have to rely on feedback to
compensate for the disturbance. Indeed, one of the key purposes of feedback control is to ensure a
well-defined closed-loop behavior in the presence of disturbances and process variations.

The basic approach to compensate for constant disturbances is to use integral action. In discrete
time, integration corresponds to summing up the error between the desired and the actual system
output. It can be implemented using a controller state it that is updated according to

it+1 = it +(rt − yt). (1.13)

where rt is the reference input, i.e. the desired target value for the system output yt . Clearly, if the
integral state converges to a steady state where it+1 = it , we must also have rt = yt . To make sure
that the integral state converges, we use a feedback law on the form

ut =−Lxt − liit (1.14)

where L and li are chosen so that the extended system

x̄t+1 =

(
xt+1
it+1

)
=

(
A 0
−C I

)(
xt

it

)
+

(
B
−D

)
ut +

(
0
I

)
rt := Āx̄t + B̄ut + B̄rrt

is asymptotically stable. We can design the controller gains using pole placement, assigning the
desired closed-loop poles to the matrix Ā− B̄

(
L li

)
:= Ā− B̄L̄. The actual control signal is then

determined using the dynamic controller (1.13) and (1.14).
When the disturbances can be measured, they can be compensated for quicker using feed-

forward. To illustrate the ideas, let us first consider the case of reference tracking of a constant
output reference r and assume that we use the control signal

ut =−Lxt +uref.

We would like to determine uref so that the system output agrees with the reference in stationarity.
In other words, we would like that yt → r as t → ∞. Assume that A−BL is Schur stable. Then,
(I− (A−BL)) is invertible and xt and yt will converge to constant vectors xref and yref that satisfy

xref = (A−BL)xref +Buref

yref =Cxref =C(I−A+BL)−1Buref

If also C(I−A+BL)−1B is invertible, then we observe that

uref =
[
C(I−A+BL)−1B

]−1
r := Lrr (1.15)
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Physical process

Observer

Controller

Figure 1.3: Estimator-based output feedback combined with feedforward from exogenous signals.

results in yref = r, i.e. error-free tracking in stationarity.
Another scenario occurs when the system is subject to a disturbance wt :

xt+1 = Axt +But +Bwwt

yt =Cxt

Proceeding the same way that we did for the reference signal, we note that

ut =−Lxt +Lwwt

with

Lw =−
[
C(I−A+BL)−1B

]−1 [
C(I−A+BL)−1Bw

]
(1.16)

eliminates the effect of wt on yt in stationarity.
In many cases, we have both disturbances to suppress and references to track. Since the system

is linear, we can design the compensation for each (reference or disturbance) signal in isolation and
then combine them to reach the desired effect. Thus, if we have a system that needs state feedback
(e.g. to stabilize an unstable physical process) as well as feedforward to track a reference and
suppress a measurable disturbance, we will design the components separately and use the control

ut =−Lxt +uw
t +ur

t =−Lxt −Lwwt +Lrrt .

A block diagram over the resulting closed-loop system is shown in Figure 1.3.

1.5 Discrete-time descriptions of continuous-time systems
Many models of the physical world are based on ordinary differential equations whose behavior
is linear close to a fixed operating point. This makes for a compelling argument to study the
control of continuous-time linear systems. However, most modern control systems are realized in
digital hardware that operates in discrete time. In this section, we will demonstrate that when the
control signal is held constant between sampling instances, there is a discrete-time linear system
that describes exactly how the state of an underlying continuous-time linear system evolves from
sample to sample. This allows us to use discrete-time linear system theory to analyze and control
the continuous-time linear system at sampling instances.
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Sampling and reconstruction of continuous-time signals
To understand the limitations in selecting the sampling frequency, consider a continuous-time
cosine signal with frequency f Hz

y(t) = cos(2π f t).

Sampling this signal every h seconds results in the discrete-time representation

yk = y(kh) = cos(2π f kh) for k = 0,1, . . .

We refer to fs = 1/h as the sampling frequency. Since k is integer-valued, we note that

yk = cos(2π f kh+2πnk) = cos(2π( f +nh−1)hk) = cos(2π( f +n fs)hk)

for any positive integer n. In addition, since cos(x) = cos(−x), we also have that cos(2π f hk) =
cos(−2π f hk) = cos(2π(− f +n fs)hk). Hence, from the sampled signal, it is impossible to know
if the continuous signal has frequency f or ± f +n fs. This effect is called aliasing.

Aliasing can be avoided by sampling sufficiently fast compared to the frequency content in
the underlying analog signal. To see how this can be accomplished, assume that the analog signal
contains frequencies in the interval [0, fmax]. In practice, this assumption is enforced by adding
an analog low-pass filter before the analog-to-digital converter that performs the sampling. If we
use sampling frequency fs, then aliasing will appear at frequencies [− fmax, fmax]+n fs. To ensure
that we can separate these from the original signal, we have to ensure that fmax <− fmax + fs, i.e.
that 2 fmax < fs. The critical frequency fs = 2 fmax is called the Nyquist frequency and provides a
fundamental lower bound on the sampling rate. This limitation is quite natural: it means that we
have to take at least two samples per period of a sinusoidal signal with frequency fmax.

The creation of a continuous-time signal (defined for all times) from a discrete-time sequence
(defined only at sampling instances) is referred to as reconstruction. Most control systems use
zero-order hold reconstruction, i.e. they create a continuous-time signal which is held constant
between sampling instances:

u(t) = uk for t ∈ [kh,kh+h).

Equivalent discrete-time system under periodic sampling and zero-order hold
We will now show how discrete-time linear systems arise naturally when we want to use a computer
to control a physical system. Let the system be described by the continuous-time linear dynamics

ẋ(t) = Acx(t)+Bcu(t) (1.17)

The solution to these ODEs are given by

x(t +h) = eAchx(t)+
∫ t+h

s=t
eAc(t+h−s)Bu(s)ds

In particular, if the control input is held constant at some u(s) = ū, then

x(t +h) = eAchx(t)+
∫ t+h

s=t
eAc(t+h−s)Bcu(s)ds = eAchx(t)+

(∫ h

v=0
eAcvBc dv

)
ū

If we use uniform sampling with interval h, sample k is taken at time t = kh, and with zero-order
hold, the control is held constant at ū = u(t) = u(kh). Hence, the state vector at the next sampling
instant kh+h = t +h is given by

x(kh+h) = Ax(kh)+Bu(kh)
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where

A = eAch, B =
∫ h

s=0
eAcsBc ds.

If we drop the reference to physical time and only count sampling instances, we get the model

xk+1 = Axk +Buk

yk =Cxk +Duk

which has the precise form of the discrete-time linear systems that we introduced earlier. This
system is an exact description of how the state vector of the underlying continuous-time system
evolves between sampling instances.

To compute the discrete-time system matrices from the continuous-time ones, we need to
compute the matrix exponential. In practice, this is often done numerically. If we want to compute
the matrix exponential analytically, we can for example use its power-series definition

eAch = I +hAc +
h2

2!
A2

c +
h3

3!
A3

c + · · ·

Appendix A discusses an alternative technique for computing the matrix exponential based on the
Laplace transform, that is typically easier to use than the direct definition.

� Example 1.8 In Example 1.1, we mentioned that the continuous-time model for the vertical
dynamics of a quadrotor with unit mass was given by

ÿ(t) = F(t)−g

With u(t) = F(t)−g, a state-space description is given by(
ẋ(t)
v̇(t)

)
=

(
0 1
0 0

)(
x(t)
v(t)

)
+

(
0
1

)
u(t) := Ac

(
x(t)
v(t)

)
+Bcu(t)

Since A2
c = 0, the discrete-time system under zero-order hold is given by

A = eAch = I +hAc +
h2

2
A2

c + · · ·= I +hAc =

(
1 h
0 1

)
B =

∫ h

s=0
eAcsBc ds =

∫ h

s=0

(
1 s
0 1

)(
0
1

)
ds =

(
h2/2

h

)
�

Guidelines for choosing sampling time
The Nyquist frequency provides a lower bound on the sampling frequency. However, this sampling
rate is typically not enough to get a reasonable quality in the closed-loop signals when we use a
simple zero-order hold reconstruction. In practice, significantly higher sampling rates are used.

Sample time selection for control involves a compromise between the computational load on the
controller (since a new control signal should be computed at every sample interval) and effectiveness
in tracking references and rejecting disturbances (since the controller cannot react until the next
sampling instance after a disturbance hits the system). Note that even if the computational load
is not an issue, too fast sampling may lead to numerical difficulties since A = eAch→ I as h→ 0.
As the off-diagonal elements become increasingly small, it gets difficult to maintain numerical
accuracy in operations involving the system matrices. The standard rules-of-thumb instead propose
to use a sampling time that results in 4−10 samples per rise-time of the closed-loop system [2], or
a sampling frequency 2π/h of 20−40 times the desired closed-loop bandwidth [10].
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Using continuous-time insight to understand transient properties of discrete-time systems
One of the most popular control design techniques for linear systems is based on pole placement.
To choose the appropriate closed-loop poles, it is essential to have a good understanding of how the
pole locations affect the transient response of the system. In traditional control courses, significant
attention is therefore given to developing such an understanding for simple prototype systems. We
will leverage this understanding to develop a similar insight for discrete-time systems.

Consider the continuous-time linear system ẋ(t) = Acx(t) and assume that Ac has an eigenvalue
λc with eigenvector vc, i.e. that Acvc = λcvc. Then the corresponding eigenvalue for the discrete-
time system can be computed via the power-series definition of the matrix exponential:

Avc = eAchvc =

(
I +hAc +

h2

2
A2

c + · · ·
)

vc =

(
1+hλc +

h2

2
λ

2
c + · · ·

)
vc = eλchvc

This means that the discrete-time system matrix A has an eigenvalue at λ = eλch with eigenvector
vc. In particular, we notice the following

• a real eigenvalue λc =−ω0 for Ac maps to a real eigenvalue λ = exp(−ω0h) for A
• a purely imaginary eigenvalue λc =±iω0 of Ac maps into an eigenvalue on the unit circle

λ = e±iω0h = cos(ω0h)± isin(ω0h)

for A. Note that due to aliasing, we should keep h≤ π/ω0.
• a complex-conjugate eigenvalue on the form λc = ω0(−cosθ + isinθ) maps onto

λ = e−ω0hcosθ eiω0hsinθ

In other words, λ lies on a logarithmic spiral determined by θ and ω0 when we change h.
The relationship between eigenvalue locations for Ac and A are shown in Figure 1.4.
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Figure 1.4: Mapping of eigenvalues λc for Ac into corresponding eigenvalues λ for A.

Sampling of systems with time delays
In digital control systems, it will always take some time from when the sensor signals are read until
a new control action is computed and actuated. One advantage of discrete-time systems is that
delays (which are infinite-dimensional in continuous-time) can be described by finite-dimensional
state-space models.

Let us model the computational delay as an input delay of τ seconds and consider the system{
ẋ(t) = Acx(t)+Bcu(t− τ)
y(t) = Cx(t)+Du(t)

(1.18)
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Assume that the computational delay is shorter than the sampling time, i.e. that τ ∈ [0,h]. Under
zero-order hold sampling, synchronized with the sensor readings, this means that the previous
control signal u(kh−h) is applied for the first τ seconds until u(kh) begins to affect the system.
Similarly to the delay-free case, integration of the solution to (1.18) yields

x(kh+h) = eAchx(kh)+
∫

τ

s=0
eAcsBcu(kh−h)ds+

∫ h

s=τ

eAcsBcu(kh)ds

By dropping reference to physical time, and defining xk = x(kh), uk−1 = u(kh−h) and uk = u(kh),
we can represent the dynamics as

(
xk+1
uk

)
=

(
A B1
0 0

)(
xk

uk−1

)
+

(
B0
I

)
uk

where

A = eAch, B0 =
∫

τ

s=0
eAcsBc ds, B1 =

∫ h

s=τ

eAcsBc ds.

Hence, the zero-order hold equivalent of the input delayed system (1.18) can be represented by
an n+m-dimensional discrete-time linear system with state vector (xk,uk−1). By designing the
controller for this dynamics, we are able to compensate for the computational delays.

If the input delay exceeds the sampling time, i.e. ẋ(t) = Acx(t)+Bcu(t− τ ′) with τ ′ = lh+ τ

for some positive integer l and some τ ∈ [0,h), then one can first sample the system as above,
noting that it is only uk−l−1 = u(t−(l+1)h) and uk−l = u(t− lh) that affect the state during sample
interval k. The sampled system can then be described by the state-space model



xk+1
uk−l

uk−l+1
...

uk−1
uk


=



A B1 B0 0 · · · 0

0 0 I 0
. . . 0

0 0 0 I 0 0
...

. . . . . . 0
. . . 0

0 0 0 0 0 I
0 0 0 0 0 0





xk
uk−l−1
uk−l

...
uk−2
uk−1


+



0
0
0
...
0
I


uk

This state-space model has dimension n+(l +1)m, but is still of finite dimension.

1.6 Design example: level control of a double tank

To get some experience of discrete-time control design, we will consider the two-tank system in
Figure 1.6. We would like to design a controller that adjusts the inflow to the first tank in order to
maintain a desired level of the second tank despite the presence of an exogenous disturbance flow
w(t). The controller should have a rise time of around 40 seconds.
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Figure 1.5: Double tank.

After linearization, the tank dynamics can be described by the second-order system

ẋ(t) =
(
−0.07 0
0.07 −0.07

)
x(t)+

(
0.18

0

)
u(t)+

(
0

0.07

)
w(t)

Here, the first state variable is the level in the upper tank, the second state is the level in the lower
tank, u(t) is the voltage applied to the pump that generates the inflow in the upper tank, and w(t)
is the disturbance inflow into the lower tank. We use uniform sampling of the sensor signals and
zero-order hold to reconstruct a continuous control signal.

With the desired rise time of 40 seconds, the rules-of-thumb for sample time selection suggest
to use h = 4−10 seconds; we will settle for h = 5. Using the formulas derived in Section 1.5, we
find that the corresponding discrete-time system is described by

xt+1 = Axt +But +Bwwt

yt =Cxt

where

A =

(
0.7047 0
0.2466 0.7047

)
, B =

(
0.7594
0.1252

)
, Bw =

(
0

0.2953

)
, C =

(
0 1

)
We begin by disregarding the presence of the disturbance and design a state feedback

ut =−Lxt =−
(
l1 l2

)
xt

to make the closed-loop dynamics slightly faster, i.e. move the closed-loop poles a little closer to
the origin. We will aim at placing both system poles at λ = 0.5. To find the corresponding feedback
gains, we will have to ensure that the characteristic equation

p(λ ) = det(λ I− (A−BL)) =

= λ
2 +λ (−1.4094+0.7594l1 +0.1252l2)+(0.4966−0.5351l1 +0.0990l2)
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is equal to the desired pdes(λ ) = (λ −0.5)2 = λ 2−λ +0.25. Equating the coefficients of the two
polynomials leads to the following system of linear equations{

−1.4094+0.7594l1 +0.1252l2 = −1
0.4966−0.5351l1 +0.0990l2 = 0.25

with solution l1 = 0.5022 and l2 = 0.2237. We also compute a reference feed-forward gain
Lr = 1.1148 using (1.15). Figure 1.6 shows a simulation of the closed-loop system under a
reference change from at time t = 0 and the addition of a constant input disturbance w at time
t = 50. Note how the rise-time of the lower tank is around the desired 40 seconds and that the
feed-forward ensures that the reference is followed without error. However, the controller is not
very effective in dealing with the disturbance.
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Figure 1.6: The state feedback and reference feedforward succeeds in shaping the closed-loop
response (middle axes, dark color): the rise-time is around 40 seconds and the reference is followed
without stationary error. However, without feedforward from the disturbance, the additional inflow
to the lower tank causes a remaining error (same figure, dark color after 60 seconds). Adding the
feedforward from the disturbance elimitates the effect (light color, same plot).

Assuming that we can add a sensor which measures the disturbance inflow, we can use feed-
forward to compensate for it. Using Equation (1.16), we compute the feed-forward gain

Lw =−0.8911

As seen in Figure 1.6, the feedforward compensation does eliminate the effect of the disturbance.
Since we only want to measure the level of the lower tank, we construct a state observer whose

poles are slightly faster than the ones used in our state feedback design. We thus consider the output

yt =Cxt =
(
0 1

)
x(t)
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For purposes of illustration, we choose to place the observer poles (the eigenvalues of A−KC) at
λ = 0.4. A similar calculation as for the state feedback design results in the estimator gain matrix

K =

(
0.3765
0.6095

)
By combining the state estimator and feedback from the estimated states, we have designed an

output feedback controller on the form

x̂t+1 = Ax̂t +But +Bwwt +K(yt −Cx̂t).

ut =−Lx̂t +Lwwt +Lrrt

Figure 1.7 shows the closed-loop response of the output feedback controller to a step-change in
the reference, followed by a step change in the disturbance inflow to the second tank. After 100
seconds, we add a measurement noise (modeled as a Gaussian random variable with zero mean and
variance of 0.1) to the measured output signal. The initial response is just as before, but we can see
that the controller reacts to the measurement noise, causing slight ripples in the level of the second
tank. If we move the observer poles closer to the origin, placing both at λ = 0.2, there is no visible
change in the initial response, but the controller becomes more sensitive to the noise, leading to
larger variations in the control input and the resulting tank level (note that the figure shows the
actual tank level and not the noise-corrupted measurement signal).

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

L
o
w

e
r 

ta
n
k
 l
e
v
e
l

0 20 40 60 80 100 120 140 160

Time (sec)

0

0.2

0.4

0.6

0.8

1

C
o
n
tr

o
l

Figure 1.7: Output feedback response to set-point change at time 0, inflow disturbance at time 60,
and a measurement noise signal from time 100 and on. The reference and disturbance response is
almost identical to that of the state-feedback (light and dark colors), but the controller becomes
more sensitive to the measurement noise when the observer poles are made faster (light color).

1.7 Input-output properties of discrete-time linear systems*
Although most of this course considers state-space models, one can develop considerable insight
into the properties of discrete-time linear systems using input-output models. To this end, this
section contains a brief introduction to the Z-transform, transfer functions for discrete-time linear
systems, and a few words about their frequency responses.

The Z-transform
A discrete-time signal s(k) can be represented by a list of real numbers (or vectors), {s0,s1, . . .}.
The analysis of discrete-time signals and systems is sometimes simplified by using the Z-transform:



34 Chapter 1. Discrete-time linear systems

Signal Transform Name
αs1(k)+β s2(k) αS1(z)+βS2(z) Linearity
s(k+1) zS(z)− zs(0) Forward shift
s(k−1) z−1S(z)+ s(−1) Backward shift
s(k) = ∑

k
l=0 xl S(z) = z

z−1 X(z) Accumulation
limk→∞ s(k) limz→1(z−1)Y (z) Final-value theorem
limk→0 s(k) limz→∞ S(z) Initial-value theorem
s(k) = ∑

k
l=0 x[l]y[k− l] S(z) = X(z)Y (z) Convolution

Table 1.1: Key properties of the Z-transform.

Definition 1.7.1 The z-transform Z(s) of the discrete-time signal s(k) = {s0,s1, . . .} is

Z(s) =
∞

∑
k=0

skz−k

Note that the Z-transform maps the space of discrete-time signals to the space of functions over the
complex plane (or, rather, over a subset of the complex plane for which the summation converges).
To emphasize this, we will write the Z-transform of a signal s(k) as S(z). The next example derives
the Z-transform for some common signals.

� Example 1.9 The unit step

1(k) =

{
1 if k ≥ 0
0 if k < 0

has Z-transform

Z(1) =
∞

∑
k=0

z−k =
1

1− z

with region of convergence |z|< 1. The geometric sequence

s(k) = ak1(k)

has Z-transform

Z[s] =
z

z−a

with region of convergence |z|> |a|. �

From the definition, one can also derive many important properties of the Z-transform, some of
which are summarized in Table 1.1.

Transfer functions of discrete-time linear systems
We can now apply the Z-transform to the state-space model

xk+1 = Axk +Buk

yk =Cxk +Duk

with initial state x0. For convenient notation, we define X(z) = Z[x(k)], U(z) = Z[u(k)] and
Y (z) =Z[y(k)]. Then, by the linearity and forward-shift property of the Z-transform

zX(z)− zx0 = AX(z)+BU(z))

Y (z) =CX(z)+DU(z)



1.7 Input-output properties of discrete-time linear systems* 35

from which we find

Y (z) =C(zI−A)−1zx0 +(C(zI−A)−1B+D)U(z) :=C(zI−A)−1zx0 +G(z)U(z)

The first term in this expression is the Z-transform of the free system response, while the second
one is the Z-transform of the driven response. If x0 = 0, then Y (z) = G(z)U(z) where G(z) is called
the pulse-transfer function of the system. We define it below for easy reference

Definition 1.7.2 The pulse-transfer function of the discrete-time linear system (A,B,C,D) is

G(z) =C(zI−A)−1B+D.

Recall that the inverse of a matrix is the ratio between its adjugate matrix and its determinant,
i.e. M−1 = adj(M)/det(M). This allows us to re-write the transfer function expression as

G(z) =
Cadj(zI−A)B

det(zI−A)
+D

Hence, the characteristic polynomial of the system matrix A appears in the denominator of the
transfer function (or transfer matrix elements, in case there are many inputs or outputs). When the
linear system has a single input and a single output, then

G(z) =
B(z)
A(z)

=
b0zm + · · ·+bm−1z+bm

zn +a1zn−1 + · · ·+an

The roots of B(z) are called zeros of the transfer function, while the roots of A(z) are known as
poles. In the absence of cancellations between numerator and denominator, the poles of the transfer
functions are exactly the eigenvalues of the system matrix A in the state-space description. While
the relationship between continuous-time and discrete-time poles is well-defined, the relationship
between continuous-time and discrete-time zeroes is more involved. In particular, as the next
example illustrates, a discrete-time pulse transfer function can have zeroes, even if the underlying
continuous-time transfer function does not.

� Example 1.10 With u(t) = F(t)−mg and m = 1, the continuous-time dynamics of the vertical
dynamics of the quadrotor is ÿ(t) = u(t) with transfer function

G(s) =
1
s2

We can recognize this as a double integrator (two poles at s = 0) without any zeros. The pulse-
transfer function for the corresponding discrete-time system (cf. Example 1.8) with h = 1 is

G(z) =C(zI−A)1B =
1
2

z+1
(z−1)2 .

As can be expected, the system has a double pole at z = e0 = 1, but it also has a zero at z =−1. This
sampling zero can apper counter-intuitive at first, but it is a consequence of the sample-and-hold
operation. In particular, recall that a system zero implies that there is an initial state and a specific
input sequence such that the output remains at zero. For this system, it is easy to verify that
x0 =

(
0 −1/2

)
and ut = (−1)t results in yt ≡ 0 for all t. �

The frequency response of a discrete-time linear system
As we saw in the discussion about Nyquist sampling, a discrete-time sinusoid takes the form

u(k) = cos(ωsk+θ0)
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where ωs = 2π f h is the angular frequency measured in radians per sample. Note that the lowest
possible rate of variation for this signal is ωs = 0, which corresponds to a constant. The highest
rate of variation happens for ωs =±π and θ0 = 0, when the signal alternates sign at each time step,
i.e. u(k) = (−1)k. Thus, the interesting range for discrete-time sinusoidals is [−π,π] radians per
sample, which corresponds to [−π/h,π/h] radians per second; outside this frequency range, the
spectrum repeats periodically in ωs.

By a similar calculation as for continuous-time systems, one can show that the output of an
asymptotically stable linear systems driven by an input uk = cos(ωsk) satisfies

yk = |G(eiωs)|cos(ωsk+ arg G(eiωs))

once the transient has died out. Hence, one refers to G(eiωs) for ωs ∈ [0,π] as the frequency
response of G. As in the continuous-time case, one typically visualizes the frequency response
using Bode or Nyquist diagrams. However, in contrast to the continuous-time case, there are no
simple rules for drawing these diagrams by hand since G(eiωs) is irrational in ωs, but one has to
resort to numerical computations and visualization.airdrop

� Example 1.11 The pulse transfer function from pump voltage to lower tank level of the double
tank system studied in Chapter 1.6 is

H(z) =
(
0 1

)(
zI−

(
0.7047 0
0.2466 0.7047

))−1(0.7594
0.1252

)
=

0.1252z+0.0991
z2−1.409z+0.4966

Figure 1.8 shows the frequency response H(eiωs) as a Bode diagram (left) and a Nyquist diagram
(right). For comparison, we have also illustrated the frequency response of the continuous-time
dynamics of the tank. �
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Figure 1.8: The frequency response of the continuous-time tank model (dashed lines) and the
discrete-time model obtained under sample-and-hold (full). Note that the discrete-time model
looses phase and high frequency gain, and that the relevant frequency range is [0,π/5] radians/sec.

Just as for continuous-time systems, the frequency response can also be used to study stability
and robustness of discrete-time systems. Consider the standard feedback loop in Figure 1.9 (left).
Stability of the closed-loop pulse-transfer function Hcl(z) = L(z)/(1+L(z)) can be established
from the frequency response of L(z) using the following simplified Nyquist criterion.

Theorem 1.7.1 If L(z) and its inverse are stable, then L(z)/(1+ L(z)) is stable if the point
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(−1,0) in the complex plane is left of the Nyquist curve (ReL(eiω), ImL(eiω)) for all ω ∈ [0,π].

To ensure stability also in the face of modelling errors, it is advisable that the Nyquist curve
avoids the critical −1 point with some margin. To classical measures of the distance to the critical
point are the amplitude and phase margins. Let ω0 be such that arg(L(eiω0)) =−π , then we define
the amplitude margin as Am = 1/|L(eiω0)|; it measures how much the gain of L can be increased
before the system goes unstable. Similarly, with ωc such that |L(eiωc)|= 1 we can define the phase
margin as ϕm = π + arg(L(eiωc)). This quantity characterizes how much extra phase lag the system
can tolerate before it goes unstable, see Figure 1.9 (right). A more comprehensive measure is the
inverse of the minimal distance from the Nyquist curve to the −1 point, i.e.

Smax =
1

minω∈[0,π]|1+L(eiω)| = max
ω∈[0,π]

1
|1+L(eiω)|

You may recognize this as the maximum value of the sensitivity function S(z) = 1/(1+L(z)).
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Figure 1.9: The simple feedback loop (left) and its robustness measures amplitude margin (Am),
phase margin ϕm and maximum sensitivity Smax.

�
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1.8 Exercises
Problem 1.1 For each of the system matrices below, compute their eigenvalues and determine if
the matrix is Schur stable. Figure 1.1 shows the state evolution of xt+1 = Axt from x0 = 1 for the
three different systems. Pair each of the system matrices with one of the initial value responses.

(i) A =

(
0.5 1
0 0.25

)
(ii) A =

(
0 1

−0.75 2

)
(iii) A =

0.9 0 0
0 0 1
0 −1 0


St

at
es

Time (samples)
0 2 4 6 8 10

0

25

0 2 4 6 8 10

-1

0

1

0 2 4 6 8 10
0

0.5

1

1.5

‘

Problem 1.2 The free dynamics of the quadcopter dynamics used in many of the examples is

xt+1 =

(
1 1
0 1

)
xt

(a) Compute the eigenvalues of the system matrix. Is the system asymptotically stable?
(b) Compute the eigenvectors of the system matrix. Is the system stable?
(c) In this model, the first state is the vertical position yt of the quadcopter, while the second

state is its vertical velocity vt . Determine explicit expressions of how the system states evolve
from an initial (y0,v0). Is the system stable?

Problem 1.3 Consider the discrete-time linear system.

xt+1 = Axt +But

(a) Express the state vector at time t = 2 on the form

x2 = H
(

u0
u1

)
+h

for some constant matrix H and some vector h which depends on the initial state x0.
(b) Let

A =

(
1 1
0 1

)
, B =

(
0
1

)
and set x0 =

(
0 0

)
. Find inputs u0 and u1 that make x2 =

(
1 0

)
.

(c) Let

A =

(
0 1
0 0

)
, B =

(
1
0

)
.

and set x0 =
(
0 0

)
. Can you find inputs u0 and u1 that make x2 =

(
0 1

)
?

Redo the calculations with x0 =
(
0 1

)
and x2 =

(
0 0

)
.
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Problem 1.4 Consider the system

xt+1 =

(
a b
0 c

)
xt +

(
d
e

)
ut

where a, b, c, d and e are scalars.
(a) Determine the controllability matrix of the system and derive conditions on a,b,c,d and e

which render the system unreachable.
(b) Discuss qualitatively the reason for loss of reachability when: (i) e = 0; (ii) b = 0 and d = 0;

(iii) b = 0 and c = a. Reason in terms of which states the control signal can affect, or which
state changes that the control signal can give rise to.

Problem 1.5 For each of the linear systems defined by the matrices below, determine if they are
reachable, controllable, or stabilizable.

(a) A =

(
1 1
1 −1

)
B =

(
1
1

)
(b) A =

(
3 1
−2.5 −0.5

)
, B =

(
1
−1

)
(c) A =

(
2 0
−0.5 0.5

)
, B =

(
0
1

)
Problem 1.6 Use the PBH conditions for reachability to prove the following claim:

“Let A,B and L be matrices of compatible dimensions. Then, (A−BL,B) is reachable
if and only if (A,B) is reachable.”

This result implies that a state feedback ut =−Lxt does not alter reachability properties.

Problem 1.7 Consider the system

xt+1 =

(
1 0
1 1

)
xt +

(
1
0

)
ut , yt =

(
0 1

)
xt .

You apply the input sequence u0 = 1,u1 =−2 and observe y0 = 1 and y1 = 2.
(a) Determine the initial state x0.
(b) Determine y2, the output value at time t = 2.
(c) Use the observability matrix rank test to determine if the system is observable.

Problem 1.8 In analogue to Problem 1.4 determine conditions on (a,b,c,d,e) under which the
following system is observable

xt+1 =

(
a 0
b c

)
xt , yt =

(
d e

)
xt

Discuss qualitatively the reason for why observability is lost in following cases: (i) e = 0; (ii) b = 0
and d = 0; (iii) b = 0 and c = a. Reason in terms of states, or combinations of states, which cannot
be seen in the output.

Problem 1.9 Let the n-the order system

xt+1 = Axt +But

yt =Cxt +Dut

be observable. Show that we can determine the initial state x0 from measurements alone (i.e.
without knowing the applied input) if

D =CB =CAB = · · ·=CAn−2B = 0

Explain why this condition is also necessary when there is only one output (yt is scalar).
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Problem 1.10 Consider the discrete-time linear system

xt+1 =

(
0 1
−1 0

)
xt +

(
0
1

)
ut

Determine a state feedback ut =−Lxt that places both eigenvalues of A−BL at 0.5.

Problem 1.11 The discrete-time dynamics of a double integrator is

xt+1 =

(
1 1
0 1

)
xt +

(
1/2
1

)
ut

yt =
(
1 0

)
xt

(a) Design a state feedback law ut =−Lxt that places the closed-loop poles at λ = 0.5.
(b) Compute a feed-forward gain lr such that the control law ut =−Lxt + lrr renders the system

output yt to the reference value r in stationarity.
(c) Determine the gain K of the state observer

x̂t+1 = Ax̂t +But +K(yt − ŷt),

ŷt =Cx̂t

so that the eigenvalues of A−KC are located at λ = 0.2.
(d) Write down the state-space equations for an output feedback controller that measures r and

yt , estimates the states of the system using the observer in (c) and determines ut =−Lx̂t + lrr.
Draw a block-diagram of the resulting closed-loop system.

(e) Simulate the system under full state feedback and under output feedback. Apply a step-
change in the reference at time t = 0 and measurement noise (generated as a sequence of
Gaussian variables with zero mean and variance 0.1) to the output measured by the observer.

Problem 1.12 The system

xt+1 =

(
0.878 0.478
−0.478 0.878

)
xt +

(
0.122
0.479

)
wt ,

yt =
(
1 0

)
xt + vt

represents a harmonic oscillator whose state evolution is driven by a noise process {wt} and whose
output measurements are corrupted by a noise sequence {vt}. In this exercise we model each
wt as an independent zero-mean Gaussian random variable with variance 0.4 and each vt as an
independent zero-mean Gaussian random variable with variance 0.1.

Design the gain vector K for a one-step ahead predictor

x̂t+1 = Ax̂t +K(yt − ŷt), ŷt =Cx̂t

that places the eigenvalues of the error dynamics in 0.6. Then design a filter

x̂t|t−1 = Ax̂t−1|t−1

x̂t|t = x̂t|t−1 +K(yt − ŷt|t−1)

so that its error dynamics has both eigenvalues in 0.6.
Simulate the two observers for the same realizations of the noise sequences. Compare their

performance both visually, and in terms of the quantity ∑t(yt − ŷt)
2. What do you observe?

Problem 1.13 Use the sample and hold method to compute the discrete-time equivalents of the
following continuous-time linear systems.
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(a) The integrator

ẋ(t) = u(t)

(b) A first-order system with a pole in s =−α and stationary gain β :

ẋ(t) =−αx(t)+αβu(t)

(c) The double integrator

ẋ(t) =
(

0 1
0 0

)
x(t)+

(
0
1

)
u(t)

(d) The harmonic oscillator

ÿ(t) =−ω
2y(t)+u(t)

Problem 1.14 We have shown that if the input to a continuous-time linear system

ẋ(t) = Acx(t)+Bcu(t)

is kept constant between sampling instances, t = kh for k = 0,1, . . . , then the state vector xt = x(kh)
evolves according to

xt+1 = Axt +But

where A = eAch and B =
∫ h

s=0 eAsBds. Hence, A has a simple expression in terms of the matrix
exponential, but B looks more complicated to evaluate numerically. Show that both A and B can be
computed by evaluating a single matrix exponential.
Hint: Recall that the constant u(t) = u can be modelled by the ODE u̇(t) = 0 with u(0) = u.

Problem 1.15 Yet another way to compute the zero-order-hold equivalent of

ẋ(t) = Acx(t)+Bcu(t)

can be developed for systems where Ac is invertible. In particular, show that if Ac is invertible, then

B =
∫ h

s=0
eAcsBc ds = (eAch− I)A−1

c Bc

Hint. Use the definition of the matrix exponential to show that (
∫ h

s=0 eAcs ds)Ac + I = eAch.

Problem 1.16 The short-period dynamics of an aircraft describes rapid changes in the angle of
attack, triggered by sudden up-gusts and abrupt elevator movements. The following model describes
the short-period dynamics of a commercial aircraft flying at 40,000 ft and Mach 0.8, obtained by
zero-order hold sampling of the continuous-time model with sampling time h = 1 second:(

αt+1
qt+1

)
=

(
1 0.1
−0.1 0.95

)(
αt

qt

)
+

(
0
−0.2

)
δt ,

yt =
(
1 0

)(αt

qt

)
Here, α is the angle of attack, q is the pitch rate and δ is the elevator deflection.
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(a) Is the system reachable?
(b) Data collected since the 1950’s have shown that pilots prefer short-period dynamics which

satisfy the “thumbprint criterion” illustrated in Figure 1.16. The desired continuous-time
dynamics should thus have a characteristic polynomial λ (p) = p2 + 4.2p+ 9. Use the
relationship between continuous-time and discrete-time eigenvalue locations to determine
the corresponding desired discrete-time characteristic polynomial.

(c) Design a state feedback

δt =−L
(

αt

qt

)
(1.19)

that places the closed-loop poles in the locations determined in (b).
Please proceed in two steps: first derive a set of equations in the feedback gains L which
ensure that the closed-loop has a characteristic polynomial p2+ap+b. Then use your results
from (b) to obtain numerical values for L.

(d) Compute a feed-forward gain such that the steady-state gain lr such that the closed-loop
dynamics under

δt =−L
(

αt

qt

)
+ lrrt

achieves αt = rt in stationarity (assuming that rt is constant)

Problem 1.17 In this problem, we will design a control system for the elevation θ of an antenna
used to track a satellite in the sky. Its dynamics is given by

ẋ(t) =
(

0 1
0 −a

)
x(t)+

(
0
b

)
(u(t)+w(t))

y(t) =
(
1 0

)
x(t)

Here u is the torque that we can generate using the motors, and w is a disturbance torque.
(a) Discretize the system using zero-order hold sampling with a sampling period of h seconds.

Validate that the discrete-time system is on the form

xt+1 =

(
1 a12
0 a22

)
xt +

(
b1
b2

)
ut .

Derive explicit expressions of how a12, a22, b1 and b2 depend on a, b and h.
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(b) From now on, we will consider a specific system given by a = 1.5 and b = 3, sampled with
h = 0.2 seconds. To simplify calculations, we will set b1 = 0 and polish the other entries
to a12 = 0.2, a22 = 0.75 and b2 = 0.35. In other words, we will consider the discrete-time
system

xt+1 =

(
1 0.2
0 0.75

)
xt +

(
0

0.35

)
(ut +wt)

y2 =
(
1 0

)
xt

Your task will now be to design a linear control law on the form

ut =−Lxt +Lrefrt .

such that the closed-loop poles are located at z = 0.5 and z = 0.6, while yt should be equal to
rt in stationarity when there is no disturbance (wt = 0)

(c) Determine the stationary error due to a constant disturbance wt = w0. Will the stationary
error for w0 = 1 be below 0.01?

(d) How can you modify your controller to reduce (or even eliminate) the stationary error?
Suggest solutions for both when you can measure w and when you cannot.





2. Stability and invariance of nonlinear systems

In the previous chapter, we discussed the stability of discrete-time linear systems. We noted that the
state trajectory of an autonomous linear system may essentially exhibit three qualitatively different
behaviors: it may converge to zero, it may diverge, or it may stay bounded and neither converge
nor diverge. We also demonstrated that the stability properties of a linear system are completely
characterized by the eigenvalue structure of its system matrix.

Assessing stability of nonlinear and constrained systems is much more involved. The local
stability properties may be different from the global ones, and there is no simple and conclusive
algebraic test for asymptotic stability. We will review some basic aspects of Lyapunov theory, a
flexible and powerful framework based on energy considerations that provides useful insight into
the behaviour of dynamical systems. When applied to linear systems, Lyapunov theory results in
an alternative necessary and sufficient stability condition that will be essential in our analysis and
design of linear-quadratic and model-predictive controllers. Finally, we will show how to compute
invariant sets for linear systems, and use these to reason about constraint satisfaction.

2.1 Stability concepts
Consider a nonlinear system

xt+1 = f (xt) (2.1)

where f : Rn 7→ Rn. We say that xeq ∈ Rn is an equilibrium point of the system if xeq = f (xeq).
The following stability concepts characterize the system behaviour around an equilibrium point.

Definition 2.1.1 — Stability concepts. An equilibrium xeq of (2.1) is
• stable if for every ε ∈ (0,εmax], there exists δ > 0 (possibly dependent on ε) such that

‖x0− xeq‖ ≤ δ ⇒‖xt − xeq‖ ≤ ε for all t ≥ 0.

• unstable, if it is not stable
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• asymptotically stable, if it is stable and δ can be chosen such that

‖x0− xeq‖< δ ⇒ lim
t→∞

xt = xeq

Note that a given system may have multiple equilibrium points and that the stability concepts
describe the local behaviour around such an equilibrium. The stability definition says that no
matter how close ε to the equilibrium point we want the system state to stay, there should be a
δ > 0 such that this bound is satisfied for all trajectories whose initial values lie in a δ -ball around
the equilibrium. Otherwise, the system is said to be unstable. Asymptotic stability implies that
trajectories that start sufficiently close to the equilibrium point also converge to it. The set of initial
values x0 for which limt→∞ xt = xeq is known as the region of attraction of xeq; see Figure 2.1.

ε

δ

Stable

xeq

Asymptotically stable

xeq

δ

Region of attraction

Figure 2.1: The left picture illustrates the concept of stability. For every ε , we can find a δ such
that ‖x0−xeq‖ ≤ δ guarantees that ‖xt−xeq‖ ≤ ε for all t. The right picture illustrates the concepts
of local asymptotic stability: there is a δ such that all trajectories with initial value that satisfies
‖x0− xeq‖ ≤ δ converge to the equilibrium point. The set of initial values that lead to trajectories
that converge to the equilibrium is called the region of attraction (here marked in light green).

The next example illustrates the stability concepts on a simple system.

� Example 2.1 Introduce the unit saturation function

sat(u) =


−1 if u <−1
u if −1≤ u≤ 1
+1 if u > 1

and consider the following unstable system under saturated feedback

xt+1 = 2xt − sat(1.5xt)

This system has three equilibria: xeq = 0 and xeq =±1. Its dynamics can be analyzed by considering
the three regimes where the feedback is linear, in negative saturation, and in positive saturation,
respectively. When |x0| ≤ 2/3, the control will not saturate and the state will evolve as

xt+1 = 0.5xt .

Hence, the origin is locally asymptotically stable. If x0 ≥ 2/3, the system evolves as

xt+1 = 2xt −1.

Trajectories of this system decay and move into the area of linear operation if x0 ∈ [2/3,1), stay
constant if x0 = 1 and diverge if x0 > 1. By a similar argument for x0 ≤ −2/3, closed-loop
trajectories converge to the origin if x0 ≥−1, stay constant if x0 =−1 and diverge if x0 <−1.
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These observations imply that the origin is a locally asymptotically stable equilibrium, attracting
trajectories with initial values in the region of attraction {x0 | |x0|< 1}. The other two equilibria are
unstable: no matter how you choose ε > 0, trajectories starting from any x0 = 1+δ with 0 < δ ≤ ε

will diverge and therefore grow larger than 1+ ε (a similar argument holds for x0 =−1−δ ). �

2.2 Lyapunov stability

The basic idea of Lyapunov stability is to introduce a positive energy measure Vt =V (xt) and show
that it decreases along system trajectories. Specifically, if Vt+1 ≤Vt for all t, then Vt ≤V0 and if Vt

decreases at a sufficient rate (to be made precise), then we can guarantee that Vt → 0. By selecting
the Lyapunov function carefully, we will be able to relate the magnitude of Vt to the size of xt so that
Vt ≤V0 implies that xt is bounded, and limt→∞Vt = 0 necessitates that limt→∞ xt = 0. In this way,
we will be able to use Lyapunov functions to prove both stability and asymptotic stability. The next
theorem is a first result in this direction. It guarantees that if energy measures with certain properties
are decreasing along all system trajectories, then the system state will be bounded.

Theorem 2.2.1 If there exists a continuous function V (x) whose sublevel sets

LV (α) = {x |V (x)≤ α}

are bounded for every value of α and

∆V (x) =V ( f (x))−V (x)≤ 0

for all x, then every trajectory of (2.1) is bounded.

Proof. We re-write V (xt) as the sum of V (x0) and changes in V along the system trajectory

V (xt) =V (x0)−V (x0)+V (x1)−V (x1)+ · · ·+V (xt−1)−V (xt−1)+V (xt) =

=V (x0)+
t−1

∑
k=0

∆V (xk)

where we have used the definition ∆V (xk) =V ( f (xk))−V (xk) =V (xk+1)−V (xk). Since ∆V (xk)
is negative for every possible value of xk, V (xt)≤V (x0) and every trajectory lies in the set

LV (V (x0)) = {x |V (x)≤V (x0)}

which is bounded by assumption. �

The proof demonstrates that if V is decreasing along system trajectories, then once the state
enters a level set of V it never leaves this set. The assumption of bounded level sets ensures that the
state remains bounded, and hence that the system is stable; see Figure 2.2.

By imposing a few additional conditions on V , we will be able to obtain conditions that
guarantee asymptotic stability. To this end, we introduce the following definitions.

Definition 2.2.1 A continuous function V : Rn 7→ R is positive semidefinite if
(a) V (x)≥ 0 ∀x.

V is positive definite if it satisfies the conditions
(a) V (x)≥ 0 ∀x,
(b) V (0) = 0 if and only if x = 0, and
(c) V (x)→ ∞ as ‖x‖→ ∞.
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Figure 2.2: The left figure shows a Lyapunov function and some of its level sets; the right figure
illustrates the property that once the state vector enters a level set, it will not leave. If the level set is
bounded, this implies that the state will also be bounded.

These definitions are based on the corresponding notions for quadratic forms reviewed in
Appendix A. Specifically, if P is a positive semidefinite matrix, then V (x) = xT Px is a positive
semidefinite function, and if P is positive definite, then so is V . An important property of positive
definite functions is that their level sets are bounded and closed (i.e. compact).

We can now state a first Lyapunov theorem for asymptotic stability.

Theorem 2.2.2 If there exists a continuous function V : Rn 7→ R such that
(a) V (x) is positive definite, and
(b) V ( f (x))−V (x)≤−l(x) for some positive semidefinite function l(x),

then along all trajectories {xt} of (2.1), it holds that l(xt)→ 0 as t→ 0. If, in addition, l(x) is
positive definite, then xt → 0 as t→ ∞.

Proof. Condition (b) and the system dynamics (2.1) imply that V (xt+1)−V (xt)≤−l(xt) for all xt .
Summing these inequalities across time yields

T

∑
t=0

V (xt+1)−V (xt)≤−
T

∑
t=0

l(xt).

Hence

lim
T→∞

T

∑
t=0

l(xt)≤V (x0)− lim
T→∞

V (xT )

Since V (xt) ≥ 0 by condition (a), and {V (xt)} is a decreasing sequence by condition (b), the
right-hand side will converge to a finite limit. By Cauchy’s convergence criterion (see Appendix A),
convergence of the infinite sum implies that l(xt)→ 0 as t→∞. If l(x) is positive definite, l(xt)→ 0
implies that xt → 0 and asymptotic stability follows. The proof is complete. �

With a few additional assumptions on V and l, it is also possible to derive bounds on how
quickly the state converges.

Corollary 2.2.3 If there is a continuous function V : Rn 7→ R such that
(a) α1‖x‖2

2 ≤V (x)≤ α2‖x‖2
2 for all x, and

(b) V ( f (x))−V (x)≤−β‖x‖2
2,
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for some positive scalars α1,α2 and β , then ‖xt‖2
2 ≤ α2

α1

(
1− β

α1

)t
‖x0‖2

2.

Proof. With x = xt , we can use the lower bound in (a) to re-write condition (b) as

V (xt+1)≤V (xt)−β‖xt‖2
2 ≤V (xt)−

β

α1
V (xt) =

(
1− β

α1

)
V (xt)

By repeated application of this inequality, it holds that

V (xt)≤
(

1− β

α1

)t

V (x0)

Finally, we use (a) to convert this to the desired inequality for ‖xt‖2
2. �

Lyapunov stability of linear systems
We will now specialize the results to linear systems. As the next result quite remarkably shows,
asymptotic stability of a linear system is equivalent to the existence of a positive definite quadratic
Lyapunov function. Such Lyapunov functions will be the key to many analysis and control design
procedures introduced later in these notes.

Theorem 2.2.4 The autonomous linear system

xt+1 = Axt (2.2)

is asymptotically stable if and only if, for any positive definite matrix Q, the Lyapunov equation

A>PA−P+Q = 0 (2.3)

admits a positive definite solution P. In addition, for any given Q > 0, the solution P is unique.

Proof. Let Q be an arbitrary positive definite matrix and assume that (2.3) admits a positive definite
solution P . The Lyapunov function candidate V (x) = x>Px then satisfies

V (xt+1)−V (xt) = x>t+1Pxt+1− x>t Pxt =

= x>t
(

A>PA−P
)

xt =−x>t Qxt

Since l(x) = x>Qx is a positive definite function, Theorem 2.2.2 guarantees asymptotic stability.
If, on the other hand, the system (2.2) is asymptotically stable, then |λi(A)|< 1 for all i and

P =
∞

∑
k=0

(
A>
)k

QAk

exists and satisfies the Lyapunov equation (2.3).
Finally we demonstrate that P is unique. To this end, let (2.2) be asymptotically stable and

assume that both P and P′ satisfy the Lyapunov equation. Then

A>(P−P′)A− (P−P′) = 0

Repeated application of this relationship yields

P−P′ = A>(P−P′)A = · · ·= lim
k→∞

(A>)k(P−P′)Ak = 0

where the last equality follows from stability of A. Thus, P′ = P, i.e. P is unique. �.
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If one is only concerned about asymptotic stability, then Theorem 2.2.4 is very simple to use:
just pick any positive definite matrix Q and solve the Lyapunov equation. The system (2.2) is
asymptotically stable if and only if the solution P is positive definite. Conversely, if we have a
candidate Lyapunov function defined by some positive definite matrix P, we can validate it by
computing the associated Q matrix and verify that it is positive definite.

Since the Lyapunov equation is linear in the elements of the matrix P and since P is symmetric,
the Lyapunov equation yields a system of n(n+1)/2 linear equations. Although this means that
one could solve the Lyapunov equation using a standard linear equation solver, there are more
efficient numerical routines for solving Lyapunov equations.

Note that the theorem does not state that asymptotically stable linear systems admit unique
Lyapunov functions. The solution P to the Lyapunov equation is unique for a given Q. Changing Q
results in a different solution P and hence a different Lyapunov function. As the next result shows,
different choices for Q allow for different bounds on how quickly the state converges to zero.

Corollary 2.2.5 Consider the linear system xt+1 = Axt and assume that the Lyapunov equation
(2.3) admits a positive definite solution P for a given positive semidefinite Q. Then

‖xt‖2
2 ≤

λmax(P)
λmin(P)

(
1− λmax(Q)

λmin(P)

)t

‖x0‖2
2

Proof. A solution to the Lyapunov equation implies that V (x) = x>Px satisfies λmin(P)‖x‖2
2 ≤

V (x)≤ λmax(P)‖x‖2
2; and (b) V (Ax)−V (x)≤−λmax(Q)‖x‖2

2, where λmin(P),λmax(P) and λmax(Q)
are all positive. Hence, the result follows directly from Corollary 2.2.3. �

A limitation of Theorem 2.2.4 is that it requires Q to be positive definite. This is not an issue
when we are free to choose P and Q to assess asymptotic stability of a given system, but it can be
restrictive if Q is fixed and we search for an associated solution P to the Lyapunov equation. The
next result shows that it is possible to allow Q to be positive semidefinite if a certain detectability
assumption is satisfied.

Theorem 2.2.6 Let (A,C) be detectable. Then

xt+1 = Axt

is asymptotically stable if and only if the Lyapunov equation

A>PA−P+C>C = 0 (2.4)

admits a unique positive semidefinite solution. If (A,C) is observable, then P is positive definite.

Proof. As in the proof of the basic Lyapunov theorem, if the system is asymptotically stable, then

P =
∞

∑
k=0

(A>)kC>CAk = lim
l→∞

O>l Ol

exists and satisfies the Lyapunov equation. Uniqueness follows by the same arguments as in
Theorem 2.2.4. If the system is observable, the observability matrix has rank equal to the system
order n, which implies that P is positive definite.

Conversely, assume that P� 0 satisfies the Lyapunov equation (2.4). Let λ be en eigenvalue of
A with associated eigenvector v. Multiplying (2.4) with v∗ from the left and v from the right yields

(|λ |2−1)v∗Pv =−‖Cv‖2
2 (2.5)
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Since (A,C) is detectable, Theorem 1.3.4 implies that any v that satisfies Cv = 0 and Av = λv must
have |λ | < 1. Note that any such v must also have v∗Pv = 0. If Cv 6= 0, on the other hand, then
the right-hand side of (2.5) is strictly negative. As v∗Pv≥ 0, we must then have v∗Pv > 0 and can
conclude that also in this case, it holds that |λ |< 1. Since λ was chosen arbitrarily, all eigenvalues
of A are inside the unit circle and the system is asymptotically stable. The proof is complete. �

We will make use of this theorem to prove stability of optimal control laws later in these notes.
Next, we will demonstrate how it can be used to evaluate quadratic performance indices.

Evaluating quadratic costs via Lyapunov functions
One way to assess the quality of a feedback control system

xt+1 = Axt +But , ut =−Lxt , yt =Cxt

is through performance indices such as the output energy,

Joe =
∞

∑
t=0

y>t yt =
∞

∑
t=0

x>t (C
>C)xt

and the input energy

Jie =
∞

∑
t=0

u>t ut =
∞

∑
t=0

x>t (L
>L)xt .

Both of these are quadratic functions of the system state trajectory {xt}. As the next result shows,
if the underlying system is asymptotically stable, then these costs are finite and quadratic functions
of the initial state that can be computed by solving a Lyapunov equation.

Proposition 2.2.7 Consider the linear system xt+1 = Axt and the quadratic performance index
J = ∑

∞
t=0 x>t Qxt with Q positive semidefinite. If (A,Q1/2) is detectable and the Lyapunov equation

A>PA−P+Q = 0

admits a positive semidefinite solution P, then J = x>0 Px0.

Proof. Pre- and post-multiply the Lyapunov equation by xt and sum over time, we get

T

∑
t=0

x>t (A
>PA−P+Q)xt =

T

∑
t=0

(x>t+1Pxt+1− x>t Pxt + x>t Qxt) = 0

By re-arranging the terms, this means that

T

∑
t=0

x>t Qxt =
T

∑
t=0

(
x>t+1Pxt+1− x>t Pxt

)
= x>0 Px0− x>T PxT

If the solution P to the Lyapunov equation is positive semidefinite then, by Theorem 2.2.6, the
system is asymptotically stable and the final term in this expression will vanish as T → ∞. Hence.

lim
T→∞

T

∑
t=0

x>t Qxt = x>0 Px0 (2.6)

which is the desired result. �

The next example demonstrates how the result can be used to assess control energy cost of the
stabilizing state feedback for the quadcopter dynamics that we have derived earlier.
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� Example 2.2 Let us consider the quadcopter dynamics xt+1 = Axt +But with

A =

(
1 1
0 1

)
, B =

(
0.5
1

)
We already know that this dynamics is not asymptotically stable, so it should come as no surprise
that the Lyapunov equation with Q = I does not admit any solution. In fact, it is easy to verify
that the (1,1) element of the matrix P−A>PA is always zero, so there can be no solution with
Q =C>C where (A,C) is observable either; cf. Example 1.4.

Let us now consider the closed-loop dynamics under the state feedback

ut =−Lxt =−
(
1/4 7/8

)
xt

computed in Example 1.6. We know that the associated closed-loop dynamics, xt+1 = (A−BL)xt :=
Aclxt is asymptotically stable, so the Lyapunov function should have a solution. Since (Acl,L) is
observable, we can use Q = L>L and solve A>clPAcl−P+Q = 0 to find

P =
1
54

(
4 12

12 45

)
Finally, note that x>Qx = x>L>Lx = u>u, so by (2.6) the total energy used by the controller to
control the system from an initial state x0 is

lim
T→∞

∞

∑
t=0

u>t u = lim
T→∞

T

∑
t=0

x>t L>Lxt = x>0 Px0

where P is the matrix that we have just computed. �

2.3 Positively invariant sets

In addition to asymptotic convergence, we are often interested in guaranteeing that the state vector
does not violate given constraints. Specifically, given a set A of admissible (allowed) states, we
would like to make sure that the state vector never leaves A. Such guarantees can be obtained from
positively invariant sets of the system dynamics. Let us illustrate the basic ideas by an example.

� Example 2.3 Consider the autonomous linear system

xt+1 =

(
0.8 0.4
0.2 0.4

)
xt ,

with the admissible set A = {x |‖x‖∞ ≤ 1} As shown in Figure 2.3 (left), even if the initial state is
admissible, future states may not be. To ensure that the state remains admissible, we will reason
using positive invariant sets I, i.e. sets with the property that if x0 lies in I, then xt stays in this set
for all t ≥ 0. By constructing invariant sets I that are fully contained in A, we can guarantee that
if x0 lies in I, then xt will remain in I for t ≥ 0 and therefore in A; see Figure 2.3 (right). �

Positively invariant sets for autonomous systems
We begin by studying invariant sets for autonomous systems.

Definition 2.3.1 The set I ⊆ Rn is positively invariant for xt+1 = f (xt) if

xt ∈ I⇒ xk ∈ I for all k ≥ t
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Figure 2.3: Even if the initial state is admissible, future states may not be (left). If the initial state
belongs to a positive invariant set I ⊆A, then it is also guaranteed to be admissible in the future.

The definition simply states that if the state vector belongs to a positively invariant set at time t,
then it will remain in this set for all future times. Clearly, all equilibrium points of a system are
positively invariant, and so is the full space Rn. Most system also have non-trivial invariant sets.
For example, we have shown that level sets of Lyapunov functions are invariant.

Let A ⊆ Rn be the set of admissible states, i.e. the states that satisfy all constraints. As we
have argued above, the system state is guaranteed to remain admissible for all future times if we
can verify that x0 belongs to a positively invariant set I that is contained in A. Of particular value
is the largest positively invariant set contained in A.

Definition 2.3.2 I∞(A), the the maximal positively invariant set contained in A for xt+1 =
f (xt), is the set of all x0 such that xt ∈A for all t ≥ 0.

Our ability to compute invariant sets depends on the properties of the admissible set A and the
dynamics xt+1 = f (xt). We will focus on linear systems and polyhedral constraints. Specifically,
assume that xt+1 = Axt and that the set of admissible states is A = {x |Mx≤ 1} (as discussed in
Appendix B, every polyhedron that contains the origin can be represented on this form). Then, the
maximal invariant set in S is the of initial states from which the system stays in A for all times:

I∞(A) = {x0 | (x0 ∈A) ∧ (x1 ∈A) ∧ (x2 ∈A) ∧ . . .}=
= {x0 | (x0 ∈A) ∧ (Ax0 ∈A) ∧ (A2x0 ∈A) ∧ . . .}=
= {x0 | (Mx0 ≤ 1) ∧ (MAx0 ≤ 1) ∧ (MA2x0 ≤ 1) ∧ . . .}

Since the set is defined by the intersection of halfspaces, it is convex. As the next result shows, it is
often defined by a finite number of halfspaces, and therefore a polyhedron.

Theorem 2.3.1 The maximal invariant set of xt+1 = Axt contained in A = {x |Mx≤ 1} is

I∞(A) = Iν(A) :=
{

x |MAkx≤ 1, k = 0,1, . . . ,ν
}

(2.7)

where the determinedness index ν is the smallest positive integer such that Iν+1(A) = Iν(A).
If A is Schur stable and (A,M) is observable, then ν is finite.

The full proof is given in the appendix. Note that Iν+1(A) = Iν(A) means that the two sets
should be the same. A simple technique for verifying if two set of linear inequalities define the
same polyhedron is described in Appendix B.

We can develop some additional intuition into invariant sets by enforcing the constraints over a
finite number of steps into the future. To this end, we make the following definition:
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Definition 2.3.3 The predecessor set of S ⊆ Rn for the dynamics xt+1 = f (xt) is the set

pre(S) = {x | f (x) ∈ S}

In words, pre(S) is the set of states that will evolve into S in one step. For a linear system
xt+1 = Axt and A = {x |Mx≤ 1}, we have pre(A) = {x |MAx≤ 1}. With this definition, we can
now construct the set of states that are guaranteed to stay in A for at least k time steps, denoted
Ik(A). Clearly, I0(A) =A and

Ik(A) =A∩pre(Ik−1(A)) (2.8)

i.e. the states that satisfy the constraints over k steps are the states that satisfy the constraint at the first
step and evolve into states that satisfy the constraints for the remaining k−1 time steps. Applying
this formula recursively for k = 1,2, . . . generates a sequence of sets A ⊇ I1(A)⊇ ·· · ⊇ Ik(A).
If we detect that Iν+1(A) = Iν(A), then the iteration has converged and we have found I∞(A).

The next example demonstrates the iterative procedure for finding a maximal invariant set.

� Example 2.4 Let us return to the set-up that we used to motivate invariant sets in Example 2.3.
Figure 2.4 illustrates the recursive construction (2.8) of the maximal invariant set. In the construction
of I3(A), all new inequalities are redundant to those in I2(A) and we conclude that the two-step
invariant set is equal to the maximal invariant set for this system and this set of admissible states. �
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Figure 2.4: The set of admissible states A = I0(A) to the left, followed by I1(A) = A ∩
pre(I0(A)), and I2(A). Since I3(A) = I2(A), the two-step invariant set is maximal.

Although Theorem 2.3.1 establishes that asymptotically stable linear systems have invariant
sets represented by a finite number of linear inequalities, the complexity of the representation
depends on both the dynamics and the constraints. The next example illustrates this fact.

� Example 2.5 Let us consider the linear system

ẋ(t) =
(

0 1
−ω2

0 −2ζ ω0

)
x(t)

with ω0 = 1 and sampling time h = 0.25. The dynamics of the system is increasingly oscillatory as
the relative damping ζ decreases. We define the set of admissible states as A = {x | ‖x‖∞ ≤ 10}.
If ζ = 1, the dynamics is well-damped and I∞(A) = I3(A); see Figure 2.5 (left). When ζ = 0.1,
the dynamics becomes more oscillatory, and the determinedness index increases to 5, Figure 2.5
(middle). If we would continue to decrease ζ , the index would increase even further.

To illustrate the impact of the constraints on I∞(A), we keep ζ = 0.1 but shift the admissible
states to A = {x | −5≤ [x]i ≤ 15}. This situation is similar to shifting the equilibrium point of the
system to (−5,−5). In this case, the detminedness index jumps to 16, see Figure 2.5 (right). �

While finding an invariant set requires relatively sophisticated computations, it is easy to verify
that a given polytope is invariant. The following result provides one useful technique.

Proposition 2.3.2 A convex polyhedron P with vertices {v1,v2, . . . ,vm} is invariant under the
linear dynamics xt+1 = Axt if and only if Avi ∈P for all i = 1, . . . ,m.
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Figure 2.5: The determinedness index depends on both the system dynamics and the constraints.
The constraint set A is in light blue and I∞(A) in dark blue. Decreasing the damping of the
system increases the determinedness index (middle), while shifting the constraint set may alter both
size, shape and determinedness index of the invariant set (right).

The proof is given in appendix. A similar invariance test for polyhedra represented as the
intersection of half-spaces is explored in the exercises.

Control invariant sets

Positively invariant sets are defined for autonomous systems, i.e. systems without any external
inputs. In control systems, we have the extra ability to adjust the system input so that the state vector
remains admissible. It will then be more natural to reason using control invariant sets.

Definition 2.3.4 The set C ⊆Rn is positively control invariant for the dynamics xt+1 = f (xt ,ut)
and the control constraint ut ∈U if

xt ∈ C⇒∃{ut ,ut+1, . . .} with uk ∈U such that xk ∈ C ∀k ≥ t

This definition states that if xt belongs to a control invariant set, then there exists a control sequence
satisfying the control constraints that makes the state stay in the control invariant set for all future
times. Since not every control invariant set will guarantee constraint satisfaction, we will look for
the maximal control invariant set that is contained in the set of admissible states A:

Definition 2.3.5 C∞(A,U), the maximal positively control invariant set contained in A for
the dynamics xt+1 = f (xt ,ut) and the control constraint ut ∈U is the set of initial states x0 for
which there is an admissible control sequence {ut} that ensures that xt ∈A for all t ≥ 0.

The set C∞(A,U) is also known as the maximal output admissible set. By a slight redefinition
of predecessor sets, we can structure the controlled invariant set computations as we did for the
invariant sets. Specifically, we use the following definition

Definition 2.3.6 The predecessor set of S ⊆ Rn for the dynamics xt+1 = f (xt ,ut) and control
constraints ut ∈U is

pre(S,U) = {x | ∃u ∈U such that f (x,u) ∈ S}

The predecessor set is also known as the one-step controllable set, since it is the set of states for
which there is an admissible control that drives the next state into S. If the dynamics is linear and
the constraints are polyhedral, then the predecessor is itself a polyhedron that can be computed.
Specifically, with A = {x |Mxx ≤ 1}, U = {u |Muu≤ 1} and xt+1 = Axt +But , the predecessor
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Algorithm 1 Algorithm for computing maximal control invariant set contained in S.

1: C(0)←A

2: for k = 0,1, . . . do
3: C(k+1)←A∩pre(C(k),U)
4: if C(k+1) == C(k) then
5: return C(k)

set of A is the set of x for which we find a solution to the inequalities(
MxA MxB

0 Mu

)(
x
u

)
≤
(

1
1

)
.

If we view the solution set of these inequalities as a polyhedron, the predecessor set can be seen as
a projection of this polyhedron onto its first n coordinates. This projection can be computed using a
procedure called Fourier-Motzkin elimination, which eliminates u from the inequalities and returns
the hyperplanes in Rn that define the projected set (see Appendix B for details).

We can compute C∞(A,U) recursively, analogously to how we computed I∞(A). To this end,
let C0(A,U) =A and proceed with the iteration

Ck(A,U) =A∩pre(Ck−1(A,U),U) (2.9)

The recursion generates a sequence of sets which converges to C∞(A,U) = limk→∞Ck(A,U).
The maximal control invariant set is finitely generated if Cν+1(A,U) = Cν(A,U) for some finite
ν ≥ 0. See Algorithm 1 for a simple pseudo-code listing.

� Example 2.6 Let us begin with the simple scalar system

xt+1 = 2.5xt +ut , A = {x | |x| ≤ 1}, U = {u | |u| ≤ 1}

Of course, it is easy to determine the maximal control invariant set analytically. If xt ≥ 0, then
ut =−1 makes xt+1 = 2.5xt −1≤ xt as long as xt ≤ 2/3. A similar argument for negative states
reveals that the maximal control invariant set is {x | |x| ≤ 2/3}. Figure 2.6 demonstrates a single
step of the recursive procedure (2.9) for the same task. �

The next example illustrates the control invariant set for a slightly more complex system. In
this case, it is no longer easy to determine the maximal control invariant set by hand.

� Example 2.7 Let us consider the discrete-time system

xt+1 =

(
1.005 0.1
0.1 1.005

)
xt +

(
0.005
0.1

)
ut .

This system describes the dynamics of an “inverted pendulum” after zero-order hold sampling. Note
that the system matrix has one eigenvalue strictly outside the unit disc, and therefore is unstable.

We set A = {x | ‖x‖∞ ≤ 0.5} and U = {u | |u| ≤ 1}. The maximal control invariant set
computations converge after ν = 10 iterations, returning C∞(A,U) shown in Figure 2.7 (left).

As an alternative to the maximal control invariant set, we can consider the invariant set resulting
from a specific admissible control input. For example, we can consider a state feedback law
ut =−Lxt and compute the positively invariant set for the closed-loop dynamics

xt+1 = Axt +B(−Lxt) = (A−BL)xt . (2.10)
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Figure 2.6: The set of admissible states A (left); the set of (x0,u0) that ensure that x1 ∈A and
u0 ∈U (middle); the resulting polyhedron and its projection used in the preset computation (right).
Note that this is just the first step of the recursive procedure.

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

Figure 2.7: The left subfigure shows the maximally control invariant set for the linear system (2.10).
The right subfigure shows the control invariant set guaranteed by two different state feedback laws
(in gray). Clearly, none of the two sets are maximal.

To make sure that the state feedback is admissible for all states in the computed set, we define

A′ =A∩{x | −Lx ∈U}

and compute I∞(A′). This set will be control invariant for (2.10), since there is an admissible
control law (specifically, ut =−Lxt) that keeps the state in the set for all future times. However,
sets defined in this way are typically not maximal. For example, control invariant sets for two
different state feedback laws, both significantly smaller than the maximal control invariant set, are
shown in Figure 2.7 (right). �

As for invariant sets, it can sometimes be useful to have a simple technique for verifying that a
given set is control invariant. The next proposition is one such result.

Proposition 2.3.3 A convex polyhedron P with vertices {v1,v2, . . . ,vm} is control invariant under
the linear dynamics xt+1 = Axt +But and the control constraints ut ∈U if and only if there is an
ui ∈U such that (Avi +Bui) ∈P for all i = 1, . . . ,m.

It is sometimes of interest to be able to compute the set of initial states that can reach a set
T ⊆A of target states in at most T steps. Such T -step controllable sets can be computed by a
slight variation of Algorithm 1 where C(0) is initialized to T. In this way, C(k) in the algorithm
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represents the set of admissible states that can be steered to T in k steps.

Local stability analysis using Lyapunov functions and invariance arguments
The stability theorems that we have stated earlier rely on the Lyapunov function to be positive
definite and decreasing for all x ∈ Rn. These theorems will not hold for systems that are only
locally asymptotically stable. Nevertheless, one can still use Lyapunov arguments to establish local
asymptotic stability and compute guaranteed regions of attraction.

Proposition 2.3.4 Consider the nonlinear system xt+1 = f (xt) with f (0) = 0. Let X ⊆ Rn be
positively invariant for xt+1 = f (xt). If

(a) there exists a continuous function V : Rn 7→R with V (0) = 0 and V (x)≥ α‖x‖2
2 for all x∈ X ,

(b) there exists a continuous function l : Rn 7→ R with l(0) = 0 and l(x)≥ β‖x‖2
2 for all x ∈ X ,

(c) it holds that

V ( f (x))−V (x)≤−l(x) for all x ∈ X

Then, X is a region of attraction for x = 0, i.e. if x0 ∈ X it holds that xt → 0 as t→ ∞.

There are two common ways to apply this proposition. The first is to actually determine an
invariant set X (possibly a maximal invariant set) and then verify the conditions (a)-(c) on this
set. The other one is to verify the conditions (a)-(c) on some set X ′ without first proving that it is
invariant. Then, since we know that level sets of Lyapunov functions are invariant, we can take X
to be the largest level of V contained in X ′.
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2.4 Exercises
Problem 2.1 Consider the nonlinear system

xt+1 =
xt

1+ x2
t

(a) Verify that x = 0 is the system’s unique equilibrium point.
(b) Use the Lyapunov function V (x) = x2 to prove global asymptotic stability of the origin.

Problem 2.2 Consider the nonlinear system

xt+1 = g(xt)

where g has the property that g(0) = 0 and

|g(x)|< |x|, ∀x 6= 0.

Show that the origin is globally asymptotically stable.

Problem 2.3 Consider the nonlinear system

xt+1 =
azt

1+ x2
t

zt+1 =
bxt

1+ z2
t

with state vector (xt ,zt) ∈ R2.
(a) Prove that if |a|< 1 and |b|< 1, then the origin is globally asymptotically stable.
(b) What can you say about the case |a| ≤ 1, |b| ≤ 1 but |a|+ |b| 6= 2?
(c) What can you say about the case |a|= |b|= 1?

Hint. Consider the Lyapunov function V (x,y) = x2 + y2.

Problem 2.4 Consider the nonlinear system

xt+1 =
2xt

1+ x2
t

(a) Verify that x = 0 is an unstable equilibrium point for the system.
(b) Use the Lyapunov function V (x) = x2 to prove that all trajectories remain bounded.

Problem 2.5 In this problem, we will consider the nonlinear system

xt+1 = f (xt) :=
1
2

xt + x2
t .

and use the Lyapunov function V (x) = x2 to prove local asymptotic stability.
(a) Determine the equilibrium points of the system. Justify why the system cannot be globally

asymptotically stable.
(b) Show that the interval X = (−1,1/2) is invariant under the given dynamics. Use V (x) to

prove that the origin is locally asymptotically stable and that X is a region of attraction.
(c) Determine the set V = {x |V (x)> 0 ∧ V ( f (x))−V (x)< 0}. What is the largest level set of

V contained in V? How does this set compare to the set X considered in (b)?

Problem 2.6 Consider the linear system xt+1 = Axt with

A =

(
1/4 1
1/2 0

)
Solve the Lyapunov inequality AT PA−P+Q = 0 analytically for Q = I. What can you conclude
about the stability of the linear system?
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Problem 2.7 Consider a linear system xt+1 = Axt . For each system matrix below, solve the
Lyapunov equation numerically with Q = I and assess stability of the systems. Compute the
eigenvalues of A and validate your findings.

(a) A =

(
0.4 1
0 0.8

)
(b) A =

(
1.2 0
0 −0.4

)
(c) A =

(
0.8 −0.1
2 0.8

)
Problem 2.8 Prove that the system

xt+1 = Axt

is not asymptotically stable if, for some positive definite matrix Q, the Lyapunov equation

A>PA−P+Q = 0

has a solution P with one or more negative eigenvalues.

Problem 2.9 Prove that if there exists a continuous function V that satisfies

α1‖x‖2
2 ≤V (x)≤ α2‖x‖2

2

V ( f (x))−V (x)≤−β‖x‖2
2 +m

for some positive scalars α1,α2,m, and β . Then,

lim
t→∞
‖xt‖2 ≤ α2

α1β
m

along every trajectory of the system xt+1 = f (xt). This result is useful to prove stability of systems
in the presence of disturbances and uncertainties that refrain the state from converging to zero.
Hint. Start by showing that the inequalities imply V (xt+1) ≤ qV (xt)+ r for some q ∈ (0,1) and
some positive scalar r.

Problem 2.10 Consider the following linear system

xt+1 =

(
0.5 0
1 −0.5

)
xt

For each of the following polyhedral sets X, determine pre(X) under the given dynamics.
(a)

X =
{

x ∈ R2 | 2x1 +3x2 ≤ 5
}

(b)

X =

{
x ∈ R2 |

(
−1
−2

)
≤ x≤

(
2
3

)}
(c)

X =
{

x ∈ R2 | x≥ 0
}

Problem 2.11 Show that I ⊆ S is positive invariant under xt+1 = Axt if and only if

I ⊆ pre(I)
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Problem 2.12 For each of the sets X in Exercise 2.10, determine if X is positive invariant under

xt+1 =

(
0.5 0
1 −0.5

)
xt

Hint: Combine the results from Exercises 2.10 and 2.11.

Problem 2.13 Consider the double integrator

xt+1 =

(
1 1
0 1

)
xt +

(
0
1

)
ut

under the state constraints

ut ∈U = {u ∈ R | −1≤ u≤ 1}

For each of the following polyhedral sets X, determine pre(X;U) under the given dynamics.
(a)

X =

{
x ∈ R2 |

(
−5
−5

)
≤ x≤

(
5
5

)}
(b)

X =
{

x ∈ R2 | x1 ≥−3,x1 +2.5x2 ≥−3,x1 ≤ 3,x1 +2.5x2 ≤ 3
}

Problem 2.14 Show that C ⊆X is control invariant under xt+1 = Axt +But , ut ∈U if and only if

C ⊆ pre(C;U)

Problem 2.15 For each of the sets X in Exercise 2.13, determine if X is control invariant under

xt+1 =

(
1 1
0 1

)
xt +

(
0
1

)
ut , ut ∈U = {u ∈ R | −1≤ u≤ 1}

Hint: Use the results from 2.14.

Problem 2.16 Assume that there are no input constraints (U = Rm) and show that a set C ⊆X is
controlled invariant under xt+1 = Axt +But if and only if there exists an m×n matrix L such that C
is positive invariant under xt+1 = (A−BL)xt

Problem 2.17 Consider the linear system

xt+1 =
1
4
·
(

5 3
3 5

)
xt +

(
0
1

)
ut

subject to the input and state constraints

xt ∈ X =

{
x ∈ R2 |

(
−10
−10

)
≤ x≤

(
10
10

)}
ut ∈U = {u | −10≤ u≤ 10}

(a) Is X control invariant?
(b) Consider the state feedback law

ut =−Lxt =−
(
3/2 3/2

)
xt

Draw the set A of x∈X such that the state feedback does not saturate. Is A control invariant?
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Problem 2.18 Consider the double integrator

xt+1 =

(
0 1
1 1

)
xt +

(
1/2
1

)
ut

(a) Define the state feedback

ut =−
(
1/2 1

)
xt . (2.11)

and the constraint set

X = {x ∈ R2 | |x1| ≤ 1∧|x2| ≤ 1}

Is X positively invariant under the control law (2.11)?
(b) Is the control law in (a) admissible for all x ∈ X under the control constraint

|ut | ≤ 1

(c) Is the set X control invariant under the control constraint in (b)?
(d) Is there an admissible state-feedback control law ut = −Lxt which makes X positively

invariant under the constraint in (b)?

Problem 2.19 Consider the double integrator

xt+1 =

(
1 1
0 1

)
xt +

(
0.5
1

)
ut

under the control constraints u ∈ U = {u | |u| ≤ 1} and the state constraints x ∈ {x | |x1| ≤
25 and |x2| ≤ 5}. Validate that the set in Figure 2.8. is control invariant.
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Figure 2.8: Control invariant set X with vertices vi, subdivided into regions Ri.

Show that it is possible to derive an explicit control law that renders X control invariant under
the double integrator dynamics. Specifically, show that in each region Ri in Figure 2.8, there is a
linear control law ut =−Lixt that maps its vertices back into X .
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3. Finite-time optimal control

This chapter studies optimal control problems over a finite time horizon. Such problems arise in
a variety of contexts, also outside of the traditional application areas of automatic control. For
example, the planning financial investments and routing of packets in a data network can both be
posed as optimal control problems. The theory that we present allows us to derive optimal solutions
to some important control problems, but it will also be essential for justifying model predictive
control strategies and for reasoning about their properties. Special attention is given to optimal
control of linear systems with constraints that can be formulated as linear inequalities in the state
vector and control input. We will show that such problems can be posed as convex optimization
problems and solved quickly and reliably using a variety of numerical solvers. In fact, finite-horizon
optimal control problems of the type that we study here are solved in every sampling instant in the
model predictive control strategies that we will develop later.

3.1 A standard form for finite-time optimal control problems
In this chapter, we are given a dynamical system xt+1 = ft(xt ,ut) and want to find the optimal input
sequence over T steps, {u0,u1, . . . ,uT−1}. We write these problem as

minimize ∑
T−1
t=0 gt(xt ,ut)+gT (xT )

subject to xt+1 = ft(xt ,ut) t = 0,1, . . . ,T −1
(xt ,ut) ∈ Ct t = 0,1, . . . ,T −1
xT ∈XT

(3.1)

We refer to T as the horizon of the optimal control problem, and each time instant t as a stage. The
system state in stage t is denoted xt , and we can affect its evolution using the control action ut . In
particular, the state in the next stage is xt+1 = ft(xt ,ut). The transition function ft is indexed by t
to indicate that it can vary over stages. Applying the control action ut in state xt at stage t incurs
a stage cost gt(xt ,ut). Our aim is to find a control sequence {u0,u1, . . .uT−1} that minimizes the
accumulated cost over the horizon. Since the control action in stage t affects the state at time t +1,
there is no uT and the terminal cost gT depends only on the terminal state xT . The states and control
actions can also be subject to constraints, defined by Ct and XT ; see Figure 3.1 for an illustration.
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Figure 3.1: Finite-time optimal control set-up. At each stage t, the control action ut incurs
a cost gt(xt ,ut) and affects the next state ft(xt ,ut). The aim is to select the control sequence
{u0,u1, . . . ,uT−1} that satisfies the constraints and minimizes the total cost across the stages.

� Example 3.1 To illustrate the notation, consider the problem of driving the quadcopter studied
in earlier examples from rest at y0 = 0 to rest at yT = 10 using minimal energy while respecting the
control constraint −g≤ ut ≤ g for all times. We can write this problem as

minimize ∑
T−1
t=0 u2

t

subject to xt+1 =

(
1 1
0 1

)
xt +

(
1/2
1

)
ut t = 0,1, . . . ,9

−g≤ ut ≤ g t = 0,1, . . . ,9

x10 =

(
10
0

)
In terms of our standard notation, we use stage costs gt(xt ,ut) = u2

t but no terminal cost, that is, we
let gT (xt)≡ 0. The dynamics ft(xt ,ut) is the linear system derived in Example 1.8. The constraint
on the lift force is encoded by Ct = {(x,u) | −g≤ u≤ g}. Finally, the drone is forced to be at rest
at its target at T = 10 by letting XT = {x | x = xtgt}. �

There are several different variations of the optimal control problem (3.1). In one of them, we
are given an initial state x0 and look for the control actions {u0,u1, . . . ,uT−1} that minimize the
accumulated cost under the given dynamics and constraints. This open-loop optimal control is
often fragile in practice, since the complete control sequence is optimized based only on the initial
state and the system model. If the model is inaccurate or if the system is affected by unforeseen
disturbances, the open loop sequence can be far from optimal. In another variation of (3.1), we
are not given a specific initial value, but look for a closed-loop policy, i.e. a sequence of functions
{µ0(x),µ1(x), . . . ,µT−1(x)} such that ut = µt(xt) defines the optimal action at time t. Optimal
feedback policies are more robust, since they can use the actual state xt at time t, but they also more
difficult to compute. In this chapter, we will explore both these options.

3.2 Open-loop optimal control via convex optimization
We can view (3.6) as a standard optimization problem in {xt} and {ut}, and attempt to solve a
given instance numerically using a variety of solvers. However, without additional assumptions
about the cost functions, dynamics, and constraints, it can be computationally difficult to find the
optimal solution. In fact, it may be difficult to even validate that a given solution candidate is
globally optimal. As discussed in Appendix C, it is advantageous if a mathematical programming
problem is convex, since the optimal solution can then be found quickly and reliably, both in
theory and in practice. In this section, we limit ourselves to linear systems with quadratic costs and
linear constraints. This allows us to formulate and solve the optimal control problem as quadratic
programs (QPs). Recall that a QP is an optimization problem with a quadratic objective function
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and linear constraints:

minimize ∑
nz
i=1 ∑

nz
j=1 pi jziz j +∑

nz
j=1 2q jz j + r

subject to ∑
nz
j=1 ai jz j ≤ bi i = 1, . . . ,mz

∑
nz
j=1 gi jz j = hi i = 1, . . . , pz

It is convenient to group the decision variables z j into a vector z ∈ Rnz and express the problem as

minimize z>Pz+2q>z+ r
subject to Az≤ b

Gz = h
(3.2)

The problem is convex when P is positive semi-definite; cf. Appendix C. Although we will
generally have to solve these problems numerically, we will show that some useful classes of
quadratic programs even admit closed-form solutions.

Simple quadratic problems with explicit solutions
We begin by studying two important problems that admit analytical solutions. They are based on
basic results for the minimization of convex quadratic functions with and without linear constraints.
The first one is a vector extension of the well-known completion-of-squares, x2 + 2qx + r =
(x+q)2 + r−q2 used to find the minimizer and the minimal value of quadratic functions.

Lemma 3.1 — Completion-of-squares. Consider the quadratic function f : Rn 7→ R given by

f (z) = z>Pz+2q>z+ r

where P is a positive semidefinite matrix. All minimizers z? of f satisfy the normal equations

Pz?+q = 0.

If P is positive definite, then the minimizer is unique and given by

z? =−P−1q

with corresponding minimal value

f ? = r−q>P−1q = r− (z?)>Pz?.

Moreover, f (z) can then be re-written as a completion-of-squares

f (z) = (z− z?)>P(z− z?)+ r− (z?)>Pz?.

The result follows immediately from the first-order optimality conditions for unconstrained
convex optimization in Appendix C and the differentiation rules for quadratic forms in Appendix A.
The expression for f ? follows from f (z?)= (−P−1q)>P(−P−1q)+2q>(−P−1q)+r = r−q>P−1q,
and the final claim from simplifying f (z) = z>Pz−2z>Pz?+ r = z>Pz+2q>z+ r.

As an example of how we can use this result, let us consider a classical least-squares problem.

� Example 3.2 — Least-squares state estimation. We are interested in estimating the initial
state x0 ∈ Rn of a linear system

xt+1 = Axt ,

yt =Cxt + vt

based on measurements {y0,y1, . . . ,yN}. If vt ≡ 0 and (A,C) is observable, then we have already
shown that we can compute x0 exactly from n consecutive output measurements. In the presence
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of the disturbance sequence {vt}, however, it is unlikely that there would be any solution to the
system of linear equations

y0 =Cx0 + v0

y1 =Cx1 + v1 =CAx0 + v1

... =
...

yN =CANx0 + vN

In absence of any other information, it is natural to try to find the “smallest” disturbance sequence
that allows to explain the observations. Let us introduce

YN =


y0
y1
...

yN

 , ON =


C

CA
...

CAN

 , VN =


v0
v1
...

vN


and re-write the observation equations as

YN =ONx0 +VN

One possible measure of the size of the disturbance sequence {vt} is its total energy

N

∑
t=0
‖vt‖2 =

N

∑
t=0

v>t vt =V>N VN .

The disturbance sequence of smallest energy that explains the observations can then be found by
solving the optimization problem

minimize
VN ,x0

V>N VN

subject to VN = YN−ONx0

We can use the equality constraint to eliminate VN , leading to the equivalent problem

minimize
x0

(YN−ONx0)
>(YN−ONx0) = x>0 (O

>
N ON)x0−2Y>N ONx0 +Y>N YN

If (A,C) is observable and N ≥ n, then ON has rank n and the matrix O>N ON is positive definite. By
the least-squares lemma, the optimal solution is then given by

x0 = (O>N ON)
−1OT

NYN

�

The least-squares problem typically appears when we have more observations than parameters
to estimate in our model. Let us now instead consider the opposite situation, i.e., when we need to
solve a system of m < n linear equations in z ∈ Rn

Gz = h

Since there may then many x that satisfy the constraints, it is natural to look for the smallest
parameter vector that explains the observations. If we measure size of z in terms of its Euclidean
norm ‖z‖2

2 = z>z, we would like to find the z that solves the optimization problem

minimize
z

z>z

subject to Gz = h

As the next result shows, also this problem admits a closed-form solution.
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Proposition 3.2.1 Consider the linearly constrained quadratic program

minimize
z

z>z

subject to Gz = h

where G ∈ Rm×n, h ∈ Rm and m < n. If rank(G) = m, then the optimal solution is

z? = G>(GG>)−1h.

Proof. See Appendix C. �

We will use the result to study energy-optimal state transfer for linear systems.

� Example 3.3 Let us return to the optimal control problem for the quadcopter defined in Exam-
ple 3.1, but disregard the control constraints. We are thus interested in finding the input sequence
of minimum energy that ensures that xT = xtgt. In Chapter 1, we demonstrated that one can use the
prediction equations (1.5) to express the state at time T of a linear system xt+1 = Axt +But as

xT = cT +CT


u0
u1
...

uT−1

= cT +CTUT

where cT = A>x0 and CT is the controllability matrix over T steps. Since x0 = 0, the free response
vanishes, i.e. cT = 0. The total energy of the control sequence {u0,u1, . . . ,uT−1} is

E(xtgt,T ) =
T−1

∑
k=0
‖uk‖2

2 =
T−1

∑
k=0

u>k uk =U>T UT

so the minimum-energy state transfer problem then reads

minimize U>T UT

subject to CTUT = xtgt.

If (A,B) is reachable and T ≥ n, the controllability matrix has full rank, and we can use Proposi-
tion 3.2.1 to determine the optimal solution

U?
T = C>T (CTC

>
T )−1xtgt.

We can also compute the optimal value of this problem, i.e., the minimal energy cost

E?(xtgt,T ) = (U?
T )
>(U?

T ) = x>tgt(CTC
>
T )−1xtgt = x>tgt

(
T−1

∑
k=0

AkBB>(Ak)>
)−1

xtgt.

This expression has an interesting interpretation. The set of target states which are reachable in T
steps with unit energy{

xtgt | E?(xtgt,T )≤ 1
}
=
{

xtgt | x>tgt(CTC
>
T )−1xtgt ≤ 1

}
form ellipsoids centered at the origin, whose size increase with increasing horizon T . Figure 3.2
shows the set of states that are reachable with unit energy for various horizon lengths T . The results
correspond well with physical intuition: we can displace the drone further if we do not need to
drive it to rest (i.e. can allow a non-zero second state), and the unit energy budget makes it difficult
to drive the system very far if the terminal velocity has to be zero. �

In practice, one may want to consider state-transfer problems with more general objective
functions and impose constraints on the states and controls. However, as constraints are added, it
becomes increasingly difficult to find analytical solutions to the associated optimization problems.
Instead, we typically have to resort to numerical computations.



70 Chapter 3. Finite-time optimal control

-15 -10 -5 0 5 10 15
-3

-2

-1

0

1

2

3

Figure 3.2: Unit-energy reachable sets for the vertical quadrotor dynamics. Recall that x1 is the
vertical position, while x2 is the velocity.

Optimal control of linear systems with linear constraints and quadratic costs
Finite-horizon optimal control problems with more general constraints can be posed and solved as
convex QPs if we restrict the costs to be convex and quadratic, and the dynamics and constraints to
be linear. In particular, we assume that both the stage costs and the terminal cost are quadratic

qt(xt ,ut) = x>t Qxt +u>t Rut , qT (xT ) = x>T QT xT . (3.3)

for some positive semidefinite matrices Q, R and QT , while the dynamics is linear

ft(xt ,ut) = Axt +But .

We also assume that the constraints on ut and xT are defined by linear inequalities,

Ct(xt ,ut) = {(x,u) |Mx+Nut ≤ m}, XT = {x |MT x≤ mT}.

Altogether, this leads to the following finite-horizon optimal control problem

minimize ∑
T−1
t=0 x>t Qxt +u>t Rut + x>T QT xT

subject to xt+1 = Axt +But t = 0, . . . ,T −1
Mxt +Nut ≤ m t = 0, . . . ,T −1
MT xT ≤ mT

(3.4)

We will show how these problems can be formulated as convex quadratic programs on the form
(3.2), and therefore efficiently solved using standard numerical routines. Before doing so, however,
we will show how some common constraints can be described in the proposed format.

� Example 3.4 A magnitude limitation on a scalar control signal ut ,

|ut | ≤ umax.

can be expressed by two linear inequalities u≤ umax and −u≤ umax, i.e. by

M = 0, N =

(
1
−1

)
, m =

(
umax
umax

)
.

Similarly, the constraint that a signal yt =Cxt +Dut should lie between upper and lower bounds

ymin ≤Cxt +Dut ≤ ymax
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can be written on the proposed form using

M =

(
C
−C

)
, N =

(
D
−D

)
, m =

(
ymax
−ymin.

)
.

As a final example, the requirement that xT should equal a fixed target xtgt can be encoded by

MT =

(
I
−I

)
, NT = 0, mT =

(
xtgt
−xtgt

)
.

Note that any combination of the above constraints can also be expressed on the standard form (by
simply including all relevant inequalities in the definition of M, N and m). �

We also take the opportunity to return to Example 3.1 and put it on this standard form.

� Example 3.5 To minimize the total input energy, we let R = I while Q = QT = 0. The system is
linear, with A and B matrices already given in Example 3.1. The magnitude constraints on the input
are encoded as in the previous example with umax = g, i.e. by letting

M = 0, N =

(
1
−1

)
, m =

(
g
g

)
.

and the terminal constraint can be encoded using

MT =

(
I
−I

)
, NT = 0, mT =

(
xtgt
−xtgt

)
, where xtgt =

(
10
0

)
Finally, providing a numerical value for the horizon length T completes the specification. �

We will now show that the finite-time optimal control problem (3.4) can be transformed to
a convex QP on the standard form (3.2) with a decision vector comprised of {x1,x2, . . . ,xT} and
{u0,u1, . . . ,uT−1}. For convenient notation, we introduce vectors XT ∈ RT n and UT ∈ RT m:

XT =

x0
...

xT

 , UT =

 u0
...

uT−1

 .

The total cost of the optimal control problem can then be expressed as

X>T


Q 0 . . . 0

0
. . . . . .

...
...

. . . Q 0
0 . . . 0 QT


︸ ︷︷ ︸

Q

XT +U>T


R 0 . . . 0

0 R
. . .

...
...

. . . . . . 0
0 . . . 0 R


︸ ︷︷ ︸

R

UT

Note that since Q,QT and R are positive semidefinite, Q and R will also be positive semidefinite.
Next, the dynamics can be written as the linear equality constraints

I 0 · · · 0
−A I 0 0

0
. . . . . . 0

0 0 −A I


︸ ︷︷ ︸

E

XT +


0 0 · · · 0

0 −B
. . .

...
...

. . . . . . 0
0 · · · 0 −B


︸ ︷︷ ︸

F

UT =


x0
0
...
0


︸ ︷︷ ︸

e
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while the state and control constraints can be collected into constraints on XT and UT :
M 0 . . . 0

0
. . . 0 0

...
. . . M 0

0 . . . 0 MT


︸ ︷︷ ︸

M

XT +


N 0 . . .

0
. . . 0

...
. . . N

0 . . . 0


︸ ︷︷ ︸

N

UT ≤


m
...
m

mT


︸ ︷︷ ︸

m

.

With this notation, the optimal control problem amounts to solving the quadratic program

minimize X>T QX>T +U>T RUT

subject to MXT +NUT ≤m

EXT +FUT = e

We can put this problem on the standard form for QPs (3.2) by letting

z =
(

XT

UT

)
, P =

(
Q 0
0 R

)
, q = 0, r = 0

A =
(
M N

)
, b =m, G =

(
E F

)
, h = e.

Since both Q and R are positive semidefinite, P is too, and this is a convex QP. This formulation is
known as the extensive form of the finite-horizon optimal control problem. It has (T +1)n+T m
variables, but the matrices that describe the problem are sparse (many of their entries are zero).

It is possible to use eliminate XT from the optimization problem and express the objective and
constraints only in terms of UT . This condensed form only has T m variables, but it is described by
dense matrices. To derive this formulation, note that

XT =


x1
x2
...

xT

=


Ax0
A2x0

...
AT x0

+


B 0 . . . 0

AB B 0 0
...

. . . . . . 0
AT−1B . . . AB B

UT := hT +HTUT . (3.5)

We can use this relationship to eliminate XT , first from the objective function via

X>T QXT +U>T RUT = (HTUT +hT )
>Q(HTUT +hT )+U>T RUT =

=U>T (H>T QTHT +R)UT +2(H>T QhT )
>UT +h>T QhT

and then from the state constraints using

M(HTUT +hT )+NUT = (MHT +N)UT +MhT ≤m

The condensed formulation is thus a QP on the standard form with

z =UT , P =H>T QHT +R, q =H>T QhT , r = h>T QhT

A =MHT +N, b =m−MhT , G = 0, h = 0.

In this formulation, it only hT that depends on x0. Hence, if we want to re-solve the same
optimal control problem with a new initial state, we only need to recompute the vectors q, r and b.
Since r does not affect the optimal solution (only the optimal value), it is often disregarded. In the
extensive formulation, one only needs to update e when resolving the problem with a new x0.
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Extensions of the standard form
The main purpose of this section has been to show that it is possible to formulate finite time optimal
control problems for constrained linear systems as convex QPs on standard form. However, to keep
the notation simple, we have imposed more restrictions than strictly necessary.

Clearly, we could allow dynamics, stage costs and constraints to be time-varying, and still
formulate and solve the associated optimal control problem as a QP. For example, replacing
xt+1 = Axt +But by xt+1 = Atxt +Btut would only affect the definition of the matrix HT , and
similar observations hold for time-varying costs and constraints.

We could also couple constraints over time and allow for, e.g., rate-of-change constraints

|ut −ut−1| ≤ δmax

These constraints can be dealt with by augmenting the system model with an additional state, say
zt = ut−1 and then constrain ut− zt . But they could also be expressed more compactly as two linear
inequalities in (ut ,ut−1) and would therefore lead to a QP formulation where the constraints are
coupled over time. Similarly, we could also allow for cost functions that couple the states and
inputs over time, e.g. penalizing the rate-of-change ‖ut+1−ut‖2

2 of the control signal.
Finally, some convex costs and constraints can be expressed in the QP formalism by the

introduction of auxiliary variables. One such example is the `1-norm of a vector; see Appendix C.

An important special case: finite-time linear-quadratic control
The problem (3.4) simplifies considerably if we drop the state and control constraints. The
corresponding formulation

minimize ∑
T
t=0 x>t Qxt +u>t Rut + x>T QT xT

subject to xt+1 = Axt +But t = 0, . . . ,T −1

is known as the finite-horizon linear-quadratic optimal control problem. In the notation introduced
above, the condensed form of this problem is simply

minimize U>T
(
H>T QHT +R

)
UT +2

(
H>T QhT

)>UT +h>T QhT

Using the least-squares lemma, this problem has the explicit solution

U?
T =−

(
H>T QHT +R

)−1
H>T QhT .

This solution is sometimes called the batch LQR solution. Note that it is only hT that depends
on x0, and that hT is a linear function of the initial state. Hence, the optimal control sequence
{u?0,u?1, . . . ,u?T−1} encoded in U?

T is also a linear function of the initial state. Moreover, since the
completion-of-squares lemma yields that the optimal cost is given by

h>T
(
Q−QHT (H

>
T QHT +R)−1H>T Q

)
hT

we can also conclude that the optimal cost is a quadratic function of the initial state.

Solving optimal control problems using algebraic modeling languages
The transformation of (3.4) into a convex QP on standard form is instructive, in the sense that it
reveals the size and structure of the matrices that describe the QP. However, one can argue that
performing such a transformation manually is tedious and error-prone. There are several domain-
specific languages for optimization, e.g. [13, 17] that perform this transformation automatically.
Next, we will use the modeling language cvxpy [13] to solve a real-world optimal control problem.
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Example: time-optimal movement of liquid containers
In many industrial packaging processes, one needs to move a package filled with liquid from one
position to another (for example, from the filling station to the sealing station). To maintain a
high production rate, it is essential to carry out this movement as quickly as possible. However,
the acceleration of a package induces a motion of the liquid known as slosh. If left uncontrolled,
this sloshing could result in liquid spill, causing product loss and contamination of machinery and
packages, as well as a possible inability to seal the package properly.

We will consider finite-time optimal control of the containers in the packaging machine illus-
trated in Figure 3.3. The models and parameters are taken from [14], which contains many more
details about modeling and control of liquid slosh. Our focus will be on moving the open containers
from the filling station to the sealing station in minimal time without creating any liquid spill.

Folding Filling Sealing

   Movement direction

Figure 3.3: Schematic illustration of packaging machine. Packages are folded, filled with liquid
and transported to a sealing machine. Our focus in this example is on the movement of the open
filled container from the filling station to the sealing station.

We will use the following simple linear ODE model that describes the liquid surface evaluation
at the rear container wall, and the horizontal position of the cart.

ẋ(t) =


−2ζ ω0 −ω0 0 0

ω0 0 0 0
0 0 0 0
0 0 1 0

x(t)+


aω0
2g
0
1
0

u(t)

(
s(t)
p(t)

)
=

(
0 1 0 0
0 0 0 1

)
x(t) :=

(
Cs

Cp

)
x(t)

The two outputs s(t) and p(t) represent the surface evaluation at the rear of the package, and the
container position on the conveyor belt, respectively.

We will consider a liquid container of height 0.2m, transported a distance of L = 0.2m. The
liquid and container parameters are set to ζ = 0, ω0 = 21 and a = 0.07; the parameter g = 9.81 is
the standard constant of gravity. We are interested in moving the liquid container quickly from rest
at p = 0 to rest at the target position p = L without causing any slosh. Specifically, we require that

|s(t)| ≤ smax ∀t
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where smax = 3.5cm. In addition, the control input is limited

|u(t)| ≤ umax ∀t.
The initial machine configuration has umax = g. We will use a sampling time of 5ms and zero-
order-hold control inputs. This means that we can construct a corresponding discrete-time model
using the formulas derived in Chapter 1. Although we are interested in minimizing the transfer
time, we will start with the simpler problem with a fixed horizon T and try to minimize the total
control energy. After zero-order hold sampling of the continuous-time dynamics, we can pose the
corresponding finite-time optimal control problem

minimize ∑
T−1
t=0 u2

t
subject to xt+1 = Axt +But , t = 0, . . . ,T −1

|Csxt | ≤ smax, t = 0, . . . ,T −1
|ut | ≤ umax, t = 0, . . . ,T −1
xT = xtgt

Thus, it fits our standard form with Q = 0, R = I and QT = 0, while

M =


Cs

−Cs

0
0

 , N =


0
0
1
−1

 , m =


smax
−smax
umax
−umax

 , MT =

(
I
−I

)
, mT =

(
xtgt
−xtgt

)

The problem is readily transformed into a QP on standard form. Alternatively, we can use a
modeling language such as cvx [13], that automatically converts the problem into a standard form
for QPs, solves the problem, and returns a solution; see the listing in Figure 3.2.

The nominal transfer time for the package from its initial position to its target is T = 0.5
seconds, which leads to a planning problem over 100 sampling instances. The resulting quadratic
problem is feasible and the optimal solution is shown in Figure 3.5. To speed up the movement,
we proceed to find the smallest horizon T for which we can solve the state transfer problem. We
do so by a simple bisection search. starting from Tmin = 0 and Tmax = 0.5/h. In each iteration, we
try to solve the finite-time optimal control problem for Tmid = b(Tmin +Tmax)/2c. If the associated
optimization problem is feasible, we let Tmax = Tmid, otherwise we set Tmin = Tmid. We then update
Tmid and repeat, until we notice that Tmid = Tmin. The bisection search reveals that the minimum
transfer time is T = 0.39s, a reduction of over 20% from the nominal solution. The cart position,
liquid elevation, and the associated control input are shown in Figure 3.6.

In the time optimal state transfer, both the control and the slosh constraints are active during
large periods of time. In fact, the optimal control has a intuitive interpretation: one first accelerates
the cart until the positive slosh constraint becomes active and then adjust the input to keep the slosh
at that level. This gives the maximum admissible acceleration of the cart. After an appropriate time,
one then prepares the stopping by driving the system to the state where the negative slosh constraint
is active and keeping it there (which results in the maximum admissible deceleration). Finally, all
states are driven to rest at target position; see Figure 3.8. In fact, this is exactly how time-optimal
control solution for the continuous-time system works. A formal proof of this claim requires
continuous-time optimal control theory, which is beyond the scope of this course. However, we can
recover the time-optimal control solution by using a smaller sampling interval, see Figure 3.7.

It is natural to ask if we could perform the transfer faster with a stronger motor (larger umax), or
if we could use a weaker (and perhaps cheaper) motor without significant performance degradation.
To this end, we solve the minimum-time optimal control problem for a range of values on umax.
These experiments show that no dramatic performance improvements are obtained for umax above
g, see Figure 3.9. The reason for this is that the slosh constraint limits the transfer time. The control
signal that is required to keep s(t) = smax and ṡ(t) = 0 is exactly u(t) = g.
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1 i m p o r t numpy as np ; i m p o r t m a t p l o t l i b . p y p l o t a s p l t
2 i m p o r t c o n t r o l a s c t r l ; i m p o r t cvxpy as cp
3

4 # De f i ne c o n t i n u o u s − t ime dynamics
5 z e t a =0; omega0 =21; a = 0 . 0 7 ; g = 9 . 8 1 ; L = 0 . 2 ;
6 Ac=np . a r r a y ( [ [ − 2 * z e t a *omega0 , −omega0 , 0 , 0 ] ,
7 [ omega0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] ] )
8 Bc=np . a r r a y ( [ [ a *omega0 / ( 2 * g ) , 0 , 1 , 0 ] ] ) . T ;
9 Cc=np . a r r a y ( [ [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 0 , 1 ] ] ) ; Dc=np . a r r a y ( [ [ 0 , 0 ] ] ) . T

10 s y s c = c t r l . s s ( Ac , Bc , Cc , Dc )
11

12 # Sample sys tem t o g e t d i s c r e t e − t ime dynamics
13 h=5e −3
14 sysd = c t r l . c2d ( sysc , h ) ;
15 (A, B , C ,D) = c t r l . s s d a t a ( sy sd )
16

17 # De f i ne problem p a r a m e t e r s and s e t −up o p t i m i z a t i o n problem
18 Tf = 0 . 5 ; T = i n t ( Tf / h ) ; t ime = np . l i n s p a c e ( 0 , T )
19 smax = 0 . 0 3 5 ; umax=g
20 x0=np . a r r a y ( [ [ 0 , 0 , 0 , 0 ] ] ) . T ; xT=np . a r r a y ( [ [ 0 , 0 , 0 , L ] ] ) . T
21 x=cp . V a r i a b l e ( ( 4 , T+1) ) ; u=cp . V a r i a b l e ( ( 1 , T ) )
22 c o s t = cp . sum_squares ( u ) ;
23 c o n s t r = [ x [ : , [ 0 ] ] = = x0 ]
24 f o r t i n r a n g e ( T ) :
25 c o n s t r += [ x [ : , t +1]==A@x[ : , t ] + B@u[ : , t ] ]
26 c o n s t r += [ −umax <= u [ : , t ] , u [ : , t ] <= umax ]
27 c o n s t r += [ − smax <= C [ 0 , : ]@x[ : , t ] , C [ 0 , : ]@x[ : , t ] <= smax ]
28 c o n s t r += [ x [ : , [ T] ]== xT ]
29 problem =cp . Problem ( cp . Minimize ( c o s t ) , c o n s t r )
30

31 # So lve problem and p l o t r e s u l t s
32 problem . s o l v e ( )
33 f i g , axs = p l t . s u b p l o t s ( 2 )
34 axs [ 0 ] . p l o t (C [ 1 , : ]@x. v a l u e )
35 axs [ 1 ] . p l o t ( u . v a l u e [ 0 , : ] )

Figure 3.4: cvxpy code for finite-time energy optimal state transfer with magnitude constraints the
slosh state and the control.
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Figure 3.5: Minimum energy control of the cart with a nominal transfer time of 0.5 seconds. Neither
control nor slosh constraints are active, indicating a potential for a more aggressive control.
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Figure 3.6: In the minimum time solution, both control and slosh constraints are active during large
periods of time.
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Figure 3.7: With a shorter sampling interval, the optimal input approaches the “bang-bang” nature
of time-optimal control of continuous-time systems.
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Rest Accelerate until
slosh constraint
is active

Move cart with
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Figure 3.8: Time-optimal movement strategy in pictures.
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Figure 3.9: Minimum transfer time as function of the optimal control input umax. No significant
reductions in the transfer time are possible when umax exceeds g.
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3.3 Optimal feedback policies via dynamic programming
Dynamic programming (DP) is a powerful approach for solving complex optimization problems
by breaking them down into a series of smaller, more manageable subproblems. The idea is to
solve each subproblem just once, store the solutions, and use them to build up solutions to bigger
problems. In dynamical systems, DP is often used to transform an optimal control problem over a
finite horizon into a sequence of subproblems over shorter horizons.

To understand dynamic programming, imagine that you are trying to find the shortest path from
point A to point B. If you already know the shortest path and take a step along it to a new point,
let’s call it C, the path you now need to take from C to B must also be the shortest possible. Why?
Because if there was a shorter path from C to B, you could have used that instead, and your original
path wouldn’t have been the shortest. This leads us to a key concept in dynamic programming
called the principle of optimality:

“Any optimal policy has the property that, whatever the current state and decision, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the current decision.”

In simple terms, if you are on the best path, every step that you take along that path must also be the
best choice. Applying this principle, dynamic programming solves problems by starting at the end
and working backwards. For example, in the shortest path problem, you would start at point B and
look at all the places you could reach B from in one step. For each of these places, you would figure
out the best way to get to B. Then, you would expand your search to include paths that are two
steps long, and so on. This way, you build up the solution in stages, using the solutions of smaller
subproblems to solve larger ones. Before we formalize the dynamic programming approach, we
will develop intuition through a few examples.

Example: computing the fastest route between two cities.
Figure 3.10 shows the travel times by car for popular routes between some of southern Sweden’s
largest cities. The nodes in the graph represent cities while arcs correspond to route choices. The
numbers on each arc specify the estimated travel time in minutes.

We are interested in finding the fastest route that takes us from M (Malmö) to S (Stockholm).
To this end, we will use our earlier observation. In each city, we have a choice where to move next,
but will then need to follow a fastest path from that city to S. The total travel time from the city
is the time to the next city plus the shortest travel time from there to S. To make an optimal route
choice, we must know the shortest possible travel time (the “cost to go") from each nearby city to S.

To determine the cost-to-go, we proceed iteratively and compute a sequence of vectors {vn},
whose entries represent the shortest travel time from each city to S that traverses at most n arcs. We
use +∞ to mark that S is not reachable in n or less arc traversals. Clearly, the only finite entry in v0
(no arc traversals) is the one corresponding to S itself. Moving on to v1, we see that we can reach
S from 3 cities (V, Ö and N) by traversing a single arc. We thus record the corresponding direct
distances in v1; see Table 3.1. Things become a little more interesting when we allow for up to two
arc traversals. For example, it is now possible to reach S from Ö in three different ways: the direct
route, the route via V, or the one via N. Letting τ[A,B] denote the travel time on the arc connecting
cities A and B, we can now compare these three options and use the best:

v2[Ö] = min
{

v1[Ö],τ[Ö,V ]+ v1[V ],τ[Ö,N]+ v1[N]
}
.

We note that the direct route is the fastest, hence v2[Ö] = v1[Ö]. With two arc traversals, it is also
possible to find a route from M to S via N. The corresponding shortest distance is

v2[M] = τ[M,N]+ v1[N] = 471
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Figure 3.10: Travel times (minutes) by car between some of Sweden’s largest cities.

Moving on to v3, we have more options for reaching S from M, since all of M’s neighbors can reach
S in two arc traversals or less. Specifically,

v3[M] = min{v2[M],τ[M,G]+ v2[G],τ[M,J]+ v2[J],τ[M,N]+ v2[N]}=
= τ[M,J]+ v2[J] = 400.

We have thus found a new shorter route from M to S. After completing all the entries of v3, we
move on to v4 only to notice that it is identical to v3. There is no need to try to repeat the process
and compute v5, since this would yield the same result. Thus, we are done and have found the
shortest travel times from all cities to S.

Table 3.1: The vectors vn contain the shortest travel times from all considered cities to S on routes
that traverse at most n arcs.

city v0 v1 v2 v3

S 0 0 0 0
V +∞ 78 78 78
Ö +∞ 133 133 133
N +∞ 115 115 115
G +∞ +∞ 339 339
J +∞ +∞ 221 221
M +∞ +∞ 471 400

Although v3 only contains the shortest distances, this is all we need to know to compute the
optimal action. In each stage, the optimal policy is to use the one that minimizes the cost to the next
city, plus the cost-to-go from that city in the next stage. For example, if we start in M, we note that

v3[M] = v2[J]+ τ[M,J],

Hence, the route from M to J will be on an optimal path. Then, since

v2[J] = v1[N]+ τ[J,N]

it will be optimal to continue from J to N. Finally, as

v1[N] = v0[S]+ τ[N,S]

the direct route from N to S terminates an optimal path. This optimal path is M→ J→ N→ S.
Let us continue by solving a problem of slightly different flavor.
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Example: using the minimum number of coins to settle a debt.
Given coins valued at 1, 2 and 5 SEK, how can we determine the minimal number of coins necessary
to pay a given amount? We can notice that the principle of optimality is at play: if you have found
the coins necessary to settle your debt in an optimal way and pay one of these coins, the remaining
coins must be an optimal way to settle the rest of what you owe. It therefore makes sense to form
vectors vn whose entries vn[i] are the minimal number of coins necessary to pay i SEK using at most
n coins, see Table 3.2. As before, we use +∞ to indicate that the corresponding amount cannot be
paid using the allowed number of coins.

Table 3.2: The cost-to-go vectors vn represent the minimal number of coins needed to settle each
debt amount using at most n coins.

amount v0 v1 v2 v3

0 0 0 0 0
1 +∞ 1 1 1
2 +∞ 1 1 1
3 +∞ +∞ 2 2
4 +∞ +∞ 2 2
5 +∞ 1 1 1
6 +∞ +∞ 2 2
7 +∞ +∞ 2 2
8 +∞ +∞ +∞ 3
9 +∞ +∞ +∞ 3

For notational simplicity, we begin with v0 (the amounts that we can settle without any coins).
Next, v1 has entries +1 at positions corresponding to the denomination of the coins. For v2, we note

v2[i] = min{v1[i],v1[i−1]+1,v1[i−2]+1,v1[i−5]+1}=
= min{v1[i],1+min{v1[i−1],v1[i−2],v1[i−5]}}

In words, this means that to settle i SEK with at most 2 coins, we should settle it with 1 coin (if
possible), or use the best of the three possibilities that the different coin denominations offer. The
computation of vn for n≥ 3 is analogous.

The dynamic programming algorithm
Although the dynamic programming algorithm applies to finite-horizon problems on our standard
form (3.1), it is convenient to rephrase the constraints as ut ∈U(xt) and consider

minimize ∑
T−1
t=0 gt(xt ,ut)+gT (xT )

subject to xt+1 = ft(xt ,ut) t = 0, . . . ,T −1
ut ∈Ut(xt) t = 0, . . . ,T −1

(3.6)

To get a correspondence with (3.1), we let Ut(xt) = {u | (xt ,u) ∈ Ct} and gT (x) = +∞ if x 6∈XT .
We are interested in finding an optimal policy µ? = {µ?

0 ,µ
?
1 , . . . ,µ

?
T−1} such that ut = µ?

t (xt)
defines the optimal action from state xt in stage t. Associated to the optimal policy is its cost

ν0(x0) =
T−1

∑
t=0

gt(xt ,µ
?
t (xt))+gT (xT )

where xt+1 = ft(xt ,µ
?
t (xt)). Note that ν0 is a function, mapping each initial state x0 into the cost

accumulated along the corresponding optimal trajectory.
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At an arbitrary stage t, the cost-to-go until the end of the horizon is

νt(xt) = min
µt ,...,µT−1

T−1

∑
k=t

gk(xk,µk(xk))+gT (xT )

where xt+1 = ft(xt ,µt(ut)). By the principle of optimality, the truncated policy {µ?
t+1, . . . ,µ

?
T−1} is

optimal from stage t +1 and on. We can therefore express the cost-to-go as

νt(xt) = min
µt

gt(xt ,µt(xt))+
T−1

∑
k=t+1

gk(xk,µ
?
k (xk))+gT (xT ) =

= min
µt

gt(xt ,µt(xt))+νt+1(xt+1) =

= min
µt

gt(xt ,µt(xt))+νt+1( ft(xt ,µt(xt))

Hence, given the cost-to-go function νt+1 at stage t +1, we can compute the cost-to-go function
at stage t by optimizing the sum of the cost of stage t and the cost-to-go from the resulting state.
Noticing that νT (xT ) = gT (xT ) leads to the following result.

Theorem 3.3.1 — The DP algorithm. For every initial state x0, the optimal cost of the basic
problem is equal to v0(x0), given by the last step of the following algorithm, which proceeds
backwards from stage T −1 to stage 0:

vT (x) = gT (x) (3.7)

vt(x) = min
u∈Ut(xt)

{gt(x,u)+ vt+1( ft(x,u))} t = T −1,T −2, . . . ,0 (3.8)

If u?t = µ?
t (x) minimizes the right-hand-side of (3.8) for each x and each t, then the policy

µ? = {µ?
0 , . . . ,µ

?
T−1} is optimal.

As the next two examples show, both the fastest route and the debt settlement problem can be
posed as finite-horizon optimal control problem on our standard form and hence solved using the
dynamic programming algorithm detailed above.

� Example 3.6 — fastest route problem. Here, the horizon T is the maximum number of arc
traversals. The stage index t corresponds to the number of arc traversals left in our budget, i.e. in
stage t we are allowed to traverse at most T − t additional arcs. The state xt is the current location
(city) in the graph and the control is the decision which arc (road) to traverse next. The set Ut(xt)
contains the arcs connected to node xt , and ft(xt ,ut) maps the current node to the node at the end of
the selected arc. Since we need to be in S after T arc traversals, we have XT = {S}. There is no
terminal cost, gT ≡ 0, but the stage cost gt(xt ,ut) is the travel time along the arc selected by ut . �

� Example 3.7 — minimum coin settlement problem. In this problem, the stage index cor-
responds to the maximal number of coins that we permit ourselves to use, and the stage index
corresponds to how many coins that we (at most) have handed over to the creditor. The state xt is
the debt which remains to be settled, the control chooses what coin denomination to use, and the
transition function adjusts the settled amount accordingly. Since the debt has to be cleared at stage
T , we let XT = {0} and set gT ≡ 0. The stage cost is 1 if we use a coin, and zero otherwise. �

Some remarks are in order. First, as we have already mentioned, νt(·) is a function, mapping
every possible state xt in stage t into the cost of the associated optimal trajectory from stage t
until stage T . If the state vector can only take a finite set of values {x(1), . . . ,x(I)}, as was the
case in the fastest route and coin settlement problems, then we can represent νt as a list of tuples
(x(i)t ,ν

(i)
t ) for i = 1, . . . , I. However, when the state vector is continuous, it can be challenging to
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find a closed-form representation of the cost-to-go functions. Second, it is not always easy to carry
out the minimization step required to propagate the cost-to-go functions in (3.8). If the control
action is discrete, then we can simply evaluate the cost of all possible control actions and take the
one that yields the smallest cost-to-go. This was effectively what we did in the fastest route and
coin settlement problems. But when u is continuous, this step can be challenging, both analytically
(in the rare cases that an analytical solution exists) and numerically. The next example demonstrates
a problem that can be solved analytically, despite that both the state and controls are continuous.

� Example 3.8 Consider the following sequential decision-making problem

minimize
u0,...,uT−1

∑
T−1
t=0 gt(xt ,ut)

subject to xt+1 = f (xt ,ut)
(3.9)

where gt = dt(u2
t /xt − put) and f (xt ,ut) = xt − ut The problem is motivated by fair pricing of a

T -year lease of an underground mine: the state xt is the amount of ore left in the mine at the
beginning of year t, and ut the amount of ore extracted during that year. Selling the ore gives a
profit of pxt but the extraction cost is u2

t /xt to model that extraction cost increases as the mine
is depleted. The discount factor is d = 1/(1+ r) where r is the current interest rate. In this way,
we maximize −∑t gt(xt ,ut) which represents the net present value of the lease, i.e. the amount of
money you would need to put in the bank at the beginning of the lease period to be able to replicate
the income stream that can be generated from the lease.

Since we do not have a terminal cost or constraints, νT (x)≡ 0. To proceed, we consider year
t = T −1, in which the optimal action minimizes gT−1(x,u). The first-order optimality conditions

∂gT−1(x,u)
∂u

= dT−1(2u/x− p) = 0

yield

u? = µ
?
T−1(x) =

p
2

x := LT−1x

with the associated cost-to-go

νT−1(x) = dT−1gT−1(x,µ?
T−1(x)) =−dT−1L2

T−1x :=−dT−1
αT−1x

Note that νT−1 is a linear function of x. Next, we consider year T −2, when we need to minimize

gT−2(x,u)+νT−1( f (x,u)) = gT−2(x,u)+νT−1(x−u) =

= dT−2
(

u2

x
− pu

)
−dT−1

αT−1(x−u) =

= dT−2
(

u2

x
+(dαT−1− p)u−dαT−1x

)
with respect to u. The first-order optimality conditions yield

u?T−2(x) =
1
2
(p−dαT−1)x := LT−2x

Inserting this control in the expression for the cost-to-go gives

νT−2(x) = dT−2 (−L2
T−2−dαT−1

)
x := dT−2

αT−2x
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The first few steps of the DP algorithm suggest that vt(x) = dtαtx. We can prove this hypothesis
formally using induction. The hypothesis holds true for t = T with αT = 0. Given that the
hypothesis holds for stage t +1, the cost-to-go at stage t is

vt(x) = min
u

gt(x,u)+ vt+1(x−u) = min
u

dt
(

u2

x
+(dαt+1− p)u−dαt+1x

)
Using the same calculations as in stage T −2, we find that u?t = Ltx and

vt(x) = dt
αtx

where αt = −(L2
t + dαt+1) and Lt = (p− dαt+1)/2. Hence, the hypothesis holds true. The fair

price of the lease (the optimal value of (3.9)) is therefore v0(x0) = α0x0 where αk can be computed
recursively by initializing αT = 0 and then evaluating

Lk =
1
2
(p−dαk+1)

αk =−
(
L2

k +dαk+1
)

for k = T −1,T −2, . . . ,0. �

The example demonstrates the standard approach to solve dynamic programming problems
with continuous states and controls. We first perform a few steps of the DP algorithm in order to
form a hypothesis for how the cost-to-go function can be parameterized. In the above example, the
cost-to-go was linear in the state. We then use induction to prove that the hypothesis holds for an
arbitrary stage. Typically, the induction step also results in explicit update formulas for how the
parameters of vt (αt in the example) can be computed from the ones of vt+1 and other problem data.

Solving dynamic programming problems numerically
A drawback with the dynamic programming approach described so far is that we need to find a
representation of the value function that can be propagated from one stage to the next. When states
and controls are continuous, this is sometimes difficult, and it may be more convenient to resort to
numerical computations. A simple numerical approach to solving dynamic programming problems
over a finite horizon is to define a grid on the state space and tabulate the value function at these
grid points. A conceptual algorithm is shown as Algorithm 2 below.

Algorithm 2 Numerical solution to finite-time DP

1: Define grid XG = {x(1),x(2), . . . ,x(G)} of test point to cover the state space
2: Initialize vT [i] = gT (x(i)) for all x(i) ∈XG.
3: for k = T −1,T −2, . . . ,1 do
4: for i = 1,2, . . . ,G do
5: vk[i] = min

u∈Uk(x(i))

{
gk(x(i),u)+ v̂k+1( fk(x(i),u))

}
Since the next state xk+1 = fk(xk,uk) is not guaranteed to coincide with any of the grid points,

we introduce v̂k+1(x), the approximation of vk+1 given its tabulated values vk+1[i]. The simplest
approximation is to use linear or multi-linear interpolation, but many options exist. One also needs
to pay attention to edge effects that occur when there is no feasible control that can keep the next
state inside the gridded part of the state space. We refer to [8] for details.

� Example 3.9 Consider the mechanical system from Example 3.3 and assume that we want to
minimize a quadratic cost over a time horizon of T = 10, defined by the stage costs

gt(x,u) = x>x+10u2 for t = 0,1, . . . ,9, g10(xt) = x>x.
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We solve the dynamic programming problem numerically on a uniform grid of ‖x‖∞ ≤ 5 with 51
gridpoints in each direction. We also add the constraint that the state must remain on the grid.

The optimal feedback and cost-to-go functions are shown in Figure 3.11 (top). The optimal
control appears to be linear and the cost-to-go looks quadratic, apart from an edge effect that
appears since we require that the state remains on ‖x‖∞ ≤ 5. In Chapter 4, we will prove that in the
absence of constraints, the optimal control policy for a linear system with quadratic cost is indeed
linear, and that its cost-to-go function is quadratic. This solution can be computed very efficiently
without the need to grid the state-space.

If we add the constraints that |ut | ≤ 1, we find the optimal control in Figure 3.11 (bottom left).
Clearly, the optimal policy is no longer linear. In addition, there is a significant subset of states
from which no admissible control can keep the future states within the grid. Although harder to
verify visually, the cost-to-go function is no longer quadratic (same figure, bottom right). �
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Figure 3.11: Optimal feedback policies (left column) and associated cost-to-go functions (right
column). The upper row is for a linear system with quadratic cost: the optimal feedback is linear and
the cost-to-go is quadratic. The lower row is for a linear system with state and control constraints:
the optimal policy is now non-linear and the cost-to-go no longer quadratic.

Dynamic programming as optimization of multi-stage functions
While the dynamic programming formalism developed so far is elegant, it is not uncommon to find
problems that are inconvenient to transform into the standard form. It may then be useful to have an
alternative understanding of dynamic programming as a means for minimizing multistage problems

GT (x1, . . . ,xT ;x0) = g0(x0,x1)+g1(x1,x2)+ · · ·+gT−1(xT−1,xT )+gT (xT ).

As before, the state xt couples the stage costs, since it appears in both gt−1 and gt . To develop some
intuition for how to find the optimal sequence of states, let us consider the cost

G2(x1,x2;x0) = g0(x0,x1)+g1(x1,x2)+g2(x2)

Due to the structure of the problem, we can re-write the optimal value

G?
2(x0) = min

x1,x2
G2(x1,x2;x0) =

= min
x1

{
g0(x0,x1)+min

x2
{g1(x1,x2)+g2(x2)}

}
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In the inner minimization problem,

minimize
x2

g1(x1,x2)+g2(x2)

we can view x1 as a fixed parameter and derive an optimizer x?2(x1) which depends on x1. If we
assume that this optimizer is unique for each x1, the optimal value of this problem

v1(x1) = g1(x1,x?2(x1))+g2(x?2(x1))

is a function of x1 and the outer minimization problem takes the form

minimize
x1

g0(x0,x1)+ v1(x1).

By solving the outer problem in a similar manner, we find G?
2(x0) = v0(x0).

Using an analogous argument, the optimal value of the T -stage problem G?
T (x0) equals v0(x0)

where the value functions vn(x) are computed recursively:

vT (x) = gT (x)

vt(x) = min
z
{gt(x,z)+ vt+1(z)} t = T −1,T −2, . . . ,0

If we instead are given a multistage problem on the form

GT (x0, . . . ,xT−1;xT ) = g0(x0)+g1(x0,x1)+ · · ·+gT (xT−1,xT )

it is more natural to proceed using a forward induction

w0(x) = g0(x)

wt+1(x) = min
z
{wt(z)+gt+1(z,x))} t = 0,1, . . . ,T −1

The function wk(x) has the interpretation of the smallest possible accumulated cost over the t first
stages and is referred to as the arrival cost of stage t; furthermore, G?

T (xT ) = wT (xT ) quantifies the
smallest total cost for which the decision of stage T can be made equal to xT .

A few words about the infinite-horizon case
In many control problems, there is no natural fixed terminal time but we are rather interested in
optimizing the performance over an infinite time-horizon. We will not cover such problems in
detail in this course, as they are more technical to solve and would deviate our focus. Nevertheless,
we will try to give high-level overview of some of the central ideas based on [5].

To this end, consider the infinite-horizon optimal control problem

minimize lim
T→∞

∑
T
t=0 g(xt ,ut)

subject to xt+1 = f (xt ,ut)
ut ∈U(xt), xt ∈X

Note that both the stage costs and the dynamics are time-invariant (neither g nor f depend on t). We
are interested in finding feedback policies on the form π = {µ0,µ1, . . .}, where each µt(x) ∈U(x)
for all x ∈X. We let Π denote the set of all such policies, and call π stationary if it has the
form {µ,µ, . . .}. By applying a policy π ∈ Π to the system, we generate state and control pairs
(xt ,µt(xt)) for t = 0,1, . . . whose cost

νπ(x0) = lim
T→∞

T

∑
t=0

g(xt ,µt(xt)).
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is a function of the initial state x0. We require that the state costs are positive, i.e., that

0≤ g(x,u) (3.10)

for all x ∈X and u ∈U(x). To account for the possibility that there could be states for which the
policy π is unable to obtain a finite cost, we allow νπ to be extended real-valued, i.e. take on values
in [0,∞], The value function

ν
?(x) = inf

π∈Π
νπ(x)

describes the minimal infinite-horizon cost, and a policy π? ∈Π is optimal if it attains the smallest
value of νπ(x) for all x, i.e.

νπ?(x) = inf
π∈Π

νπ(x) = ν
?(x) ∀x.

Given our discussion for the finite-horizon case, one can expect that the value function ν?(x)
under stationary policies satisfies the Bellman equation

v?(x) = inf
u∈U(x)

{g(x,u)+ v?( f (x,u))} (3.11)

and that the stationary optimal policy can be found by minimizing the right-hand side of this
equation. However, there is one subtlety, in the sense that if ṽ? satisfies the Bellman equation, then
so does ṽ?+ c for any positive constant c. It turns out that for our problem class, the optimal cost
function is the smallest one which satisfies (3.11):

Theorem 3.3.2 Assume that the stage costs g(x,u) satisfy (3.10). Then
(a) if ν? satisfies the Bellman equation (3.8) and ν̃ : X 7→ [0,∞] also satisfies (3.8), then

ν? ≤ ν̃ .
(b) For all stationary policies π , we have

νπ(x) = g(x,µ(x))+νπ( f (x,µ(x))) ∀x ∈X

(c) A stationary policy µ? is optimal if and only if

µ
?(x) ∈ argmin

u∈U(x)
{g(x,u)+ν

?( f (x,u))} ∀x ∈X

There are two principally different ways of finding the optimal stationary policy. The value
iteration starts with some non-negative function ν0 : X 7→ [0,∞] and generates a sequence {νk} via

νk+1(x) = inf
u∈U(x)

{g(x,u)+νk( f (x,u))} .

Policy iteration, on the other hand, starts with an admissible µ0 and interleaves policy evaluations

νµk(x) = g(x,µk(x))+νµk( f (x,µk(x)))

with policy improvements

µk+1(x) ∈ argmin
u∈U(x)

{
g(x,u)+νµk( f (x,u))

}
Both the policy and the value iterations are well-behaved and converge under some additional (and
for many real-world systems mild) conditions; we refer to [5] for details.
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3.4 Exercises
Problem 3.1 The double integrator(

ẋ(t)
v̇(t)

)
=

(
0 1
0 0

)(
x(t)
v(t)

)
+

(
0
1

)
u(t)

models the movement of a friction-less unit mass subject to an external force u(t). Under zero-order
hold sampling with a sampling time of 1 second, the corresponding discrete-time model is

xt+1 =

(
1 1
0 1

)
xt +

(
0.5
1

)
ut

(a) Find a control sequence {u0,u1, . . . ,u9} that drives the system from rest at the origin to rest
at x = 5 while minimizing the total energy ∑

9
t=0 u2

t . Plot the state trajectory and the control
input. Explain briefly what you observe.

(b) Add the constraint x5 = 0 (i.e. that the mass should be at the origin at time t = 5). Before
you compute the optimal control, try to figure out what you think it should be. Execute the
code and plot the state trajectory and the input. Describe your observations.

Problem 3.2 Consider the triple integrator under zero-order hold sampling

xt+1 =

1 1 0.5
0 1 1
0 0 1

xt +

0.167
0.5
1

ut , yt =
(
1 0 0

)
xt

It can be useful to interpret the states as the acceleration, velocity, and position of a unit mass.
(a) For what planning horizons T will you be able to find a control sequence {ut} that drives the

system from x0 = 0 to xT =
(
5 0 0

)T ?
(b) Add the input constraint |ut | ≤ 1. What is now the shortest time T for which you can find

a solution? Explain what you observe! Try to solve the problem without any numerical
computations, then validate your answer by

(c) Add the constraint that the velocity (the second state) can not exceed 1/2. What is now the
smallest planning horizon that you can have? Plot the state trajectories and the control input
and comment on what you observe.

(d) Remove the state constraint from (c) and add a rate constraint on the input: |ut+1−ut | ≤ 1/2.
What is the smallest value of T for which you can solve the planning problem? Plot the state
trajectories and input sequence. Explain what you observe.

Problem 3.3 Modern space missions rely on rockets to be able to land safely. The following
differential equations describe the linearized dynamics of a 60 meter rocket with separate horizontal
and vertical thursters.

ẍ(t) = u1(t)−u0
2θ(t)

ÿ(t) = u2(t)−g

θ̈(t) = αu1(t)

where α = 0.1, g= 9.81 and u0
2 is the average vertical control u2 during the descent (the linearization

is made around a trajectory for which (u1(t),u2(t),θ(t))≈ (0,u0
2,0)). The horizontal thrusters are

subject to magnitude limitations |u1(t)| ≤ 5.
We want to plan the descent from an initial position x(0) =−20, ẋ(0) = 0, y(0) = 200, ẏ(0) =

−40, θ(0) = 0 and θ̇ = 0. Use sampling time h = 0.1 seconds and plan over a horizon of 10
seconds. One can show that the average vertical thrust for this maneuver is u0

2 = 14.41. Find the
optimal control sequence that brings the rocket to rest at the origin while minimizing ∑t ‖ut‖1.
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Figure 3.12: Moving masses in Problem 3.4

Problem 3.4 Consider the system shown in Figure 3.4. The system consists of six unit masses
connected by springs to each other, and to walls on either side. There are three actuators, which
exert tensions between certain pairs of masses. Its dynamics can be described by

ẋ(t) =
(

0 I
A21 0

)
x(t)+

(
0

B2

)
u(t), y(t) =

(
I 0

)
x(t)

where

A21 =



−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2

 , and B2 =



1 0 0
−1 0 0
0 1 0
0 0 1
0 −1 0
0 0 −1


The first six states are the velocities of the masses, and the last states are their displacements
from their equilibrium positions. The actuators can exert a maximum force of ±0.5, and the
displacements of the masses cannot exceed ±4.

(a) Pose the problem of minimizing the energy required to transfer the masses from rest at x0 = 0
to rest at xT = 2 as an optimal control problem on the standard form.

(b) Use a sampling time of h = 0.5 seconds, and a horizon of T = 100 samples. What is the
minimum energy required for the state transfer?

(c) Plot how the total energy depends on the horizon length. What is the smallest time horizon
in which you can manage to transfer the masses?

Problem 3.5 In this example, we will consider dynamic programming for the system

xt+1 = xt +ut

where the state is discrete and constrained, xt ∈ {−2,−1,0,1,2}, while ut ∈ {−1,0,1}. We are
interested in finding the control which minimizes the cost

x2
3 +

2

∑
t=0

x2
t +u2

t .

(a) Use dynamic programming to compute the cost-to-go at time zero and derive the optimal
control sequence {u0,u1,u2} for x0 = 2.

(b) Let’s now fix the final state to x3 = 1. Compute the cost-to-go at time zero and determine the
optimal control sequence for x0 = 2.

(c) Write a short Python script that performs the dynamic programming recursion for (a) and (b).

Problem 3.6 Consider the same system as in the previous problem

xt+1 = xt +ut
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and the cost

x2
3 +

2

∑
t=0

x2
t +u2

t

but let the state and control variables be continuous and unconstrained. Compute the cost-to-go
function v0(x), and compare it with your result for the discrete and constrained problem.

Problem 3.7 Solve the following linear-quadratic problems using dynamic programming. Specify
the optimal strategy û0, . . . , û3, and the resulting objective.

(a)

minimize
u0,...,u3

x2
3 +

2

∑
k=0

u2
k

subject to xk+1 = xk +uk

x0 = 2

(b)

minimize
u0,...,u2

2

∑
k=0

u2
k

subject to xk+1 = 2xk−uk

x3 = 0

x0 = 21

(c)

minimize
u0,...,u2

2

∑
k=0

x2
k +u2

k + x2
3

subject to xk+1 = 2xk +uk

x0 = 5

Problem 3.8 Solve the following nonlinear problems using dynamic programming. Specify the
optimal strategy û0, . . . , û3, and the resulting objective.

(a)

maximize
u0,...,u2

2

∑
k=0

xk− x3

subject to xk+1 = xkuk

0≤ uk ≤ 1, k = 0, . . . ,2

x0 = 1

(b)

maximize
u0,...,u2

2

∑
k=0

logukxk + logx3

subjec to xk+1 = xk(1−uk)

0 < uk < 1, k = 0, . . . ,2

x0 = 4

(xk > 0, k = 0, . . . ,3)
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(c)

maximize
u0,...,u2

2

∑
k=0

u4
k + x4

3

subject to xk+1 = xk +uk

x0 = 4

Problem 3.9 A certain material is passed through two ovens in sequence. We are interested in how
to optimally heat the material while it passes through the ovens. Let x0 be the initial temperature of
the material, xk for k = 1,2 be the temperature when the material exits oven k, and uk−1 for k = 1,2
be the temperature in oven k. The temperature dynamics is modeled as

xk+1 = (1−a)xk +auk, k = 1,2,

where a is a known scalar in the interval (0,1). The objective is to get the final temperature x2 close
to a given target Tref while expending little energy. This objective is expressed by the cost

J(x2,u0,u1) = r(x2−Tref)
2 +u2

0 +u2
1

where r is a given scalar. For simplicity, we assume that u is unconstrained.
(a) Formulate the problem as a finite-time optimal control problem on standard form.
(b) Solve the problem using dynamic programming for a = 1/2, Tref = 0 and r = 1.
(c) Solve the problem for arbitrary feasible values of a, Tref and r.

Problem 3.10 You currently own xc > T units of company shares, of some company C. You have
reason to believe that company C will go bankrupt in N years, at which your shares would be worth
nothing. However, up to that time, you receive dividends equal to θ× your current share holdings,
where 0 < θ < 1. In addition, every year you are allowed to buy or sell at most one unit of shares
without any extra cost. Your intuition tells you that it should be possible to make a profit if you act
in a clever way during these T years (assuming your bankruptcy assumption is true). Therefore,
you formulate the following discrete optimal control problem:

maximize
uk

T−1

∑
k=0

(θxk)−2xT

subject to xk+1 = xk +uk

|uk| ≤ 1, k = 0, . . . ,T −1

x0 = xc

The intuition of the objective is that you each year receive dividends θxk that you do not reinvest.
At the end of the period, you lose whatever amount xT you have left as well as gain/lose xc− xT

depending on how many shares you sold/bought. Note, that xc is constant and can be removed
from the maximization. Furthermore, xc > T so it is not possible to sell off all shares and you can
assume xk > 0 throughout the period. (It is assumed that shares have unit costs, and that you have
infinite capital.)

(a) For the specific case xc = 3, N = 2, and θ = 0.4, solve the above problem using dynamic
programming. Specify the optimal strategy û0, û1, and the resulting profit.

(b) Formulate a value function Vk+1(xk+1) and show by induction that it is indeed a valid value
function for the dynamic programming recursion:

Vk(xk) = max
|uk|≤1

(θxk +Vk+1(xk+1))

Hint: Think carefully about what structure the value function had in (a).
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(c) Use VN−1(xN−1) as a starting point of the recursion obtained in (b), and determine an optimal
control law ûk as a function of θ and N.

(d) Explain qualitatively how the optimal strategy depends on θ and N.

Problem 3.11

Consider a consumer who lives over T periods and must decide how much of a resource she will
consume or save in each period. Let ct be the consumption in period t and ln(ct) be the associated
utility for the consumer. Let xt denote the resource level in period t and x0 the initial resource level.
The resource levels evolve according to xt+1 = xt − ct and are constrained to be non-negative. The
optimal consumption solves the following problem

maximize ∑
T−1
t=0 ln(ct)

subject to xt+1 = xt − ct t = 0,1, . . . ,T −1
xt ≥ 0 t = 0,1, . . . ,T

We are interested in using dynamic programming to find the optimal consumption sequence {ct}.
Proceed in the following steps.

(a) Put the optimal consumption problem on our standard form for DPs

minimize ∑
T−1
t=0 gt(xt ,ut)+gT (xT )

subject to xt+1 = ft(xt ,ut) t = 0,1, . . . ,T −1
xt ∈ Xt t = 0,1, . . . ,T
ut ∈Ut t = 0,1, . . . ,T −1

Hint. {ct} maximizes ∑t ln(ct) if and only if it minimizes ∑t− ln(ct).
(b) Let T = 1, and show that it is optimal to consume all remaining resources, i.e. c?T−1 = xT−1.
(c) Use dynamic programming to determine the optimal policy for the full T -step horizon.

Hint. Solve the problem for T = 1,2 and 3, to see if you detect a pattern that you can use in a
formal induction proof.

Problem 3.12 A public company has profit xk at year k. This profit is distributed partly to the
shareholders as dividends and partly as reinvestment in the company itself. Reinvesting increases
the company profit by θ× the invested capital. To boost its reputation, the company decides
to maximize the amount distributed to the shareholders over an N year period. Therefore, the
following discrete optimal control problem is formulated:

maximize
uk

N−1

∑
k=0

(1−uk)xk

subject to xk+1 = xk +θukxk

0≤ uk ≤ 1, k = 0, . . . ,N−1

x0 = xc

The intuition of the objective is that each year the profit xk is divided into ukxk which is reinvested
and (1−uk)xk which is given to the shareholders. xc > 0 is the current profit that can be distributed
during the first year.

(a) For the specific case xc = 3, N = 2, and θ = 1.5, solve the above problem using dynamic
programming. Specify the optimal strategy û0, û1, and the total distributed profit.

(b) Formulate a value function Vk+1(xk+1) and show by induction that it is indeed a valid value
function for the dynamic programming recursion:

Vk(xk) = max
0≤uk≤1

((1−uk)xk +Vk+1(xk+1))
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Next, determine an optimal control law ûk as a function of θ and N.
Hint: Think carefully about what structure the value function had in (a).

(c) Qualitatively describe the optimal strategy.

Problem 3.13 A company has N types of goods that are to be exported through cargo freight. A
single unit of the ith good weighs wi tonnes, and each cargo has a capacity of W tonnes. The value
of exporting a single unit of the ith good is given by vi. The aim is to load the vessels with the
distribution of goods that gives the most value possible. Hence, if ai is the number of units of the
ith good, the goal is captured by the following optimization problem:

maximize
a1,...,aN

N

∑
i=1

viai

subject to
N

∑
i=1

wiai ≤W

ai ∈ Z+, i = 1, . . . ,N

Implement a MATLAB function cargo_load(v,w,W) that solves the cargo loading problem given
values, weights and cargo capacity. Use the function to solve the following cargo loading problems.
Hint: Consider the following recursion:

Vi(xi) = max
a j=0,1,...,bW

ai
c
(via j +Vi+1(xi−wia j))

(a)

maximize
a1,...,a3

31a1 +47a2 +14a3

subject to 2a1 +3a2 +a3 ≤ 4

a1, . . . ,a3 ∈ Z+

(b)

maximize
a1,...,a4

5a1 +2a2 +7a3 +a4

subject to 4a1 +6a2 +2a3 +a4 ≤ 10

a1, . . . ,a4 ∈ Z+

(c)

maximize
a1,...,a5

2a1 +4a2 +6a3 +3a4 +20a5

subject to 4a1 +2a2 +3a3 +2a4 +8a5 ≤ 15

a1, . . . ,a5 ∈ Z+

Problem 3.14 Consider the problem of fitting a function f̂ to a set of N observations (xi,yi).
(a) Use the least-squares lemma to find the parameters (a,b) of the affine model

f̂ (x) = ax+b =
(
a b

)(x
1

)
that minimize the least-squares cost

e =
N

∑
i=1

(
yi− f̂ (xi)

)2
(3.12)

Write a program that takes (xi,yi) as input and returns the minimal value of the least-squares
cost (3.12). Evaluate your code on {xi}= {−10,−0, . . . ,9,10} and yi = arctan(xi).



3.4 Exercises 95

(b) A better fit can be obtained by dividing the range of xi into S segments and constructing
individual affine estimates f̂s in each segment s. The resulting piecewise affine (but not
necessarily continuous) function will often allow a much more exact fit to the data. Assume
that the data is ordered so that x1 ≤ x2 ≤ ·· · ≤ xN . Use dynamic programming to construct
an algorithm for finding the segmentation that minimizes the cost

S

∑
s=1

es +λS

where es is the optimal least-squares cost for the data points belonging to segment s and λ > 0
is a parameter that allows you to shift the focus of the optimal solution between optimizing
the total least-squares cost and finding a model with few segments. Evaluate your code for
different values of λ on the same data as in (a).

Hint. If you cannot argue for the optimal solution direct using the dynamic programming principle,
you can attempt to put the problem on our standard form. It is useful to identify stages with with
segments, the state xt as the number of data points covered by the t first segments, and ut the number
of points to include in the next segment.

Problem 3.15 In this problem, we will consider an idealized model of an inverted pendulum

θ̈(t) = sin(θ(t))−u(t)cos(θ(t)), |u(t)| ≤ umax

We are interested in finding the minimum energy control that takes the pendulum from rest at θ = π

to rest at the unstable equilibrium point θ = 0, and to explore how the optimal control depends on
the maximal control magnitude umax.

(a) Argue from first principles about what you can expect the optimal control to be. Note that
the total energy of the system is

E =
1
2
(
θ̇(t)

)2
+ cosθ(t)−1

(b) Put the continuous-dynamics on state-space form with the state vector x(t) = (θ(t), θ̇(t)),
and use the Euler-forward discretization

dx(t)
dt
≈ x(t +h)− x(t)

h

to find a discrete-time approximation xt+1 = f (xt ,ut) of the continuous-time dynamics.
(c) Use numerical dynamic programming to solve the optimal control problem

minimize ∑
T−1
t=0 u2

t +KxT xT

subject to xt+1 = f (xt ,ut)
|ut | ≤ umax

from x0 = (π, 0). Here the terminal cost models our desire that xT = 0, and is more robust to
numerical errors than using a hard terminal constraint. You can use the parameters h = 0.1,
K = 100, umax = 1 and T = 25.

(d) Explore how the optimal solution computed in (c) depends on the discretization interval, the
penalty parameter K and the horizon T . Repeat your experiments with umax = 2.





4. Linear-quadratic control

In this chapter, we will derive optimal control laws for linear systems with quadratic cost functions.
A remarkable property of this linear-quadratic control problem is that the optimal controller is a
linear state feedback. For a given state-space model of the system dynamics, the state feedback
gains are completely determined by the cost function, whose parameters now become the “tuning
knobs” in the controller design. In contrast to simpler techniques, such as eigenvalue assignment,
the approach works equally well for scalar systems as for systems with multiple inputs and outputs.

The linear-quadratic regulator is an important control design methodology for linear systems,
but it is also central to the model-predictive control strategies that we will develop later. In fact,
when those strategies operate near the equilibrium, they will act as linear-quadratic regulators. It
is therefore essential to understand how to tune a linear-quadratic regulator to obtain a desired
system response. We provide a relatively complete treatment of important engineering aspects for
linear-quadratic control, such as how to incorporate reference tracking, disturbance compensation,
and integral action; how to address the dual problem of optimal state estimation; and how to
combine the estimator with feedback from estimated states into an output feedback control strategy.

Finally, it is important to pay attention to the theory of linear-quadratic control. Not only is it
an elegant and insightful theory, but our treatment of model-predictive control will be based on
concepts that are more easily understood in the unconstrained case.

4.1 Finite-horizon linear-quadratic optimal control
The finite-horizon linear quadratic control problem considers a linear system

xt+1 = Axt +But (4.1)

and aims at finding the control sequence {u0,u1, . . . ,uT−1} that minimizes the quadratic cost

T−1

∑
t=0

(x>t Qxt +u>t Rut)+ x>T QT xT

for given weight matrices Q� 0, R� 0 and QT � 0. The stage cost captures the trade-off between
making the state vector converge quickly to zero and using control inputs with small energy. In
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particular, choosing a Q that is large relative to R makes state deviations more costly, and leads
to an optimal controller that steers the states quickly to zero. Conversely, increasing the size of R
shifts the focus of the stage cost to the control signal, leading to a lower energy input and state
trajectories that tend to be closer to the open loop system’s natural response. The terminal cost
matrix QT plays a more subtle role, but larger values of QT will reinforce a desire to drive the
terminal state to rest at the origin. We will discuss the controller tuning in more detail once we have
derived the optimal controller for both finite and infinite-horizon problems.

For a fixed and finite value of T , the optimal control law can be computed using the dynamic
programming approach described in Chapter 3, leading to the following result.

Theorem 4.1.1 The finite-horizon linear-quadratic optimal control problem

minimize ∑
T−1
t=0 x>t Qxt +u>t Rut + x>T QT xT

subject to xt+1 = Axt +But , t = 0,1, . . . ,T −1

with Q� 0, R� 0 and QT � 0 has the optimal solution ut =−Ltxt where

Lt = (B>Pt+1B+R)−1B>Pt+1A (4.2)

and Pt satisfies the Riccati recursion

Pt = Q+A>Pt+1A−A>Pt+1B(B>Pt+1B+R)−1B>Pt+1A (4.3)

with boundary condition PT = QT . The minimal value of the loss function is x>0 P0x0.

Proof. We will derive the optimal control law using dynamic programming. To this end, we use
induction to show that the cost-to-go function is quadratic

vt(xt) = x>t Ptxt .

First, we note that the induction hypothesis is satisfied for t = T with PT = QT . Next, assuming
that the induction hypothesis holds for stage t +1, the dynamic programming recursion (3.8) gives

vt(xt) = min
ut

{
x>t Qxt +u>t Rut + vt+1(Axt +But)

}
=

= min
ut

{
x>t Qxt +u>t Rut +(Axt +But)

>Pt+1(Axt +But)
}
=

= min
ut

{
u>t (B

>Pt+1B+R)ut +2u>t B>Pt+1Axt + x>t (A
>Pt+1A+Q)xt

}
Since B>Pt+1B+R is positive definite, vt is a convex quadratic function in ut and Lemma 3.1 yields

u?t (xt) =−(B>Pt+1B+R)−1B>Pt+1Axt :=−Ltxt

The associated cost-to-go is

vt(xt) = x>t
(

Q+A>Pt+1A−A>Pt+1B(B>Pt+1B+R)−1B>Pt+1A
)

xt := x>t Ptxt

Since both stage costs and terminal costs are non-negative, the cost-to-go must also be non-negative
and Pt must be a positive semidefinite matrix. Hence, by induction, the cost-to-go remains quadratic
and positive semidefinite for t = T,T −1, . . . ,1,0. Since the expressions for Lt and Pt derived above
agree with (4.2) and (4.3) for all t, the proof is complete. �

The next example demonstrates the use of Theorem 4.1.1.
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Figure 4.1: Elements of the iterates of the Riccati recursion (top) and the associated optimal
feedback gains (bottom).

� Example 4.1 Consider linear-quadratic optimal control of the vertical quadrotor dynamics with
a horizon of T = 10 samples and cost

x>T xT +
T−1

∑
t=0

x>t xt +u>t ut

The problem is on our standard form with Q = I, R = 1 and QT = I. By Theorem 4.1.1, the optimal
control is a time-varying state feedback, whose gains can be computed from the iterates Pt in the
Riccati recursion (4.3) with boundary value PT = QT . Figure 4.1 (top) shows the elements of the
matrices Pt . These matrices are symmetric, so there are only three curves (two for the diagonal
elements and one for the two identical off-diagonal elements). Recall that the Riccati recursion
proceeds backward from PT = QT = I at stage T . The elements of Pt change significantly during
the iterations T,T −1, . . . close to the end of the horizon, but converge quickly towards stationary
values. The bottom plot visualizes how the associated optimal feedback gains stay constant until
close to the end of the horizon, when the terminal cost becomes increasingly important. �

Figure 4.1 indicates that the Riccati recursion (4.3) has two distinct regimes. When t� T , the
matrices {Pt} are almost constant. In this regime, there is enough time for the optimal control to
drive xT close to zero and the impact of the terminal cost is negligible. When t is close to T , on the
other hand, the matrices {Pt} change significantly. Here, there is no longer enough time for the
long-term optimal control to drive the terminal state close to zero, and the control actions have to
be adapted to steer xT to a state where the terminal cost is small.

Loss functions with cross-terms between control and state penalties*
It is sometimes useful to allow for cross-terms between the control and the state, i.e. to consider
linear-quadratic control problems with stage costs on the form

gt(x,u) =
(

x
u

)>( Q N
N> R

)(
x
u

)
= x>Qx+2x>Nu+u>Ru
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By the completion-of-squares lemma, if R� 0, the stage cost is guaranteed to be positive if

min
u

gt(x,u) = x>Qx− x>NR−1N>x = x>(Q−NR−1N>)x≥ 0

Moreover, we can then re-write the stage costs as

gt(x,u) = (u+R−1N>x)>R(u+R−1N>x)+ x>(Q−NR−1N>)x := ũ>Rũ+ x>Q̃x

where ũ = u+R−1N>x and Q̃ = Q−NR−1N> � 0.
These manipulations show that if Q� 0, R� 0 and Q−NR−1N> � 0, we can solve the LQR

problem with cross-terms for our original system by solving a standard LQR problem with cost

J̃ =
T−1

∑
t=0

x>t Q̃xt + ũ>t Rũt + x>T Q̃T xT (4.4)

for a related system with state vector xt and input ũt . The state-space equations for this system are

xt+1 = Axt +But = Axt +B(ut − ũt)+Bũt = (A−R−1N>)xt +Bũt := Ãxt +Bũt (4.5)

The optimal control under modified dynamics (4.5) and modified cost (4.4) is on the form

ũ?t =−L̃txt .

By the relationship between ũt and ut , the optimal control for the original input is therefore

u?t =−(L̃t +R−1N>)xt .

4.2 Infinite-horizon linear-quadratic control: optimality and stability

It is natural to ask if the solution presented in Theorem 4.1.1 remains valid when we are interested
in the behavior of the closed-loop system over an infinite horizon. To this end, we consider the
infinite-horizon linear-quadratic regulator (LQR) problem

minimize
∞

∑
t=0

x>t Qxt +u>t Rut

subject to xt+1 = Axt +But

(4.6)

with Q � 0 and R � 0. Since this problem has an infinite number of stages, there is no terminal
time, and therefore no terminal cost. The word regulator is used to emphasize that the problem
focuses on driving the system to rest at the origin. Since the stage costs are positive, we can use the
infinite-horizon dynamic programming results in Theorem 3.3.2 to derive the optimal solution. The
proofs are simplified using the following result, proven in Appendix D.3.

Lemma 4.1 The value function

v(x) = min
u0,u1,...

{
∞

∑
t=0

x>t Qxt +u>t Rut | xt+1 = Axt +But , x0 = x

}

of the infinite-horizon linear-quadratic regulation problem (4.6) is quadratic, i.e. v(x) = x>Px for
some positive semidefinite matrix P.
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Combining this lemma with Theorem 3.3.2, we conclude that the value function must satisfy
the following Bellman equation

x>Px = min
u

{
x>Qx+u>Ru+(Ax+Bu)>P(Ax+Bu)

}
= (4.7)

= min
u

{
x>(Q+A>PA)x+2x>A>PBu+u>(R+B>PB)u

}
=

= x>
(

Q+A>PA−A>PB(R+B>PB)−1B>PA
)

x

where the last step follows from the completion-of-squares lemma (Lemma 3.1). Since this
relationship holds for all x, P must satisfy the discrete-time algebraic Riccati equation (DARE)

P = Q+A>PA−A>PB(R+B>PB)−1B>PA

We also note that the minimizing u in the Bellman equation is u =−Lx where

L = (R+B>PB)−1B>PA.

This controller is known as the linear-quadratic regulator. We have summarize the developments
in the following proposition.

Proposition 4.2.1 Consider the infinite-horizon linear quadratic regulator problem

minimize ∑
∞
t=0 x>t Qxt +u>t Rut

subject to xt+1 = Axt +But
(4.8)

with Q� 0 and R� 0. If the discrete-time algebraic Riccati equation (DARE)

P = Q+A>PA−A>PB(R+B>PB)−1B>PA. (4.9)

admits a positive semi-definite solution P, then the optimal control is ut =−Lxt where

L = (R+B>PB)−1B>PA (4.10)

The minimal infinite-horizon cost from the initial state x0 is x>0 Px0.

Note that the discrete-time algebraic Riccati equation (4.9) characterizes the fixed-points
Pt = Pt+1 = P of the Riccati recursion (4.3). The DARE is a quadratic matrix equation in P,
typically solved numerically using specialized solvers. We illustrate these points with two examples.

� Example 4.2 Let us compute the linear-quadratic regulator for the quadcopter under the cost

∞

∑
t=0

x>t xt +u>t ut .

To do so, we need to find a positive semi-definite solution to the DARE defined by the matrices

A =

(
1 1
0 1

)
, B =

(
0.5
1

)
, Q = I, R = 1

It is easy to verify numerically that

P =

(
2 1
1 1.5

)
is such a solution. By comparing the elements of P with the elements of Pt for t = 0 in Figure 4.1,
we note that this is indeed the stationary solution to the Riccati recursion in Example 4.1. �
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Like the Lyapunov equation in Chapter 2, it is sometimes possible to solve the algebraic Riccati
equation analytically. However, since the equation is quadratic in P, it is much more difficult and
rarely results in simple expressions. The next example illustrates the process on a scalar problem.

� Example 4.3 Let us compute the linear-quadratic regulator for the scalar system

xt+1 =

√
3
2

xt +ut

under the cost
∞

∑
t=0

x2
t +u2

t .

We then need to solve the DARE defined by A =
√

3/2, B = 1, Q = 1 and R = 1, i.e

P = 1+A2P−A2 P2

1+P
.

It is convenient to re-write this equation as

P2−A2P−1 = 0

Since P must be positive, the desired Riccati solution is

P =
1
2

A2 +
1
2

√
A4 +4 =

3
4
+

5
4
= 2

and the optimal feedback gain is

L = a · P
1+P

=

√
3
2
· 2

3
=

√
2
3

Finally, we can verify that the closed-loop system

xt+1 = Axt +ut = (A−L)xt =

√
6

6
xt

is asymptotically stable. �

Even if the optimal controllers computed in the examples above result in asymptotically stable
closed-loop systems, this is not guaranteed by Proposition 4.2.3. Such a guarantee requires a few
additional assumptions. To develop an intuition for the subtleties at play, let us first consider

xt+1 = 2xt +0 ·ut .

Clearly, the control is unable to affect the state and stop it from growing exponentially. Hence, with
a stage cost on the form g(x,u) = Qx2 +Ru2, the infinite-horizon LQ cost will be unbounded, no
matter how we choose the weight Q > 0. The corresponding DARE becomes P = Q+4P, which
does not admit any positive solution. In the same way, the optimal LQ-cost for the system

xt+1 =

(
1/2 1
0 2

)
xt +

(
1
0

)
ut (4.11)

will also be unbounded, provided that the second state appears in the stage cost. Since the second
state is unreachable, the control cannot stop its exponential growth.
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If (A,B) is a reachable pair, on the other hand, then we know that there exists a control sequence
{u0,u1, . . . ,un−1} that drives any initial state to the origin in n steps. Once the state has reached
the origin, we can apply ut ≡ 0 for t ≥ n to ensure that the state vector remains at the origin. This
control sequence, which was selected without considering any optimality criterion, has a finite
LQ-cost. Therefore, the optimal cost must also be finite. A similar argument holds for stabilizable
systems: we can then drive the reachable states to zero in finite time, and then let the unreachable
states converge asymptotically, at their natural pace. Also this cost will be finite.

A bounded infinite-horizon cost does not by itself guarantee asymptotic stability of the closed
loop. For example, the system (4.11) under the control policy ut ≡ 0 has cost

∞

∑
t=0

x>t

(
1 0
0 0

)
xt +u>t Rut = x>0

(
4/3 0
0 0

)
x0,

which is finite for every finite x0. We know that the system is unstable, since the second system
state grows exponentially, but the stage cost does not account for this state. To make sure that a
bounded cost also implies asymptotic stability of the closed loop, unstable states must either appear
directly in the cost, or be observable in the cost through their influence on other states.

To perform a formal stability analysis of the closed-loop system under LQ-optimal control, we
insert the optimal u =−Lx in the Bellman equation (4.7). Since this u is optimal, it holds that

x>Px = x>
(

Q+L>RL+(A−BL)>P(A−BL)
)

x ∀x ∈ Rn.

This, in turn, implies the following matrix identity must be satisfied

P = Q+L>RL+(A−BL)>P(A−BL)

We can re-write this equation as a Lyapunov equation in the closed-loop system matrix A−BL:

(A−BL)>P(A−BL)−P+Q+L>RL = 0. (4.12)

Since the quantity Q+L>RL can only be guaranteed to be positive semi-definite, we need to apply
the less restrictive Theorem 2.2.6 to assess closed-loop stability. To apply this result, we must
ensure that (A−BL,(Q+L>RL)1/2) is detectable. The next result shows that this detectability
condition always holds when R is positive definite and (A,Q1/2) detectable.

Proposition 4.2.2 Let R ∈ Rm×m be positive definite and (A,Q1/2) detectable. Then (A−BL,(Q+
L>RL)1/2) is also detectable for any L ∈ Rm×n.

Proof. Assume that (A−BL,(Q+L>RL)1/2) is not detectable. Then, by Theorem 1.3.4, there exist
v 6= 0 and λ with |λ |> 1 such that

(A−BL)v = λv (Q+L>RL)1/2v = 0

The second equality implies that

v∗(Q+L>RL)v = ‖Q1/2v‖2
2 +‖R1/2Lv‖2

2 = 0,

i.e. that Q1/2v = 0 and R1/2Lv = 0. Since R is positive definite, this also means that Lv = 0. Thus,

(A−BL)v = Av = λv, Q1/2v = 0.

Since (A,Q1/2) is detectable, any solution to these equations must have |λ | < 1, which is a
contradiction. Hence, (A−BL,(Q+L>RL)1/2 must be detectable. �

We can now summarize our results to a more complete theorem for infinite-horizon LQR.



104 Chapter 4. Linear-quadratic control

Theorem 4.2.3 Consider the infinite-horizon linear-quadratic regulator problem

minimize ∑
∞
t=0 x>t Qxt +u>t Rut

subject to xt+1 = Axt +But

with Q� 0 and R� 0. If (A,B) is stabilizable, then the optimal cost is bounded. If, in addition,
(A,Q1/2) is detectable, then the DARE

P = Q+A>PA−A>PB(R+B>PB)−1B>PA

admits a unique positive semidefinite solution, and the optimal control policy ut =−Lxt with

L = (R+B>PB)−1B>PA

renders the closed-loop system asymptotically stable.

� Example 4.4 Let us return to the vertical drone dynamics studied in earlier examples. We have
already established that this system is controllable (and thus stabilizable). However, Theorem 4.2.3
also requires that (A,Q1/2) should be detectable. Let us first only penalize the control action and
the position of the drone, i.e., use

Q =
(
1 0

)> (1 0
)
=

(
1 0
0 0

)
and R = 1

It is easy to verify that Q1/2 = Q and that (A,Q1/2) is observable. Solving the algebraic Riccati
equation yields the optimal state feedback gains L =

(
1/2 1

)
. The closed-loop system matrix has

eigenvalues with magnitude 1/2, and is therefore Schur stable.
If we instead of the position penalize the velocity, i.e. let

Q =
(
0 1

)> (0 1
)
=

(
0 0
0 1

)
and R = 1

we also have Q1/2 = Q, but (A,Q1/2) is not detectable (cf. Example 1.5). Standard DARE solvers
are typically unable to solve the corresponding Riccati equation and return an error message.
Nevertheless, it is easy to verify that

P =

(
0 0
0 (1+

√
5)/2

)
is a solution to the algebraic Riccati equation. The corresponding optimal control law, however,
only drives the velocity (the second state) to zero, so the closed loop is not asymptotically stable. �

A few words about the connection between Lyapunov and Riccati equations
Our analysis of the linear-quadratic regulator has used both Lyapunov and Riccati equations. Since
these are new to most readers, it is useful to reflect on their differences and similarities.

The Lyapunov equation is a linear matrix equation that characterizes the admissible quadratic
Lyapunov functions for a given linear system. It can also be used to bound the value of a quadratic
cost function along the trajectories of a linear system. The Riccati equation, on the other hand, is a
quadratic matrix equation that characterizes the value function associated with the infinite-horizon
linear-quadratic control problem. The value function is also a quadratic function of the system state.

Theorem 4.2.3 relies on the observation that the value function for the infinite-horizon LQR
problem also works as a Lyapunov function for the corresponding closed-loop system. This insight
emerges by re-writing the Riccati equation as a Lyapunov equation for the closed-loop system
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under the LQ-optimal control law. Since the Riccati solution is positive semi-definite and (A,Q1/2)
is detectable, we can use Theorem 2.2.6 to conclude asymptotic stability.

Conversely, if we pick another feedback gain, say L′, with A−BL′ Schur stable, Theorem 2.2.6
guarantees that the Lyapunov equation (4.12) admits a positive semidefinite solution P′. Moreover,

∞

∑
t=0

x>t Qxt +u>t Rut =
∞

∑
t=0

x>t
(

Q+(L′)>RL′
)

xt ≤ x>0 P′x0.

But since L′ is not optimal, x>0 P′x0 ≥ x>0 Px0 for all x0. In other words, the Riccati solution
characterizes the value function, i.e. the smallest infinite-horizon cost attainable by any controller.

4.3 Tuning of the LQ-optimal control law
The LQ cost function attempts to strike a balance between the transient response and control effort.
This trade-off is most obvious when we our system has a scalar control signal and a scalar output
yt =Cxt , and we consider the cost defined by Q =C>C and R = ρI, i.e.

∞

∑
t=0

x>t Qxt +u>Rut =
∞

∑
t=0

x>t C>Cxt +ρu>t ut =
∞

∑
t=0

y2
t +ρu2

t (4.13)

A large value of ρ implies that it is costly to use the control signal, and we could expect the optimal
controller to be gentle and the closed-loop dynamics to be similar to that of the uncontrolled plant.
If we let ρ tend to zero, on the other hand, the cost function will only focus on deviations in the
output and we could expect the optimal controller to be more aggressive and drive yt to zero very
quickly. The next example demonstrates this trade-off.

� Example 4.5 Let us study the vertical quadrotor dynamics from earlier examples and consider
its position (the first state) as output signal. Figure 4.2 shows the optimal output and control signals
from the same initial value but for three different values of ρ . As expected, a small value of ρ gives
a fast response but large control actions, while a larger value of ρ results in restrictive use of input
energy at the expense of a slower output response. �
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Figure 4.2: Initial value responses of LQR-controller for three different values of the ρ parameter.

Of course, the linear quadratic framework is much more expressive than this, especially for
systems with many inputs and many outputs. However, the large number of tuning parameters
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can be challenging to manage when tuning the controller. Since Q and R are symmetric n×n and
m×m matrices, the cost function itself has n(n+1)/2+m(m+1)/2 free parameters. It can be
difficult to obtain good results without a structured approach to select all these free parameters.
Below, we outline a tuning procedure where the degrees of freedom are kept low and all tuning
parameters play a clear role in shaping the controller response.

1. Define performance outputs to limit the degrees of freedom
A first step we will define performance outputs zt = Mxt ∈ Rnz and consider the cost

∞

∑
t=0

z>t Q̄zt +ut R̄ut =
∞

∑
t=0

x>t M>Q̄Mxt +u>t R̄ut

where Q̄ and R̄ are diagonal matrices. This is then a standard LQ cost defined by Q = M>Q̄M
and R = R̄, with a single weight associated with each performance output and with each control
signal. This parameterization is particularly useful when the number of performance outputs is
much smaller than the system state dimension (nz� n). If (A,C) is detectable, then it is common
to begin with M =C, to only penalize the true system outputs, and to let Q̄ = I and R̄ = I.

2. Normalize weights using Bryson’s rule
It is often good idea to normalize the variables in any system model to have the same ranges. Even
so, we may have very different acceptance levels for deviations in the different signals. Bryson’s
rule suggests the following initial weight tuning to give comparable deviations in different signals a
comparable impact on the total linear-quadratic cost:

[Q̄]ii =
1

(z(i)max)2
, [R̄]ii =

1

(u(i)max)2
.

Here, z(i)max is the maximal transient error that we can accept in performance output z(i), and u(i)max is
the magnitude of control signal i which we consider to be of equal harm as a transient error of z(i)max.

We can already in this step start to evaluate the optimal controller in simulations. It is not
uncommon that Bryson’s rule gives a decent design without further tuning.

3. Tune the closed-loop bandwidth of the LQR controller
The closed-loop bandwidth is a key parameter in many control systems. We have already seen that
a single parameter for adjusting the relative weighting between control cost and state errors is a
good way to affect the closed-loop bandwidth. We thus propose to set

R = ρR̄

and adjust ρ to get the desired closed-loop bandwidth.

4. Fine-tune performance weights
If we still do not get the right balance between different performance outputs and between individual
control signals, then we have to departure from Bryson’s rule and add further degrees of freedom.
We propose to simply use

Q̄ =



(
q1

z(1)max

)2
0 . . . 0

0
(

q2

z(2)max

)2
0

...
... 0

. . . 0

0 . . . 0
(

qnz

z(nz)
max

)2


, R̄ =



(
r1

u(1)max

)2
0 . . . 0

0
(

r2

u(2)max

)2
0

...
... 0

. . . 0

0 . . . 0
(

rm

u(m)
max

)2


.

Initialized from q1 = q2 = · · ·= qnz = 1 and r1 = · · ·= rm = ρ . Avoid to adjust many parameters
at the same time, and remember that it is the relative weighting between the terms that matters.
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5. In necessary, introduce additional performance signals
If simulations reveal that certain internal states (or combinations of internal states) make large
deviations and exceed desired operating ranges, one needs to introduce additional an performance
outputs z(i) that capture these signals, and include them in the cost function. One then augments the
M matrix with new rows and return to the previous steps to tune the new entry of the Q̄ matrix.

The new performance outputs are often just states that were neglected before, but one can also
attempt more advanced tricks. For example, if we would like the ith system state to evolve as

[xt+1]i = a>desxt

we can add the performance output

zt = [xt+1]i−a>desxt

However, since [xt+1]i in general depends on both xt and ut , cross-terms between xt and ut may
appear in the cost function when we form the square of the performance output.

If no new performance outputs are needed, one proceeds to the final step of the tuning procedure.

6. Evaluate, analyze and iterate.
While the linear-quadratic regulator is optimal, it is optimal in a specific sense: it optimizes a
quadratic cost function (4.6) based on given weight matrices Q and R. If this cost captures all the
closed-loop properties that we are interested in, then this is the best that we can do. But in many
cases, we have a diverse set of requirements on our controller, and not all of them can be expressed
as a quadratic cost on states and controls.

At this stage, it is therefore essential to examine the transfer functions from all inputs and
disturbances to the control signal and system outputs. It is not uncommon to realize that previous
design choices must be revised, and it may take several iterations to find the right tuning parameters.

The next example illustrates the proposed LQR tuning procedure on a simple inverted pendulum.
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Figure 4.3: Inverted pendulum (left), and time responses for different weight ρ .

� Example 4.6 Consider the inverted pendulum system shown in Figure 4.3 (left). A pendulum
is attached to a cart which we can accelerate by manipulating the external force F . A linearized
model of the system dynamics around the upright equilibrium of the pendulum, with a sampling
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time of 0.05 seconds, is given by the following state-space model

xt+1 =


1 0.0498 0.0034 0.0001
0 0.9909 0.1348 0.0034
0 −0.0006 1.0392 0.0507
0 −0.0229 1.5779 1.0392

xt +


0.0023
0.0908
0.0057
0.2292

ut

The states represent the position and velocity of the cart, followed by the angle and angular velocity
of the pendulum. Our aim is to design a controller that can move the cart 0.2 meters with a settling
time of 1 second, without the pendulum angle ever exceeding 10 degrees (= π/18 radians) from its
upright position. The force is limited to ±10 N.

Following the proposed tuning procedure, we introduce the performance output zt = Mxt with

M =

(
1 0 0 0
0 0 1 0

)
to account for the cart position and the pendulum angle. Since the maximal values of the cart
position and pendulum angle are comparable in magnitude (0.2 meters and π/18≈ 0,1745 radians),
we skip the normalization step and simulate the closed loop using Q = MT M and R = ρ for different
values of ρ . As we can see, we have to decrease ρ to 0.0001 to obtain the desired settling time.
The maximum control magnitude during the cart movement is around 8 N, so there is still some
room for speeding up the step response even further. We do so by fine-tuning the weight on the cart
position from the default value of 1 to 1.6. Thus, our final design is given by the weight matrices

Q = M>
(

1.6 0
0 1

)
M, R = 0.0001I

�

Next, we will develop some additional insight into properties of the linear-quadratic optimal
controllers that can be useful for tuning.

The linear-quadratic regulator at the extremes: cheap and expensive control
Closed-loop systems under linear-quadratic optimal control have a very specific behavior when the
control signal is either very cheap or very expensive. To develop some intuition for these properties,
we return to the scalar system that we studied earlier.

� Example 4.7 Consider the LQ problem for xt+1 = axt + ut with a cost defined by Q = 1 and
R = ρ . Following the same steps as in Example 4.3, we find that the corresponding DARE can be
re-written as

P2−φ(ρ)2P−1 = 0 where φ(ρ) = (1+ρ(a2−1))

The positive solution to this equation is

P =
1
2

φ(ρ)+
1
2

√
φ 2(ρ)+4ρ

and that the optimal feedback gain is

L =
aP

ρ +P
.

Note that these expressions agree with those in Example 4.3 when ρ = 1. Although it is difficult to
get simple expressions for P and L for particular values of ρ , it is possible to study these expressions
when the control effort becomes either very cheap or very expensive.
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When ρ → 0 (“control is cheap”), then φ(ρ)→ 1, P→ 1, L→ a and xt+1 = (a−L)xt → 0 · xt .
Hence, the closed-loop pole tends to the origin and the state converges to zero in a single time step.

As ρ → ∞ (“control is expensive”), on the other hand,

P
ρ
→ a2−1

2
+

∣∣∣∣a2−1
2

∣∣∣∣
and the closed-loop dynamics tends to

xt+1 =

{
axt if |a| ≤ 1
a−1xt otherwise .

Thus, if the open-loop is stable, it is optimal to not apply any control. If the system is unstable, on
the other hand, we need to stabilize it and it is optimal to place the closed-loop pole in 1/a. �

It turns out that the properties for the cheap and expensive control scenarios that we have
discovered in the scalar case also hold for linear systems with arbitrary state, input and output
dimension. The result for multiple-input multiple-output systems require some concepts that are
outside the scope of these notes, but we can state the results for single-input single-output systems.

Theorem 4.3.1 Consider the linear system

xt+1 = Axt +But

zt = Mxt

with xt ∈ Rn, ut ∈ R and zt ∈ R. Let (A,B) be reachable, (A,M) be observable and consider the
LQ cost with Q = M>M and R = ρI, i.e.

J =
∞

∑
t=0

z2
t +ρu2

t

Assume that the open loop system from ut to yt has q zeros located at z1, . . . ,zq, p poles at the
origin and n− p poles located at pi. Then,

(a) as ρ → ∞, p closed-loop poles remain at zero and the others tend to

π =

{
pi if |pi| ≤ 1
p−1

i if |p1| ≥ 1

(b) as ρ → 0, n−q closed-loop poles tend to zero, and the remaining ones to

π =

{
zi if |zi| ≤ 1
z−1

i if |zi| ≥ 1

The proof of this theorem, along with generalizations to the multiple-input multiple-output case
can be found in [15]. The next few examples illustrate the use of the theorem.

� Example 4.8 Let us first study the quadrotor dynamics. As shown in Example 1.10, this system
has a double pole at z = 1, and a (sampling) zero at z = −1. Hence, when the control is very
expensive, minimal control will be applied to just ensure that the two poles are strictly inside the
unit circle. As control becomes increasingly cheap, the two poles move towards the origin and the
open-loop zero; see Figure 4.4. �

The previous example highlights the dangers with pushing a single criterion to the extreme. As
control cost ρ tends to zero, the optimal control policy tends to ut =−

(
2 2

)
xt . This controller
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Figure 4.4: Open-loop poles (light crosses) and zeros (light rings). Dark crosses represent closed-
loop poles under cheap control, and the dark line shows how the closed-loop poles move when
control goes from expensive to cheap.

is able to bring the position to zero in a single time step, and then keep it there. However, the
corresponding velocity (the second state) oscillates between ±v0. Hence, although the controller
attains the minimal LQ cost, it is not a very attractive controller in other respects.

� Example 4.9 As another example, consider the inverted pendulum dynamics

θ̈(t) = θ(t)+u(t)

This system has continuous-time poles at s = ±1. After zero-order-hold sampling with period
h = 0.1, the corresponding discrete-time system has poles in e±h and a zero at −1. Since eh > 1,
the system is unstable, and we know that the expensive control solution is to move this pole to
1/eh = e−h and leave the stable pole unaltered. Hence, expensive LQR control will yield a double
pole at z = e−h. As the control action becomes increasingly cheap, the closed-loop poles move
towards the origin and the system zero, creating an increasingly fast system, see Figure 4.5. �

An optimal trade-off*
The trade-off that we have just explored is, in a certain sense, optimal. Specifally, consider the
following energy-constrained optimal control problem

minimize ∑t z2
t

subject to ∑t u2
t ≤ emax

xt+1 = Axt +But , zt = Mxt

By introducing a Lagrange multiplier λ for the energy constraint (cf. Appendix C), the associated
dual problem is to maximize the dual function

g(λ ) = inf
{ut}

{
∑

t
x>t M>Mxt +λ ∑

t
u2

t | xt+1 = Axt +But

}
−λemax

We recognize the first term as the optimal LQ cost for Q = M>M and R = λ I. If strong duality
holds (which it does if the initial value is such that it is possible to drive the system to rest using less
input energy than emax) then there is a λ ? such that the optimal solution to the energy-constrained
problem is given by the LQ-optimal controller for the criterion (4.6) with ρ = λ ?. Thus, by varying
ρ in the LQ criterion, we are able to trace the optimal trade-off surface between ∑t z2

t and ∑t u2
t .
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Figure 4.5: Open-loop poles (light crosses) and zeros (light rings). Dark crosses represent closed-
loop poles under cheap control, and the dark line shows how the closed-loop poles move when
control goes from expensive to cheap. Note how the unstable open-loop pole is mirrored in the
stability boundary to ensure stability at a low control cost.

� Example 4.10 The boundary between the blue and white regions in Figure 4.6 defines the trade-
off surface between control energy and output energy for the vertical dynamics of the quadcopter
that we have studied in many of the examples. There is no controller that can do better in both
of these criteria as long as it has access to the same information as the LQ-optimal controller.
Therefore, the performance of every other controller will lie in the shaded area. To make this point,
we evaluate the energy and control costs for the pole placement design from Example 1.6; see the
white cross. It is slightly inside the trade-off curve since we can both attain a lower control cost for
the same state cost, and a lower state cost for the same control cost. �

Control cost

0

1

2

3

4

5

St
at

e 
co

st

Figure 4.6: Trade-off between input energy (control cost) and output energy (state cost) for vertical
quadcopter dynamics. The white cross indicates the two costs for a suboptimal design that places
both closed-loop eigenvalues at z = 0.5.
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4.4 Reference-tracking in the linear-quadratic framework
In many cases, the aim of the controller is not to drive the system state to zero, but rather to make
the output yt =Cxt follow a given reference sequence {rt}. It turns out that such servo problems
can also be dealt with using linear-quadratic regulator theory.

Tracking constant references: a feed-forward approach
When the reference is constant, i.e. when rt = r for all t, then error-free tracking is possible if there
is an equilibrium state xref and a corresponding constant input uref such that{

xref = Axref +Buref

r = Cxref (4.14)

These are n+ p equations in n+m unknowns, so we will in general need that m≥ p, i.e. that we
have to have at least as many control signals as the number of outputs that we want to track.

The standard LQ-control problem penalizes the (possibly weighted) norms of xt and ut , and
thereby their distances from the origin. By a similar token, the tracking problem should penalize
the differences between the true states and controls and their reference values:

minimize ∑
∞
t=0(xt − xref)>Q(xt − xref)+(ut −uref)>R(ut −uref)

subject to xt+1 = Axt +But , xref = Axref +Buref

Note that the constraints imply that

xt+1− xref = (Axt +But)− (Axref +Buref) = A(xt − xref)+B(ut −uref)

so this is just a linear-quadratic control problem in the coordinates ∆xt = xt−xref and ∆ut = ut−uref:

minimize ∑
∞
t=0(∆xt)

>Q(∆xt)+(∆ut)
>R(∆ut)

subject to ∆xt+1 = A∆xt +B∆ut

This means that the optimal control is

∆u?t =−L∆xt ⇔ u?t =−L(xt − xref)+uref

where L is the linear-quadratic optimal controller for a system defined by matrices A and B, and a
cost defined by matrices Q and R. Under the conditions of Theorem 4.2.3, A−BL will be Schur
stable, and this controller will drive xt − xref and ut −uref

t to zero asymptotically. If xref and uref are
chosen to satisfy (4.14), then this means that yt will tend to r asymptotically.

In settings with multiple inputs and multiple outputs, there may be a scope to optimize the
reference states and controls. Such an optimization could either determine the most efficient
equilibrium point (if there are many), or find an equilibrium with small stationary tracking error if
no equilibrium admits perfect tracking. When m = p, however, our options are limited and we can
often to avoid to do an on-line optimization of (xref,uref) when r changes. To this end, note that the
reference states and controls are not actually needed to compute the control input. Since

ut =−L(xt − xref)+uref =−Lxt +(uref +Lxref) :=−Lxt + ūref

we only need to determine ūref. By replacing uref by ūref− Lxref in (4.14), we see that we get
error-free tracking in stationarity if

r =C(I− (A−BL))−1Būref

Since A−BL is Schur stable, the inverse exists. If, in addition,

Lref =
(
C(I− (A−BL))−1B

)−1
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exists then ūref = Lrefr and the optimal tracking control is

u?t =−Lxt +Lrefr.

Note that this is the same feed-forward solution that we derived in Chapter 1. With the extension to
reference tracking in place, we can delve deeper in control tuning and demonstrate the power of the
LQ-framework on a multi-variable process.

� Example 4.11 The quadruple-tank apparatus shown in Figure 4.7 is a common laboratory process
that is used to illustrate various aspects of control of systems with many inputs and outputs. It
consists of two double-tank systems, where a fraction of the inflow generated by the pump to each
upper tank is fed into the lower tank of the other system. This cross-coupling of the inflows allows

Figure 4.7: The quadruple tank apparatus.

to create a wide range of challenging dynamics. We will consider a relatively benign configuration
described by the discrete-time linear system

xt+1 =


0.9921 0 0.0206 0

0 0.9945 0 0.0165
0 0 0.9793 0
0 0 0 0.9835

xt +


0.0415 0.0002
0.0001 0.0313

0 0.0237
0.0155 0

ut

yt =

(
0.5 0 0 0
0 0.5 0 0

)
xt

Starting with Q = I and R = I, we obtain the closed-loop step responses shown in light blue in
Figure 4.8 (left). Letting R = ρI and decreasing ρ from 1 to 0.1 and 0.01 leads to the increasingly
fast responses shown in darker blue in the same figure. Since the system has multiple inputs and
outputs, it is also possible to shape the two outputs to behave differently. Figure 4.8 (right) shows
the step responses of the LQ optimal controller for Q = I and R = I (light blue) along with a design
that uses R = I and Q = M>Q̄M with M =C and Q̄ = diag(10,0). This design puts a larger cost
on tracking errors in the first output than in the second, which results in a closed-loop with a
distinctively faster response in the first output signal.

�
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Figure 4.8: The simulations to the left show how a smaller penalty on the control signals results in
faster step-responses. The right figure shows simulations of a controller where tracking errors in
the first output are penalized much more than errors in the second output.
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A feedback solution: integral action
A drawback with feed-forward compensation is that it tends to be sensitive to modeling errors. In
the solution above, the reference states are computed under the assumption that we know A,B, and
C perfectly. If the model differs from the true system, then it could very well be that the computed
feed-forward control does not result in offset-free control. In practice, it is often more reliable to
use feedback, and in particular integral action, to ensure error-free tracking of constant references.

The simplest way to include integral action is to introduce controller states that accumulate the
errors between the reference signals and the performance outputs over time:

it+1 = it +(rt − yt) = it + rt −Cxt

The closed-loop system will then have states of the plant (xt) and the controller (it) that evolve as(
xt+1
it+1

)
=

(
A 0
−C I

)(
xt

it

)
+

(
B
0

)
ut +

(
0
I

)
rt (4.15)

Note that any equilibrium point (xeq, ieq,ueq) of the augmented system must also satisfy Cxeq = r.
Hence, any controller that makes the states of the extended system converge to an equilibrium point
will guarantee offset-free tracking in stationarity.

We will consider optimal control problems with cost functions on the form

∑
t

(
xt

it

)>(Qx 0
0 Qi

)(
xt

it

)
+u>t Rut . (4.16)

The optimal controller for system (4.15) with cost function (4.16) is

ut =
(
L Li

)(xt

it

)
=−Lxt −Liit

and hence combines state feedback with integral action.
Under the conditions of Theorem 4.2.3, this controller will guarantee that the augmented

system is asymptotically stable in closed loop. This means that the augmented system reaches
stationarity, and hence achieves offset-free tracking. The first condition of Theorem 4.2.3 demands
that the augmented system is stabilizable. However, since the dynamics of the integral states are
not asymptotically stable, it actually needs to be reachable. The following result is then useful.

Proposition 4.4.1 Assume that the system (A,B) is reachable. Then the augmented system is
reachable if and only if the matrix(

A− I B
−C 0

)
(4.17)

has row full rank.

Proof. By the PBH test, the augmented system is reachable if and only if there is no λ and no
w = (w1,w2) 6= 0 such that(

w1
w2

)>( A 0 B
−C I 0

)
=
(
λw>1 λw>2 0

)
First note that if w2 = 0, then w1 must also be a zero vector, due to the assumption that the nominal
system is reachable. On the other hand, if w2 6= 0, then any solution must have λ = 1 and satisfy(

w1
w2

)>(A− I B
−C 0

)
=
(
0 0

)
Due to the rank assumption, the only solution to this system of equations is w = 0. Hence, by the
PBH test, the augmented system is reachable. �
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The rank condition requires that m≥ p and that both B and C have rank of at least p. Thus, for
error-free tracking, one need at least as many inputs as the number of outputs one wants to track.

The second condition of Theorem 4.2.3 requires that the augmented system state is observable
through the state cost. We state the following result, whose proof is left as an exercise.

Proposition 4.4.2 Assume that (A,C) is detectable. Then((
A 0
−C I

)
,

(
Q1/2

x 0
0 Q1/2

i

))
is detectable if and only if Qi � 0.

When tuning the LQ controller with integral action, it is convenient to view the integral state as
the primary performance output. Since it is driven by the actual system output, it will converge
slower, and be the limiting factor of the closed-loop bandwidth. It is therefore useful to begin
with Qx = 0 (assuming that (A,C) is detectable), Qi = I and R = ρI and adjust ρ to get the desired
closed-loop bandwidth. The closed-loop system will typically have an overshoot in its step-response.
To reduce this effect, it often works to penalize the system output (which is the rate-of-change of
the integral state) by letting Qx = qC>C and increase q until we get the desired result.

The next example illustrates the use of integral action in linear-quadratic regulators.

� Example 4.12 Let us return to the quadruple tank from the previous example and add distur-
bances to the system. Figure 4.9 shows the previously designed LQ controller when the system is
subject to disturbance inflows to the two lower tanks. We can see that the controller is unable to
eliminate the effect of the disturbances.
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Figure 4.9: The tracking controller is able to follow the reference without error but is unable to
fully eliminate the effect of constant disturbance inflows in the lower tanks.

To incorporate integral action in the controller, we note that the system has an equal number of
inputs and outputs and that the rank condition on (4.17) is satisfied. We perform a LQR design with

Qx = 100 ·C>C, Qi = I, R = 0.01 · I.
Figure 4.10 shows a simulation of reference changes in the two lower tank levels, followed by added
disturbances (constant additional inflows) in the lower tanks. Notice how integral action allows the
controller to perform error-free tracking and suppress the constant disturbances in stationarity. �

Reference models and the servo problem
Although a simple feed-forward from the reference signal can achieve error-free tracking in
stationarity, it can cause aggressive changes in the control signal when if the reference signal
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Figure 4.10: By incorporating integral action, the LQR controller allows to perform error free
tracking of both outputs (left). In addition, constant disturbances are eliminated in stationarity. The
associated control signals in the right figure demonstrate the multi-variable nature of the controller.
For example, the reference change in the level of the first tank is dealt with by simultaneously
increasing the voltage to the first pump and decreasing the voltage to the second.

changes abruptly. The standard LQ controller with integral action, on the other hand, is slower to
react and can be more difficult to tune if we aim for a very specific closed-loop response. These
limitations can sometimes be overcome by introducing a reference model

xref
t+1 = Ãxref

t + B̃rt , yref
t = C̃xref

t

that filters the reference signals and generates reference trajectories {xref
t } for the system states. It

is natural to define the reference model to have unit gain, so that yref
t tends to rt if the reference is

kept constant. To track the reference trajectory we consider the optimal control problem

minimize ∑
∞
t=0(xt − xref

t )>Qx(xt − xref
t )+ i>t Qiit +u>t Rut

subject to xt+1 = Axt +But

xref
t+1 = Ãxref

t + B̃rt

it+1 = it +C̃xref
t −Cxt

Due to the presence of integrator states, yt will be equal to yref
t in stationarity. The optimal controller

can be found by solving a standard LQ problem for the augmented system

x̄t+1 =

xt+1
xref

t+1
it+1

=

 A 0 0
0 Ã 0
−C C̃ I

 x̄t +

B
0
0

ut +

0
B̃
0

rt (4.18)

with cost function defined by

Q̄ =

 Qx −Qx 0
−Qx Qx 0

0 0 Qi

 , R̄ = R (4.19)

The optimal controller will have the form

ut =−Lxt −Lrefxref
t −Liit =−L(xt − xref

t )−Liit +(L−Lref)xref
t

so we can view it as a combination of a state feedback from the tracking errors, an integral term,
and a feed-forward from the reference model states.
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By a similar argument as for the servo problem without integral action, the augmented system
(4.18) will be stabilizable if Ã is Schur stable, (A,B) is stabilizable and the matrix (4.17) has full
row rank. Similarly, if Qi � 0, and both (A,C) and (Ã,C̃) are detectable, then the detectability
conditions that ensure solvability of the Riccati equation will be satisfied.

� Example 4.13 To demonstrate how the reference models can be used to reduce the transients
during abrupt reference changes, we return to the quadruple tank system. As a reference model,
we use a decoupled tank system with uniform time constants of T = 3 seconds, since this matches
the tracking performance of our earlier controller. We use the same cost matrices as before and
simulate the same sequence of reference changes and disturbances. As shown in Figure 4.11, the
use of a reference model results in significantly reduced transients in the control signals compared
to the ones in Figure 4.10, while the tracking performance remains virtually the same. �
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Figure 4.11: The use of a reference model simplifies the tuning of the reference tracking and allows
us to reduce the transients in the control signals compared to ones in Figure 4.10.

4.5 Least-squares optimal state estimation

The linear-quadratic regulator has been derived under the assumption of perfect knowledge of the
complete state vector. In practice, it is often costly or even impossible to measure all system states.
Instead, one attempts to estimate the state vector from the available measurements. In Chapter 1,
we discussed how observers and filters could be designed based on pole placement. However, the
resulting estimator gains have no optimality guarantees and the design technique only applies to
systems with a single sensor (since we would otherwise have more elements in the estimator gain
matrix K than eigenvalues of the estimator error dynamics). In the next few pages, we will develop
a least-squares approach to recursive state estimation. The estimate is optimal in a precise sense,
and the approach applies to systems with an arbitrary number of sensors.

Recursive least-squares estimation
Consider the discrete-time linear system

xt+1 = Axt +But +wt

yt =Cxt + vt

Here, the disturbance sequence {wt} models imperfections in our model of the state evolution, and
the disturbance sequence {vt} models measurement noise and errors in the output equation. We
will look for the disturbance sequences of smallest energy that allow us to match the predicted
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output with the sensor measurements (cf. the discussion in Example 3.2). Specifically, we will
define the optimal state estimate via the solution to the following quadratic program

minimize
x0,{wt},{vt}

(x0− x̄0)
>R0(x0− x̄0)+∑

T
t=0 w>t Rwwt + v>t Rvvt

subject to
xt+1 = Axt +wt

yt = Cxt + vt

(4.20)

Here x̄0 is a prior guess of the initial state, while R0, Rw, and Rv are positive semi-definite matrices.
These matrices are tuning parameters for our estimator and play a similar role as the weight matrices
in the linear-quadratic regulator problem. If we have high faith in the state update xt+1 = Axt +But ,
then we should choose a large Rw to prioritize making {wt} small; and if we believe that the output
measurements are error-free, we should choose a large Rv.

The least-squares estimation problem (4.20) can be solved using dynamic programming, result-
ing in a the following recursive estimator of the state sequence {x̂t|t}

Theorem 4.5.1 The least-squares state estimation problem (4.20) can be solved recursively by
repeated application of the following updates

Measurement update:

K̄t = (St +C>RvC)−1C>Rv

x̂t|t = x̂t|t−1 + K̄t(yt −Cx̂t|t−1)

S̄t = St +C>RvC

Prediction step:

x̂t+1|t = Ax̂t|t +But

St+1 = Rw−RwA(S̄t +A>RwA)−1A>Rw

from initial values x̂0|−1 = x̄0 and S0 = R0.

Proof. The proof is given in Appendix D.3. �

The least-squares estimator is intimately related to the better-known Kalman filter. Although
the Kalman filter is derived from a stochastic perspective, it can be seen as a least-squares filter that
maintains Pt = S−1

t and parameterizes the criterion in terms of Σ0 = R−1
0 , Σw = R−1

w and Σv = R−1
v .

Specifically, it solves the quadratic program

minimize
x0,{wt},{vt}

(x0− x̄0)
>Σ
−1
0 (x0− x̄0)+∑

T
t=0 w>t Σ−1

w wt + v>t Σ−1
v vt

subject to
xt+1 = Axt +wt

yt = Cxt + vt

(4.21)

The corresponding filter updates can be derived by applying standard matrix inversion identities to
the updates derived in Theorem 4.5.1, which leads to the following result.

Theorem 4.5.2 The estimation problem (4.20) with R0 = Σ
−1
0 , Rw = Σ−1

w and Rv = Σ−1
v can be

solved recursively by repeated application of the updates
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Measurement update:

K̄t = PtC>(Σv +CPtC>)−1

x̂t|t = x̂t|t−1 + K̄t(yt −Cx̂t|t−1)

P̄t = Pt −PtC>(Σv +CPtC>)−1CPt

Prediction step:

x̂t+1|t = Ax̂t|t +But

Pt+1 = Σw +AP̄tA>

from initial values x̂0|−1 = x̄0 and P0 = Σ0.

Proof. See Appendix D.3. �

By similar reasoning as for the least-squares filter, we should use a small value of Σw if we
have high confidence in the state update equations, while high accuracy measurements should be
reflected by selecting a small value of Σv.

Note that the state estimators have the same structure as the ones considered in Chapter 1, while
the filtering gain is in general time-varying. More specifically, the one-step-ahead prediction is

x̂t+1|t = Ax̂t|t−1 +But +Kt(yt − ŷt|t−1), ŷt|t−1 =Cx̂t|t−1

where Kt = AK̄t , while the optimal estimate of the current state is given by

x̂t|t = x̂t|t−1 + K̄t(yt −Cx̂t|t−1)

x̂t+1|t = Ax̂t|t−1 +But ,

In contrast to the state estimators that we have considered earlier, the filtering gain K̄t has to be
computed on-line, based on the matrix Pt (or St) that is also updated in every time step.

The stationary Kalman filter
Just like for the linear-quadratic regulator, it is easier to analyze and implement the stationary
version of the Kalman filter, where the estimator gains are constant. The stationary solution can be
found by first noticing that the filter gain K̄t only depends on Pt . By eliminating the intermediate
variable P̄t , the updates for Pt can be written as

Pt+1 = Σw +APtA>−APtC>(Σv +CPtC>)−1CPtA>. (4.22)

This is a Riccati recursion for {Pt} with strong connections to the recursion that is used to define the
linear-quadratic regulator. Any stationary solution to (4.22) satisfies the algebraic Riccati equation

P = Σw +APA>−APC>(Σv +CPC>)−1CPA> = (4.23)

= (A−KC)P(A−KC)>+Σw +KΣvK> (4.24)

where K = AK̄ and K̄ = PC>(Σv +CPC>)−1. With these constant gain matrices, the optimal
one-step-ahead predictor becomes

x̂t+1|t = (A−KC)x̂t|t−1 +But +Kyt
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while the stationary Kalman filter simplifies to

x̂t+1|t = (A−KC)x̂t|t−1 +But +Kyt

x̂t|t = (I− K̄C)x̂t|t−1 + K̄yt

Both observers are given by simple linear time-invariant systems. A short calculation verifies
that the dynamics of the estimation errors et+1|t = x̂t+1|t − xt and et|t = x̂t|t − xt are asymptotically
stable if A−KC is Schur; see Exercise 4.12. The next result, which is an analog of Theorem 4.2.3,
demonstrates that this is indeed the case under mild conditions.

Theorem 4.5.3 Consider the linear system xt+1 = Axt +But , yt =Cxt and the cost defined by
(4.21) with Σw � 0, Σv � 0, and T → ∞. If (A,C) is detectable, then the cost is bounded. If,
in addition, (A,Σ1/2

w ) is stabilizable, then the algebraic Riccati equation (4.23) admits a unique
positive semidefinite solution and A−KC is Schur stable.

The next example develops an intuition for how the tuning parameters Σw and Σv affect the
behavior of the associated stationary Kalman predictor.

� Example 4.14 Consider the scalar system

xt+1 = axt +wt

yt = xt + vt

with Σw = 1 and Σv = r. The stationary Kalman filter gain is

K =
aP

r+P

where P satisfies the Riccati equation

P = 1+a2P− a2P2

r+P

To gain insight into the optimal estimator, we consider the dynamics of the estimation error

et+1 = (a−K)et

When Σv = r→ 0 (which corresponds to error-free measurements), K→ a and

x̂t+1 = ayt = axt

Thus, the observer disregards any previous information and constructs the state estimate using the
last measurement only. When r→ ∞ (very corrupted measurements), on the other hand, we have

a−K→
{

a if |a| ≤ 1
a−1 otherwise

Thus, if the process is open-loop stable, the estimator disregards the measurements and uses its
model to predict the state estimate. If the system is unstable, the optimal gain is such that the error
dynamics are stable and its pole is the inverse of the open-loop system pole. �



122 Chapter 4. Linear-quadratic control

A note on the duality between estimation and control*
As noted above, the infinite-horizon control and estimation problems bear striking resemblances:
the optimal control is a linear state feedback ut = −Lxt that drives the state (error) dynamics
xt+1 = (A−BL)xt to zero, while the optimal estimator adjusts the state estimates by a factor
Kt(yt − ŷt) such that the estimation error dynamics et+1 = (A−KC)et tends to zero asymptotically.
The optimal gains are computed from the solutions to similar AREs: (4.9) and (4.23).

It turns out that this is no coincidence: estimation and control are dual in a precise mathematical
sense. To the discrete-time linear system

xt+1 = Axt +But

yt =Cxt

we can associate a dual system

x̃t+1 = A>x̃t +C>ũt

ỹt = B>x̃t

By applying the reachability and observability tests in Chapter 1, we notice that the original system
is reachable if and only if its dual is observable (and vice versa). We can also verify that the optimal
estimator for the primal system with LQR cost parameterized by Σw and Σv coincides with the
optimal LQR controller for the dual system with Q = Σw and R = Σv (and vice versa).

One consequence of this duality is that it is enough that numerical control design packages
provide support for solving either the LQR or the Kalman filter ARE. The other one can be solved
by transforming the input data as revealed by the duality argument.

We will explore another insight of the duality argument, namely how to select weight matrices
in the Kalman filter to ensure fast error dynamics. Note that if we apply ũt =−K>x̃t in the dual
system, we get the closed-loop dynamics x̃t+1 = (A>−C>K>)x̃t = (A−KC)>x̃t . By the cheap
control argument in Section 4.3, we know that this closed-loop dynamics will become increasingly
fast if we use a criterion that puts an increasingly large penalty on ỹ>t ỹt = x̃>t BB>x̃t ; for example,
by letting Q = σBB> and R = I and increasing σ . By the duality argument, we should be able to
compute this K by solving the estimation problem for the original system with Σw = σBB> and
Σv = I. The next example illustrates that this intuition is indeed correct.

� Example 4.15 Consider the mechanical system from Example 3.3. The dual system has a two
complex conjugate poles near the unit circle, and one zero at −1. Computing the optimal Kalman
filter with Σw = σBB> and Σv = I, and letting σ vary from 1 to 10000 yields the eigenvalues of
A−KC shown in Figure 4.12. As can be expected from the cheap control analogy, one pole tends
to the origin, while the other tends to the system zero. �

4.6 Output feedback control

The LQ-optimal controller can be combined with a Kalman filter to form an output feedback
controller. This controller measures the system output, estimates the state vector using the filter,
and computes the control action as a linear feedback from the estimated states; see Figure 4.13.

When we use the infinite-horizon optimal controller and stationary estimator gains in the
one-step ahead Kalman predictor, the controller is described by the equations

x̂t+1 = Ax̂t +But +K(yt − ŷt) = (A−BL−KC)x̂t +Kyt

ut =−Lx̂t
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Figure 4.12: The poles of the estimation error dynamics in dark blue: one pole tends to the origin
while the other one tends to the system zero.

If we use the Kalman filter, on the other hand, the controller dynamics is given by

x̂t+1|t = (A−KC−BL(I− K̄C))x̂t|t−1 +(K−BLK̄)yt

ut =−L(I− K̄C)x̂t|t−1−LK̄yt

When the conditions of Theorem 4.2.3 and Theorem 4.5.3 are met, then A−BL and A−KC
are both Schur stable matrices and the closed-loop system is guaranteed to be asymptotically
stable. However, the controller itself is not necessarily asymptotically stable, i.e. A−BL−KC and
A−BL−KC+BLK̄C are not necessarily Schur stable matrices. Although this may not always be
a problem (in fact, there are systems that can only be stabilized using unstable controllers), it is
judicious to always verify the internal stability of the computed control law.

Plant

ytutState feedback

Observer

xt+1 = Axt +But

yt = Cxt

ut

x̂t

Output feedback controller

Figure 4.13: Output feedback control: combining a state estimator and linear feedback from the
estimated states.

It is, in general, difficult to establish optimality properties of control laws where the estimator
and feedback gains have been designed in separation. A notable exception is the stochastic setting
of linear-quadratic Gaussian (LQG) control. If the state and output disturbance seqeunces {wt} and
{vt} are independent white noise sequences with known covariance matrices Σw and Σv, respectively,
LQR-optimal feedback from states estimated by the Kalman filter is indeed the ouput feedback
policy that minimizes the expected value of the quadratic cost (4.6).

Even though the LQG controller is optimal in a precise way, it can be very sensitive to modeling
errors, cf. Exercise 4.13. It is thus essential to evaluate the robustness properties of the controller
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prior to deployment. In practice, the combination of estimator and feedback from estimated states
can often be made to work well, provided that the observer dynamics is significantly faster than the
closed-loop dynamics. For the Kalman filter, we have discussed above how the bandwidth can be
increased by adding artificial noise to the state equations, e.g. by letting

Σw = Σ
nom
w +σwBB>

and increasing the parameter σw. This procedure is known as loop transfer recovery. However,
the procedure is not guaranteed to result a in robust controller, and the closed-loop system should
always be analyzed for robustness and the influence of unmodeled disturbances.

4.7 Disturbance modeling and compensation
The linear-quadratic controller is designed from a regulation perspective, in the sense that it aims
to drive the system states to the origin. We have also shown how it can also be used to design
controllers that track a given reference signal. In this section, we will describe how persistent
exogeneous disturbances can be compensated for in the linear-quadratic framework. The approach
is based on modelling the exogenous signals as outputs of autonomous linear systems, and including
these systems in the model used for linear-quadratic controller design.

To describe the approach, consider the system

xt+1 = Axt +But +Bddt

yt =Cxt +Cddt

where dt is a vector of disturbance signals which we do not measure. Rather than considering the
disturbances as arbitrary, we assume that we can model them as the output of a linear system

zt+1 = Azzt

dt = Czzt
(4.25)

In this way, the dynamics of the system and the disturbances that act on it can be described by(
xt+1
zt+1

)
=

(
A BdCz

0 Az

)(
xt

zt

)
+

(
B
0

)
ut

yt =
(
C CdCz

)(xt

zt

) (4.26)

By designing a stabilizing controller for this extended system model, we can ensure that yt → 0,
despite the presence of disturbances. In particular, we will design an output feedback controller
for the extended system based on a Kalman filter and linear feedback from the estimated extended
state vector. The resulting control strategy, illustrated in Figure 4.14, combines feedback from the
estimated process states and compensation for the estimated disturbances.

Many common disturbances in control systems can be modeled as outputs of autonomous linear
systems. For example, a constant disturbance of unknown amplitude can be modeled as

zt+1 = zt , dt = zt

The unknown initial value z0 represents the constant level of the disturbance. A sinusoidal distur-
bance with natural frequency ω0 rad/sec can be modelled as the output of a harmonic oscillator

zt+1 =

(
cos(ω0h) sin(ω0h)
−sin(ω0h) cos(ω0h)

)
zt , dt =

(
1 0

)
zt
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Plant

Observer

Output feedback controller

Figure 4.14: Output feedback controller with combined state and disturbance estimator.

where h is the sampling time of the discrete system (in seconds). The first state of this model is the
amplitude of the disturbance, while the second one describes the rate-of-change. A general periodic
disturbance of unknown shape but with known period of nd samples can be described by

zt+1 =

(
0(nd−1)×1 I(nd−1)×(nd−1)

1 01×(nd−1)

)
zt , dt =

(
1 0(1×(nd−1))

)
zt

A problem with the disturbance models described above is that their dynamics is only stable,
and not asymptotically stable. Since the control signal cannot affect the disturbance state vector in
(4.26), the extended system is not stabilizable. A practical engineering solution to this problem is
to perturb the nominal disturbance dynamics slightly, e.g. replacing Az by Az− εI for some small
value of ε that makes Az− εI Schur stable.

The framework can also be extended to deal with reference tracking problems. To this end,
note that when the reference rt is constant, the desired output signal generated by the model

xref
t+1 = Arefxref

t +Brefrt , yref
t =Crefxref

t

can be represented as the output of the following autonomous linear system

ξt+1 =

(
Aref Bref

0 1

)
zt := Arξt , yref

t =
(
Cref 0

)
ξt :=Crξt .

The constant value of rt is now reflected by the final component of zt , while the first components of
zt contain xref

t . This technique can then be combined with the approach to disturbance compensation
that we have described above. For example, we can consider the reference tracking problem

minimize ∑t(yt − yref
t )>(yt − yref

t )+u>t Rut

subject to xt+1 = Axt +But +Bddt , yt =Cxt +Cddt

zt+1 = Azzt , dt =Czzt

ξt+1 = Arξt yref
t =Crξt

We then first perturb Az and Ar so that they are Schur stable. Then, we form the extended systemxt+1
zt+1
ξt+1

=

A BdCz 0
0 Az 0
0 0 Ar

xt

zt

ξt

+

B
0
0

ut
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and design an LQR controller using the weights Q =C>e QeCe, R = ρeI where

Ce =
(
C CdCz −Cr

)
The resulting control law computes ut as a linear combination of xt , zt and ξt , which are typically
not all available for direct measurements. Thus, as a final step, we design a Kalman filter for the
extended system. Note that the reference model is something that we implement. We can therefore
design the Kalman filter with

yt =

(
C CdCz 0
0 0 I

)xt

zt

ξt

+ vt

We demonstrate the disturbance modeling and compensation idea for the design of a high-
performance servo control for an optical data storage device.

� Example 4.16 DVD is an optical storage format where digital data is read from (and written to)
compact discs using laser. The discs are organized in tracks, 0.076µm apart, which the laser head
needs to find and follow. Since all discs are slightly asymmetric, the tracks oscillate relative to a
fixed laser position when the disc spins. The magnitude of these oscillations is dramatic, about
5000 times larger than the acceptable tracking error. To realize reliable high-throughput DVD
drives, it is therefore absolutely essential to have a high-performance control system for positioning
the laser head above the tracks; see Figure 4.15. In fact, the control system is so important that its
performance requirements is part of the DVD standard.

Pick−up head
Sledge

Disk

Figure 4.15: A typical DVD design: a pickup head with laser, lens, and the light detector is mounted
on a sledge that can move radially across the disc. To achieve the desired position accuracy, the laser
is mounted onto the sledge using springs and can be moved relative to the sledge by electromagnets.
In this way, it can also be moved small amounts quickly and with high accuracy.

The following linear system describes the identified radial dynamics of a DVD servo

xt+1 =

(
0.9982 0.0073
−0.0073 0.9965

)
xt +

(
−9.0497
−9.0647

)
ut

yt =
(
−9.0497 9.0647

)
xt +dt
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with a sampling frequency of 40 kHz. The system has a high static gain, but also a non-minimum
phase zero that limits the achievable bandwidth of the system. The disturbance dt is sinusoidal with
a frequency of roughly 20 Hz. It can therefore be modelled as a harmonic oscillator as described
above. After a slight perturbation to ensure that the disturbance dynamics is asymptotically stable,
we find the disturbance model

zt+1 =

(
0.9990 0.0031
−0.0031 0.9990

)
, dt =

(
1 0

)
We then form the corresponding extended system (Ae,Be,Ce) described in (4.26) and design an
output feedback controller for it using Kalman filtering and LQ-optimal control.

The performance specifications for the DVD drive are given in terms of its frequency response
(or, rather, its loop gain). Nevertheless, we can use the linear-quadratic methodology and tune
the weight matrices to get the desired response. We start out with Q =C>e Ce, Re = 1, Σw = I and
Σv = 1. With Re = 0.1, we get the right bandwidth of the system, but the low-frequency gain of
the loop gain is too low. By adjusting Σw to 2I +1.5BB>, we get a reasonable loop gain, and it is
difficult to increase the low-frequency gain further without losing internal stability of the controller.

The light blue lines in Figure 4.16 show a simulation of a nominal controller, designed without
accounting for the output disturbance. We apply a unit reference change at t = 0.01 seconds. At
time t = 0.02 seconds, we add the output disturbance d(t) = 100sin(40π(t−0.02)). Although the
controller is able to reduce the effect of the disturbance, there is still a substantial tracking error.

To reduce the tracking error, we add a disturbance model to our system. It turns out that this
controller is sensitive to abrupt reference changes, so we also add a reference model to our design.
We chose a second-order reference model (Aref,Bref,Cref,Dref) with unit gain, no zeros, and two
real poles placed at z = 0.1 and z = 0.11. For the controller, we use Qe = 1 and ρe = 0.1, while the
Kalman filter is designed using Σv = 1 and

Σw =

0.1BBT 0 0
0 1012BdBT

d 0
0 0 0


The large differences in scaling of the blocks is mainly due to the different magnitudes of B and
Bd . The resulting response, shown as dark lines in Figure 4.16 illustrate a significantly improved
disturbance suppression (the peak error is reduced by a factor of roughly 50). �

Disturbance observers and integral action
Although we have not proven this formally in these notes, it is well-known that integral action
in a controller allows to compensate for constant disturbances. It is thus natural to ask if the
combination of a disturbance observer and feedback from estimated states gives a controller with
integral action when the disturbance is assumed to be constant. It turns out that this is indeed true.
We will demonstrate it on a system with a scalar input disturbance, which can be described by the
extended system (4.26) with matrices

Bd = B, Cd = 0, Az = 1, Cz = 1

The combination of Kalman filter and state feedback from the estimated states of the extended
system gives an output feedback controller whose dynamics is described by

x̂t+1 = Ax̂t +Bẑt +But +K(yt − ŷt)

ẑt+1 = ẑt +Kd(yt − ŷt)

ut =−Lx̂t −Lzẑt
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Figure 4.16: Effect of 20Hz output disturbance on nominal closed-loop system (light lines) and
system under the output feedback which uses an internal disturbance model (dark line). Note that
the disturbance is only applied from t = 0.02, which creates a transient while the estimation errors
in the Kalman filter converge.

which we can write as(
x̂t+1
ẑt+1

)
=

(
A−BL B(1−Lz)

0 1

)(
x̂t

ẑt

)
+

(
K
Kd

)
(yt − ŷt)

ut =−
(
L Lz

)(x̂t

ẑt

)
Due to the block diagonal structure of the system matrix, the controller will have n poles at the
eigenvalues of A−BL and one pole at +1. Thus, the controller will have an integral state, and the
control law can be seen as a feedback Lx̂t from the estimated plant state plus an integral term Lzẑt .
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4.8 Exercises

Problem 4.1 Consider the scalar system

xt+1 = xt +ut

(a) Compute the sequence of positive scalars {Pt} that characterize the cost-to-go function
vt(xt) = Ptx2

t for the quadratic cost

T−1

∑
t=0

x2
t +u2

t +10x2
T

Verify numerically that the sequence converges and the value that P0 converges to as T → ∞.
What is the corresponding optimal control u0(x0)?

(b) Repeat the same investigation for the double integrator

xt+1 =

(
1 1
0 1

)
xt +

(
1/2
1

)
ut , yt =

(
1 0

)
xt (4.27)

with the cost

T−1

∑
t=0

y>t yt +u2
t +10x>T xT .

Plot the entries of the matrices {Pt} of the Riccati recursion. Verify that as T → ∞, P0
converges to the solution of the Riccati equation

P = Q+AT PA−AT PB(R+BT PB)−1BT PA

Problem 4.2 Let us now consider the double integrator under the infinite-horizon cost

∞

∑
t=0

x>t

(
qx 0
0 qv

)
xt +u2

t

(a) Is it possible to find a solution to the DARE that ensures an asymptotically stable closed loop
when qx = 0 or qy = 0? Justify your answer.

(b) How do you expect the closed-loop to behave under the optimal control law defined by
qx = 0.1 and qv = 100? Verify your intuition by computing the optimal control law and
simulating an initial response from x0 = 1. What happens when you increase or decrease the
value of qv?

(c) How do you expect the closed-loop to behave when qx = 100 and qv = 0.1? Verify your
intuition by computing the optimal control law and simulating an initial response from x0 = 1.
What happens when you increase or decrease the value of qx?

(d) Choose weights so that the initial response from x0 = 1 settles in 10 seconds without any
significant overshoot. Begin by letting qv = 0.001 and tune qx to get roughly the right
bandwidth. Then adjust qv to decrease the overshoot until you get the desired response. What
weights do you find?

Problem 4.3 Consider the discrete-time linear system

xt+1 =

(
0 1
−1 0

)
xt +

(
1 0
0 1

)
ut



130 Chapter 4. Linear-quadratic control

Compute the LQ-optimal feedback gains and the associated stationary Riccati solution for the cost
defined by the state weights Q = I and the three control weights

R =

(
1000 0

0 1

)
, R =

(
1 0
0 1000

)
, and R =

(
1000 0

0 1000

)
Discuss qualitatively what you observe.

Problem 4.4 Consider the discrete-time linear system

xt+1 =

(
0.8 0
1 1.2

)
xt +

(
1
0

)
ut

with cost

J =
∞

∑
t=0

x>t xt +ρu2
t

Find the optimal feedback gain numerically for different values of ρ = 10k and k =−3,−2, . . . ,2,3.
Plot how the eigenvalues of the resulting closed-loop system matrix A−BL vary with ρ . Explain
qualitatively what you observe.

Problem 4.5 Figure 4.17 shows pole-zero maps and closed-loop step-responses for three LQR
designs for the system

xt+1 =

(
0.9904 0.1939
−0.0950 0.9361

)
xt +

(
0.0196
0.1939

)
ut , yt =

(
1 0

)
xt

All three designs use Q = I but differ in their selection of ρ ∈ {0.001,0.1,10}. Can you deduce
which row in Figure 4.17 corresponds to what value of ρ? Justify your answer.
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Figure 4.17: Pole-zero maps and step-responses of closed-loop systems in Problem 4.8.
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Problem 4.6 Consider the discrete-time linear system

xt+1 =

(
1.2 0
1 0.8

)
xt +

(
0
1

)
ut

with cost

J =
∞

∑
t=0

x>t xt +u2
t

and x0 = 1. What is the smallest value of J that is possible to attain? Verify your answer by
computing the optimal state-feedback, simulating the closed-loop system from x0 = 1, and recording
the value of the LQ-cost along the closed-loop trajectory.

Problem 4.7 We consider the system

xt+1 =

(
1 0
2 3

)
xt +

(
1
0

)
ut

yt =
(
0 1

)
xt

(a) Design an LQR controller of the form ut =−Lxt − lrrt using performance weights

Q =

(
1 0
0 1

)
R = 1

and the reference feedforward is designed so that the static gain from r to y is equal to one.
(b) Assume that there is a constant disturbance acting on the input, so u′t = ut +d. Assume rt = 1

and dt = 1. Do you expect the static error limt→∞ et = limt→∞ yt− rt to be present? Compute
the stationary output and compare it with your intuition. What do you observe?

(c) Introduce an additional integral state it in the system and design LQR controller ut =
−Lxt − lrrt − liit for the performance criterion

J =
∞

∑
t=0

e>t et + i2t +u2
t

where e = x− xre f denotes the state error.
(d) Assume again that dt = 1 and rt = 1. Do you expect the static error to be present now?

Compute the stationary output and compare it with your observation. Comment your
observations!

Problem 4.8 A common variation on the LQR problem includes explicit time-varying weighting
factors on the state and input costs,

J =
N−1

∑
τ=0

γ
τ(x>τ Qxτ +u>τ Ruτ)+ γ

Nx>N QNxN ,

where xt+1 = Axt +But , yt =Cxt , x0 is given, and, as usual, we assume Q = Q> ≥ 0, QN = Q>N ≥ 0,
and R = R> > 0 are constant. The parameter γ , called the exponential weighting factor, is positive.
For γ = 1, this reduces to the standard LQR cost function. For γ < 1, the penalty for future state
and input deviations is smaller than in the present; in this case we call γ the discount factor or
forgetting factor. When γ > 1, future costs are accentuated compared to present costs. This gives
added incentive for the input to steer the state towards zero quickly.
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(a) Note that we can find the input sequence u?0, ...,u
?
N−1 that minimizes J using standard LQR

methods, by considering the state and input costs as time-varying, with Qt = γ tQ, Rt = γ tR,
and final cost given by γNQN . Thus, we know at least one way to solve the exponentially
weighted LQR problem. Use this method to find the recursive equations that give u?.

(b) Exponential weights can also be incorporated directly into a dynamic programming formula-
tion. We define

Wt(z) = min
N−1

∑
τ=t

γ
τ−t(x>τ Qxτ +u>τ Ruτ)+ γ

N−tx>N QNxN ,

where xt = z, xτ+1 = Axτ +Buτ , and the minimum is over ut , ...,uN−1. This is the minimum
cost-to-go, if we started in state z at time t, with time weighting also starting at t. Argue that

WN(z) = x>N QNxN

Wt(z) = min
w

(
z>Qz+w>Rw+ γWt+1(Az+Bw)

)
,

and that the minimizing w is in fact u?t . In other words, work out a backward recursion for
Wt , and give an expression for u?t in terms of Wt . Show that this method yields the same u? as
the first method.

(c) Yet another method can be used to find u?. Define a new system as

yt+1 = γ
1/2Ayt + γ

1/2Bzt

Argue that we have yt = γ t/2xt , provided zt = γ t/2ut , for t = 0, ...,N−1. With this choice of
z, the exponentially weighted LQR cost J for the original system is given by

J =
N−1

∑
τ=0

(y>τ Qyτ + z>τ Rzτ)+ y>N QNyN ,

i.e., the unweighted LQR cost for the modified system. We can use the standard formulas to
obtain the optimal input for the modified system z?, and from this, we can get u?. Do this,
and verify that once again, you get the same u?.

Problem 4.9 This problem considers an extension of linear-quadratic regulation to tracking of a
reference trajectory that accounts for the full control cost of doing so (instead of only penalizing
the deviations from a reference control). To that end, consider a discrete-time linear system

xt+1 = Axt +But

with the cost

J =
T

∑
k=0

(xk− xref
k )>Q(xk− xref

k )+
T−1

∑
k=0

u>k Ruk

where Q� 0 and R� 0. The reference trajectory {xref
k } is assumed to be known. We want to use

dynamic programming to derive the optimal control law and show that it consists of a feedback
term from the system state xk and a feed-forward term from the reference state xref

k .
(a) Show that the cost-to-go function at time T , VT (x) has the form

VT (x) = x>PT x+2q>T x+ rT

for some PT � 0, qT and rT .
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(b) Assume that

Vt+1(x) = x>Pt+1x+2q>t+1x+ rt+1

with Pt+1 � 0. Show that the optimal control at time t is on the form

u?t =−Ltxt +mt

where

Lt = (R+B>Pt+1B)−1B>Pt+1A, mt =−(R+B>Pt+1B)−1B>qt+1

(c) Use dynamic programming (backward induction) to show that VT ,VT−1, . . .V0 all have the
given form. Verify that

Pt = Q+A>Pt+1A−A>Pt+1B(R+B>Pt+1B)−1B>Pt+1A,

qt = (A−BLt)
>qt+1−Qxref

t

rt = rt+1 +(xref
t )>Qxref

t +q>t+1Bmt

Problem 4.10 We have proven that the LQR control law guarantees an asymptotically stable
closed-loop. In other words, the optimal solution ut =−Lxt to

minimize ∑
∞
t=0 x>t Qxt +u>t Rut

subject to xt+1 = Axt +But

guarantees that (A−BL) has all eigenvalue inside the unit disc.
We will now extend these results and explore how linear-quadratic control theory can be used

to design a feedback control law that places the poles in a disc with a given radius α and center
(β ,0) in the complex plane.

(a) Let us begin by the case β = 0, i.e. the desired pole locations are a disc centered at the origin
with radius α . Show that the optimal solution to

minimize ∑
∞
t=0

(
1
α

)2t

[x>t Qxt +u>t Rut ]

subject to xt+1 = Axt +But

(4.28)

results in closed-loop poles in the desired region.
Hint Show that the variable transformation x̄t = xt/α t , ūt = ut/α t allows to transform (4.28)
into a LQR problem on standard form

minimize ∑
∞
t=0 x̄>t Qx̄t + ū>t Rūt

subject to x̄t+1 = Āx̄t + B̄ūt .
(4.29)

and argue about what the known properties of x̄t in closed loop implies for the corresponding
xt under the optimal control ut .

(b) Show that modifying Ā to Ā− (β/α)I in (4.29) yields a feedback law ut = −Lxt which
places all eigenvalues of A−BL in a disc with radius α and center at (β ,0).

(c) Use the approach derived above to compute a feedback that places the closed-loop poles of

xt+1 =

(
1 0.1
0 1

)
xt +

(
0.005
0.1

)
ut

in a disc with radius 0.25, centered at (0.5,0). Please use the cost matrices Q = I and R = 1
when you perform your calculations.
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Problem 4.11 One disadvantage of more advanced control strategies is it can take a significant
time to compute the control signal. This computational delay can have a detrimental effect on the
stability of the closed loop. In this problem, we will explore the effects of computational delays
and how to design optimal controllers that compensate for them.

(a) To gain some intuition, let us first consider a scalar system

xt+1 = 2xt +ut

and compute the control law ut =−Lxt that minimizes the cost

∞

∑
t=0

x2
t +u2

t

Is the closed-loop system asymptotically stable?
(b) Assume now that the system is subject to a computational delay of one sample. This means

that the system evolves according to

xt+1 = 2xt +ut−1.

Write the closed-loop dynamics on state-space form with state vector (xt ,ut−1) and input ut .
Is the system with ut =−Lxt computed in (a) asymptotically stable?

(c) One way to compensate for the delay is to replace the current state by a prediction of its
future value. Let the nominal system be given by the state-space model

xt+1 = Axt +But

and assume that the state feedback ut =−Lxt renders (A−BL) is Schur stable.
Let us now assume that the system is subject to a computational delay of one sample. In
other words, the state vector evolves as

xt+1 = Axt +But−1

To compensate for this delay, we will modify the nominal state feedback to use a prediction
of the future state

ut =−Lx̂t+1|t =−L(Axt +But−1).

Show that this strategy ensures the stability of the associated closed-loop(
xt+1
ut

)
=

(
A B
−LA −LB

)(
xt

ut−1

)
Hint. Recall that A and TAT−1 have the same eigenvalues and that the eigenvalues of(

A11 A12

0 A22

)
is the eigenvalues of the matrices A11 and A22.

(d) We can take the result in (c) even further. Prove the following statement:

Let ut =−Lxt be the optimal control law for the reachable linear system xt+1 = Axt +But

and the infinite-horizon cost
∞

∑
t=0

x>t Qxt +u>t Rut
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Then, the control law that minimizes the same cost for the input delayed system

xt+1 = Axt +But−1

is the feedback law

ut =−L(Axt +But−1).

Problem 4.12 In this exercise, we will analyze the error dynamics of the stationary Kalman
one-step-ahead predictor and the Kalman filter for the linear system

xt+1 = Axt +But , yt =Cxt

(a) Consider the one-step-ahead predictor

x̂t+1|t = Ax̂t|t−1 +But +K(yt −Cx̂t|t−1)

and the estimation error et|t−1 = x̂t|t−1− xt . Show that the estimation error evolves as

et+1|t = (A−KC)et|t−1

This shows that the estimation errors are asymptotically stable if A−KC is Schur stable.
(b) For the stationary Kalman filter

x̂t+1|t = (A−KC)x̂t|t−1 +But +Kyt

x̂t|t = (I− K̄C)x̂t|t−1 + K̄yt

show that the dynamics of et|t = x̂t|t − xt evolves as

et+1|t+1 = (A− K̄CA)et|t

Show that A− K̄CA has the same eigenvalues as A−KC, and that also this error dynamics is
asymptotically stable if A−KC is Schur stable.

Hint. Recall that K = AK̄ and that for any real and square matrices X and Y of the same
dimensions, the matrix products XY and Y X have the same eigenvalues.

Problem 4.13 In this problem, we will explore the robustness properties (or, rather, the lack or
robustness properties) of the linear-quadratic output feedback controller.

(a) Consider the discrete-time linear system xt+1 = Axt +But , yt =Cxt with

A =

(
−0.6 0.7
1.0 −0.7

)
, B =

(
0.8
0.9

)
, C =

(
1 0

)
Design an LQ controller with weights

Q =

(
1 1
1 1

)
, R = 1

and a stationary one-step ahead Kalman predictor with Σw = Q and Σv = R. Verify that the
eigenvalues of A−BL and A−KC are both stable. Is the corresponding output feedback
controller also stable?
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(b) Assume that you use the model xt+1 = Axt +But , yt = Cxt for designing your controller,
but the actual system dynamics is given by xt+1 = Aaxt +Baut , yt = Caxt . Show that the
closed-loop error dynamics are given by the system(

xt+1
et+1

)
=

(
Aa−BaL BaL

(Aa−A)− (Ba−B)L−K(Ca−C) Aa+(Ba−B)L−KC

)(
xt

et

)
where et = xt − x̂t .

(c) Assume that the controller designed in (b) used the correct values of A and C, while Ba =

B+
(
0 10−4

)>. Are the error dynamics still asymptotically stable?

Problem 4.14 Two pendulums with lengths l1 and l2 and with masses m1 and m2 are attached to a
moving cart with mass M. The system can be affected by an external force F , which is under our
control; see Figure 4.18. Assuming that the masses of the two pendulums are much smaller than

p(t )

Figure 4.18: Schematic illustration of the double-inverted pendulum system.

the cart mass, the dynamics of the system is given by

l1θ̈1 = gsin(θ1)+ cos(θ1)u

l2θ̈2 = gsin(θ2)+ cos(θ2)u

ẍ = u

where u = F/M. Linearization around θ1 ≈ θ2 ≈ 0 gives the linear model

d
dt



θ1(t)
θ̇1(t)
θ2(t)
θ̇2(t)
x(t)
ẋ(t)

=



0 1 0 0 0 0
g/l1 0 0 0 0 0

0 0 0 1 0 0
0 0 g/l2 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0





θ1(t)
θ̇1(t)
θ2(t)
θ̇2(t)
x(t)
ẋ(t)

+



0
1/l1

0
1/l2

0
1

u(t)

We will initially consider a system with l1 = 0.5 and l2 = 0.1. You can use the value g = 9.81 for
the standard acceleration due to gravity.

(a) Sample the system with h = 0.02 seconds and determine the associated discrete-time system
description.

xt+1 = Axt +But , yt =Cxt +Dut

(b) Plot the eigenvalues of A and identify the eigenvalues (open-loop poles) which correspond to
the dynamics of the cart, to the dynamics of the first pendulum, and to the dynamics of the
second pendulum.
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(c) Consider an initial state where the cart is in rest, and the pendulum angles are +5◦ and −5◦,
respectively. In other words,

x0 =
(
π/36 0 −π/36 0 0 0

)
(4.30)

Perform an LQR design which is able to drives the pendulum angles to within ±1◦ in less
than 2.5 seconds, while keeping all angles within ±25◦ during the transient.

(d) Prove that the system is not reachable if the two pendulums have equal lengths, l1 = l2 = 0.5.
(e) Intuitively, it should be more difficult to stabilize the system the more similar the two

pendulums are in length. Quantify this difficulty by solving an “expensive control” problem
defined by Q = 10−6I and R = 1 for different values of l2. Let l2 vary from 1.01 to 0.11
meter in steps of 0.05 meter, and calculate the infinite-horizon cost-to-go from x0 defined in
(4.30). Plot the cost-to-go against l2. What can you observe?

Problem 4.15 The longitudinal dynamics of an aircraft in a steady climb of 15◦ with a constant
speed of 200km/h is given by

ẋ(t) =


−0.045 1.96 −9.48 0
−0.0065 −1.96 −0.046 1

0 0 0 1
0.0059 −6.83 0.042 −2.9

x(t)+


0 0.25

0.30 0
0 0

0.12 0

u(t).

Here, the state vector x =
(
v α θ q

)
represents deviations in airspeed [m/s], angle of attack

[rad], pitch angle [rad] and pitch rate [rad/s]from their respective steady states; the control vector
u =

(
δe β

)
comprises deviations in the elevator deflection [rad] and the throttle angle [rad]. We

assume that the plane can measure the air speed v and the pitch rate q.
We would like to design an airspeed control system that responds to a step-change in reference

speed of 1m/s with a maximal settling time of 15s without steady-state error, while the maximum
elevator deflection should be limited to ±10◦ and the maximum throttle deflection should not
exceed ±0.5◦.

(a) Sample the system with h = 0.1 seconds and compute the feed-forward gain Lref in the
control law

u = Lrefxref−L(xt − xref) (4.31)

to track a given reference state xref.
(b) Verify that the following two vectors are valid reference states:

x̄(1) =


1

0.0014
−0.0045

0

 , x̄(2) =


1

0.0014
0
0


Is there any reason to prefer one over the other?

(b) Consider the control strategy (4.31) and the second suggestion for xref above. Let Q = I and
determine an appropriate control penalty matrix R, given the desired maximal values of the
control signals.





5. Model predictive control

In this chapter, we will consider control of constrained systems. The presence of constraints makes
the control design problem much more challenging, even if both the system dynamics and the
constraints are linear. For example, we have already seen in Chapter 3 that the cost-to-go functions
for such problems are non-quadratic and therefore non-trivial to compute and represent.

To circumvent this difficulty, we will focus on receding-horizon control strategies. At each
sampling instant, these strategies measure the current process state and plan an open-loop optimal
control sequence over a fixed horizon. However, only the first control action in the computed
sequence is implemented. At the next sampling instant, the process is repeated, allowing the
controller to continuously adapt to the true system state. Since we use a model of the process to
predict the consequences of our control actions, the approach is known as model predictive control
(MPC). In contrast to open-loop policies, where the complete control sequence depends only on the
initial state, MPC is a feedback policy: the control action at each sampling instant depends on the
actual state at that time.

Our focus in this chapter is on model predictive control of linear systems with linear constraints
and (convex) quadratic cost functions. From Chapter 3, we know that open-loop optimal control
sequences for such problems can be computed efficiently using quadratic programming. However,
the use of open-loop optimal sequences in a receding-horizon fashion gives rise to a control policy
that is conceptually very different from traditional control laws, since the control signal is specified
indirectly as the outcome of an optimization problem. Nevertheless, we will show that in the
absence of constraints, the model-predictive control strategy results in a linear state feedback law
that can be tuned to be identical to the linear-quadratic controller that we have studied in the
previous chapter. In the presence of constraints, on the other hand, the model-predictive control
strategy results in a nonlinear state feedback law that is typically only defined for a subset of the
process states. We devote a significant effort to developing an understanding of how the different
parameters of a model predictive controller affect the stability and performance of the closed-loop
system. Special attention is given to techniques that reduce the computational cost and enlarge the
operating range of the MPC strategy. Finally, we discuss important engineering aspects such as
reference tracking and disturbance suppression in the model predictive control framework.
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5.1 Model-predictive control: two basic ideas
Model predictive control is based on two key ideas. The first idea is to determine the control
input by solving an (open-loop) optimal control problem. This step is enabled by developing a
finite-dimensional approximation of the underlying infinite-horizon optimal control problem that
can be solved quickly and reliably at every sample. The second idea is to introduce feedback using
the receding-horizon principle. At every sample, we measure the system state, plan an optimal
input trajectory over a finite horizon, but only implement the first action in the planned sequence.
The combination of these ideas leads to a basic MPC policy that we will eventually be able to
analyze, tune, and extend in many interesting directions.

A finite-horizon approximation of infinite-horizon optimal control
Consider the following infinite-horizon linear quadratic control problem under constraints

minimize
∞

∑
t=0

x>t Qxt +u>t Rut

subject to xt+1 = Axt +But t = 0,1, . . .
xt ∈ X , ut ∈U t = 0,1, . . .

(5.1)

We can view (5.1) as an optimization problem with an infinite number of variables {xt ,ut}∞
t=0.

Intuitively, as long as there exists a control sequence that drives the state to zero, we should be able
to approximate this problem by one that has a finite (but possibly long) horizon. To this end, we
split the objective function of (5.1) into a finite-horizon cost for the first T time steps, followed by
an infinite-horizon tail cost that captures the behaviour from sample T and on:

minimize
T−1

∑
t=0

x>t Qxt +u>t Rut +
∞

∑
t=T

x>t Qxt +u>t Rut

subject to xt+1 = Axt +But t = 0,1, . . .
xt ∈ X , ut ∈U t = 0,1, . . .

From the previous chapters, we know that the minimal value of the cost over the tail is given by the
cost-to-go function from state xT at time T . Hence, we can re-write our infinite-horizon optimal
control problem as an equivalent optimization problem over a finite horizon T :

minimize
T−1

∑
t=0

x>t Qxt +u>t Rut + v(xT )

subject to xt+1 = Axt +But t = 0,1, . . . ,T −1
xt ∈ X , ut ∈U t = 0,1, . . . ,T −1

(5.2)

So far, this reformulation is only formal, since we do not have an efficient way for computing and
representing v(·) when x and u are constrained. However, we know that v is quadratic in the absence
of constraints. Hence, if we can drive xT to a region XT in which the system is guaranteed to operate
without ever violating the constraints, then we can replace v(x) by a quadratic approximation
v̂(x) = x>QT x; ; see Figure 5.1. This leads to the following finite-horizon approximation of (5.1):

minimize
T−1

∑
t=0

x>t Qxt +u>t Rut + x>T QT xT

subject to xt+1 = Axt +But t = 0,1, . . . ,T −1
xt ∈ X , ut ∈U t = 0,1, . . . ,T −1
xT ∈ XT

(5.3)

Note that this problem includes both a terminal cost x>T QT xT and a terminal constraint, xT ∈ XT .
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When Q, R and QT are positive semidefinite and the sets X , U and XT are polyhedral (defined
by linear inequalities), then (5.3) is a convex quadratic program. We can therefore hope to solve it
quickly and reliably, even for relatively large state dimensions and long planning horizons. The
quality of the approximation (5.3) depends on the planning horizon T . If T is long enough so that
the optimal solution to the infinite-horizon problem (5.1) naturally drives the system state to XT at
time T , then there is no loss. But if the planning horizon is short, then we may need to deviate from
the infinite-horizon optimal control to guarantee that the state reaches XT in just T samples. This
can lead to a suboptimal performance, and it can also restrict the set of initial states for which we
can solve the planning problem (5.3). We will discuss these issues in much more detail later.

Time

x

T

v T(x ) (cost-to-go)

?
XT

?

Figure 5.1: The terminal state ensures that the state at the end of the prediction horizon is in a
region of the state space where we have a good (typically quadratic) estimate of the remaining
cost-to-go for the associated infinite-horizon problem.

The receding-horizon control principle
Although the reformulation (5.3) is interesting from a computational perspective, it defines an
open-loop control sequence. As we discussed in Chapter 3, open-loop controls can be sensitive to
errors in the model that is used to predict the future states. To introduce feedback, we will use a
receding-horizon control approach. At each sampling time, we measure the system state xt , solve a
finite-horizon planning problem to predict the optimal controls (and states) for the next T samples,
and apply the first control action in the computed sequence. We then wait until the next sampling
time and repeat this procedure. Specifically, at every time t, we solve the planning problem

minimize
T−1

∑
k=0

x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0, . . . ,T −1
x̂k ∈ X , ûk ∈U k = 0, . . . ,T −1
x̂T ∈ XT

x̂0 = xt

(5.4)

to find its optimal solution {x̂?0, . . . , x̂?T} and {û?0, . . . , û?T−1}, and apply the control

ut = û?0 (5.5)

(that is, the first action control in the planned sequence). In the finite-horizon planning problem, we
have used the notation ûk and x̂k for the predicted optimal constraints k steps into the future. The
notation is chosen to emphasize that the solution to the planning problem predicts future optimal
states and controls based on knowledge of the current state and under the assumption that our model
agrees with the true system dynamics1; see Figure 5.2 for a pictorial illustration.

1This notation is not standard: some literature use ut+k|t and xt+k|t instead of x̂k and ûk. But in this chapter xt and ut
(without hats) refer to the true system state and the control action applied to the system, respectively.
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Time

do

plan using optimal solution to (5.4)

Figure 5.2: The receding-horizon principle. At time t = 0, we measure the true state x0 and plan an
optimal control {û0, . . . , ûT−1} with respect to predicted states {x̂1, . . . , x̂T} over a horizon T . We
implement only the first control, i.e. let u0 = û?0. At time t = 1, we measure x1 (which may differ
from what we predicted it to be at t = 0 due to model inaccuracies) and re-plan over the prediction
horizon. We implement the first move, wait until the next sampling instant and repeat.

� Example 5.1 To demonstrate the feedback aspect of receding-horizon control, we return to the
quadcopter and consider a landing maneuver from a height of 40 m. We plan over a horizon of
T = 10 steps, use a quadratic cost defined by Q = QT = I and R = 1, and require that |ut | ≤ g. We
do not impose any state constraints and do not add any terminal constraint since the drone reaches
rest at zero well before the end of the horizon; see the full blue lines in Figure 5.3.

Assume that the true system is subject to an input disturbance so that its dynamics is given
by xt+1 = Axt +B(ut +1). If we still use the open-loop optimal control policy computed for the
nominal dynamics, the landing fails miserably (dashed blue line). Since the open-loop policy is zero
from time t = 5 and onward, there is nothing that compensates for the input disturbance. However,
if we use a receding-horizon approach and re-plan the control action in each sampling instant, the
quadcopter remains well-behaved and reaches a position close to zero, even though it plans using
the nominal model. Although our receding-horizon controller can be improved in many ways, the
example already demonstrates that it is much more robust than an open-loop policy. �
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Figure 5.3: Open-loop optimal control on nominal model (full blue line) and actual system (dashed
line). The receding-horizon policy (dashed red line) is much more robust on the actual system.
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Model-predictive control: a first attempt
To get some experience of MPC on a more complex problem, we consider an aircraft control
problem from [18]. As we will see, the MPC framework makes it easy to include multiple
constraints on states and controls, and the controller can generate control inputs that respect the
stated constraints without compromising the transient response. But we will also see that a poorly
tuned MPC controller can go unstable, and may even fail to generate an input signal at all.

A simple Python implementation of the basic MPC control strategy for linear systems with sim-
ple bounds on states and controls is listed in Figure 5.4. Given the current state x, mpcController
solves the planning horizon over T samples and returns the first control in the optimal input se-
quence. To solve the planning problem, it calls computePredictedOptimalControls, which
formulates and solves (5.4) using the algebraic modeling language cvxpy. We have used a model-
ing language for clarity. In an actual implementation, it is typically more efficient to perform the
transformation to a QP on standard form using the techniques described in Chapter 3, and only
revise the matrices that depend on x0 in each sampling instant.

1 i m p o r t numpy as np ; i m p o r t cvxpy as cp ; i m p o r t c o n t r o l a s c t r l
2

3 d e f c o m p u t e P r e d i c t e d O p t i m a l C o n t r o l s ( mpcProblemData , x0 ) :
4 # E x t r a c t sys tem m a t r i c e s
5 A=mpcProblemData [ ’A’ ] ; B=mpcProblemData [ ’B ’ ] ; C=mpcProblemData [ ’C ’ ] ;
6 ( n ,m) =B . shape
7 # P l a n n i n g h o r i z o n
8 T=mpcProblemData [ ’T ’ ]
9 # Cos t f u n c t i o n d e f i n i t i o n

10 Q=mpcProblemData [ ’Q’ ] ; R=mpcProblemData [ ’R ’ ] ; QT=mpcProblemData [ ’QT ’ ]
11 # C o n s t r a i n t s
12 ul im =mpcProblemData [ ’ u l im ’ ] ; y l im =mpcProblemData [ ’ y l im ’ ]
13 # T e r m i n a l c o n s t r a i n t : MT*xT <= mT
14 MT=mpcProblemData [ ’MT’ ] ; mT=mpcProblemData [ ’mT’ ]
15

16 # Set −up and s o l v e p l a n n i n g problem
17 x=cp . V a r i a b l e ( ( n , T+1) ) ; u=cp . V a r i a b l e ( (m, T ) )
18 c o s t = 0 ; c o n s t r = [ x [ : , [ 0 ] ] = = x0 ]
19 f o r t i n r a n g e ( T ) :
20 c o s t += cp . quad_form ( x [ : , t ] ,Q) + cp . quad_form ( u [ : , t ] ,R)
21 c o n s t r += [ x [ : , t +1]==A@x[ : , t ] + B@ u [ : , t ] ]
22 c o n s t r += [ − ul im <= u [ : , [ t ] ] , u [ : , [ t ] ] <= ul im ]
23 c o n s t r += [ − yl im <= C@x [ : , [ t ] ] , C@x [ : , [ t ] ] <= yl im ]
24 c o n s t r += [ MT@x[ : , [ T ] ] <= mT ]
25 c o s t += cp . quad_form ( x [ : , T ] , QT)
26 problem =cp . Problem ( cp . Minimize ( c o s t ) , c o n s t r )
27

28 problem . s o l v e ( )
29 r e t u r n ( x . va lue , u . v a l u e )
30

31 d e f m p c C o n t r o l l e r ( mpcProblemData , x ) :
32 # P lan o p t i m a l c o n t r o l s and s t a t e s ove r t h e n e x t T samples
33 ( xPred , uPred ) = c o m p u t e P r e d i c t e d O p t i m a l C o n t r o l s ( mpcProblemData , x )
34

35 # Apply t h e f i r s t c o n t r o l a c t i o n i n t h e p r e d i c t e d o p t i m a l s e q u e n c e
36 r e t u r n uPred [ : , [ 0 ] ]

Figure 5.4: Basic Python code for MPC controller: compute predicted optimal controls over the next
T steps, but apply only the first move. The finite-horizon planning problem is readily formulated
and solved using an algebraic modeling language such as cvxpy.
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� Example 5.2 — Altitude control of an aircraft. The following model describes the linearized
dynamics of a Cessna citation aircraft flying with a speed of 128.2 m/s at an altitude of 5000 m.

ẋ(t) =


−1.2822 0 0.98 0

0 0 1 0
−5.4293 0 −1.8366 0
−128.2 128.2 0 0

x(t)+


−0.3

0
−17

0

u(t)

y(t) =
(

0 1 0 0
0 0 0 1

)
The control input is the elevator angle, and the states represent the angle of attack, the pitch angle,
the pitch rate, and the altitude, respectively; see Figure 5.5. The control input is limited to ±15◦

and has a slew-rate (rate-of-change) limit of ±30◦/s. For passenger comfort, the pitch angle (the
first component of y(t)) is limited to ±20◦. Our aim is to design a controller which can perform
swift changes in altitude while maintaining passenger comfort.

longutidinal axis of plane

horizontal axis

movement directionangle of attack

pitchNose raises

Neutral

Nose dips

Figure 5.5: The altitude is the vertical distance between the center of mass of the plane and the
ground; the angle between the horizontal axis and the longitudinal axis of the plane is called the
pitch, while the angle between the moment direction and the longitudinal axis is called the angle of
attack. The control problem is to manipulate the elevator surfaces on the wings in order to control
the altitude, pitch rate, and angle of attack (positive angles are downward, leading the nose to dip).

We base our design on a discrete-time model sampled with h = 0.25s. To begin with, we
disregard the slew-rate constraint on the actuator and consider a small descent of 10 m by letting
x0 = (0,0,0,10). A linear controller designed with the LQR methodology for penalty matrices
Q = I and R = 10 behaves well in simulations with the linear model, but oscillates widely when the
actuator magnitude constraints are included in the simulations, see Figure 5.6 (left). In addition, the
comfort constraint on the pitch rate is violated. To account for these constraints, we turn to an MPC
controller that uses the same penalty matrices, a prediction horizon of T = 10, and incorporates the
magnitude constraints on the control action and on the pitch angle. For simplicity, we set QT = 0.
In contrast to the linear design, the MPC controller produces a well-behaved response that satisfies
both control and state constraints; see Figure 5.6 (right). When we include the slew-rate constraints
in the simulations, the (linear) LQR controller results in an unstable closed loop. The MPC design,
on the other hand, deals well with the actuator limitations, see Figure 5.7 (left).

The MPC controller that we have simulated does not use a terminal penalty (i.e. QT = 0) or
terminal constraint. Such a design needs a relatively long prediction horizon to have near-optimal
performance. It should therefore come as no surprise that when we reduce the prediction horizon
to T = 4, the closed-loop is no longer stable, but the aircraft goes into an undamped oscillation;
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Figure 5.6: The optimal LQ controller, which disregards actuator and state constraints, behaves
well in linear operation, but is unable to handle a descent of 10 meters in altitude without causing
large oscillations (left). The MPC controller, on the other hand, acounts for the constraints in the
design and is able to execute a well-damped descent while respecting control and state limits.

see Figure 5.7 (right). Even worse, if we request a altitude change of 30 meters, the planning
problem becomes infeasible and the receding-horizon policy is unable to suggest a control action. �

Figure 5.7: The MPC controller also handles slew-rate constraints on the elevators (left). However,
when we reduce the prediction horizon to T = 4, the controller is no longer able to stabilize the
altitude (right). In this example, this problem can be remedied by adding the appropriate terminal
constraint and terminal penalty (not shown).

The example indicates that MPC has a great potential to deal with constrained systems, as long
as the controller is properly tuned. But there are also several things that can go wrong: the planning
problem can become infeasible, and the closed-loop system may become unstable even when it
plans using an exact model of the true system dynamics. To understand how we can analyze the
potential instability problems in model predictive control, we will try to gain insight by temporarily
removing the constraints and study the simpler linear-quadratic receding horizon control problem.

5.2 Linear-quadratic receding-horizon control

It is easy to get blinded by how the MPC controller works. The fact that it solves an optimization
problem to plan the control actions in every sampling interval appears, at first, to put it beyond the
reach of standard analysis. But the essential property is not how the controller works, but rather
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what it does. The MPC controller controls the system to attain a minimal value of a cost function.
We will show that if we construct the cost function appropriately, then driving the state to a point
where the cost is minimized also guarantees asymptotic stability of the closed loop.

To make this point, we will briefly study the properties of the linear-quadratic receding-horizon
controller. Just like the MPC controller, this controller solves a finite-horizon planning problem
at every sampling instant. But unlike more complete MPC, it does not have any state or control
constraints. Instead, it simply attempts to solve the infinite-horizon LQR problem

minimize ∑
∞
t=0 x>t Qxt +u>t Rut

subject to xt+1 = Axt +But

using a receding-horizon policy. Specifically, the controller relies on the planning problem

minimize ∑
T−1
k=0 x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0, . . . ,T −1
x̂0 = xt

(5.6)

As before, the decision variables {x̂k} represent the predicted optimal state trajectory from x̂0 = xt

at time t and T steps into the future, while {ûk} represents the associated optimal control sequence.
Once the planning problem (5.6) is solved, the controller applies

ut = u?0 (5.7)

The control signal is held constant until the next sampling instant when the procedure is repeated.
In Chapter 4, we have shown how the finite-horizon LQR problem (5.6) can be solved using

dynamic programming. By Theorem 4.1.1, the optimal control sequence {û?k}is on the form

û?k =−Lkx̂?k k = 0, . . . ,T −1

where

Lk = (R+B>Pk+1B)−1B>Pk+1A

and the matrices Pk are computed via the Riccati recursion

Pk−1 = Q+A>PkA−A>PkB(R+B>PkB)−1B>PkA (5.8)

initiated with PT = QT . The receding-horizon control (5.7) can therefore be expressed as

ut = û?0 =−L0x̂?0 =−L0xt .

Thus, although we formally replan the control actions over a finite horizon at every time instant, we
always apply the same linear feedback ut =−L0xt based on the current state. Unfortunately, as the
next example shows, this policy does not necessarily yield a stable closed loop.

� Example 5.3 — Instability of linear-quadratic RHC. Consider the discrete-time linear system

A =

(
5/4 −1/4
1/4 1

)
, B =

(
1/4
1/4

)
(5.9)

and the receding-horizon problem given by Q = QT = I, R = 1 and T = 1. The one-step optimal
receding-horizon control is

ut =−L0xt =−
(
1/3 1/6

)
xt
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which yields the closed-loop system

xt+1 = (A−BL0)xt =

(
7/6 −7/24
1/6 23/24

)
xt

The closed-loop system matrix has two complex-conjugate eigenvalues with magnitude
√

7/6 > 1,
and is therefore not Schur stable. Admittedly, a one-step prediction horizon is very short and it is
natural to ask if a larger horizon would yield a stable closed-loop. For this system, receding-horizon
control will yield a stable closed loop for T = 3, result in closed-loop instability for T in the range
4−7, and then ensure stability for larger horizons. �

The example indicates that it can be difficult to characterize the relationship between prediction
horizon and closed-loop stability. Although we can expect to recover asymptotic stability for
sufficiently long prediction horizons, this is not a very attractive possibility. Increasing the horizon
length results in a larger planning problem that takes a longer time to solve. However, we should
also be able to guarantee closed-loop stability using the proper choice of terminal cost. Recall that
the value function of the infinite-horizon linear-quadratic control problem is v(x) = x>Px where

P = Q+A>PA−A>PB(R+B>PB)−1B>PA. (5.10)

If we use this value function as terminal cost in (5.6), i.e., let QT = P where P satisfies (5.10),
then the receding-horizon planning problem is an exact reformulation of the infinite-horizon linear-
quadratic control problem. The computed control signal (5.7) will therefore be identical to the the
infinite-horizon LQR policy. Since that policy results in an asymptotically stable closed loop, so
does the receding-horizon control. The next result formalizes our intuitive argument.

Proposition 5.2.1 Consider the linear system xt+1 = Axt +But with (A,B) stabilizable. Let Q�
0,R� 0 and (A,Q1/2) be detectable. Then, if QT = P where

P = Q+A>PA− (B>PA)>(R+B>PB)−1B>PA

the receding-horizon control (5.6), (5.7) results in an asymptotically stable closed-loop system.
Moreover, the control is equivalent to a linear state feedback ut =−Lxt where L satisfies

L = (R+B>PB)−1B>PA

Proof. Letting QT = P in (5.8) yields Pt = P for all times. Hence, the optimal control equals
the infinite-horizon optimal LQ solution, which, by Theorem 4.2.3, is guaranteed to yield an
asymptotically closed-loop under the given conditions. �

� Example 5.4 — Terminal penalty and stability of linear-quadratic RHC. We can now return
to the set-up in Example 5.3, and set QT equal to the stationary Riccati solution for the linear
system (5.9) and the cost matrices Q = I and R = 1. We then find

QT = P =

(
22.4351 −26.6541
−26.6541 48.6485

)
, L0 =

(
0.0266 2.7297

)
One can verify that A−BL0 is Schur stable, so the closed-loop system is asymptotically stable. �

Proposition 5.2.1 is useful since it defines an easily computable terminal cost that guarantees
closed-loop stability of the receding-horizon control law. But it is also restrictive since it only
supports a single option for the terminal cost and relies on reducing the receding-horizon policy to a
linear-quadratic regulator. As we will demonstrate next, it is possible to perform a direct analysis of
the closed-loop system using Lyapunov theory. This approach will reveal a full family of terminal
costs that can be used to ensure closed-loop stability.
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Recall that the stability proof for LQR uses the value function v(x) = x>Px as Lyapunov
function. When we use v(x) as terminal cost in (5.6), the linear-quadratic receding-horizon policy
(5.6), (5.7) generates the same control actions as LQR, so we should be able to use the same
Lyapunov function to analyze its properties. Moreover, with this terminal cost, the infinite-horizon
cost-to-go is identical to the optimal value of the planning problem

J?(x) =

min
û0,...,ûT−1

x̂0,...,x̂T

∑
T−1
k=0 x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0,1, . . . ,T −1
x̂0 = x

(5.11)

with QT = P. We refer to J?(x) as the predicted cost of the receding-horizon policy (5.6), (5.7). The
next theorem is the result of a stability analysis that uses J?(x) as Lyapunov function.

Theorem 5.2.2 Consider the system xt+1 = Axt +But with (A,B) stabilizable. If Q � 0 with
(Q1/2,A) detectable, R� 0 and QT = P where P satisfies the Lyapunov equation

(A−BL̃)>P(A−BL̃)−P+(Q+ L̃>RL̃) = 0

for some L̃ such that A−BL̃ is Schur stable, then the receding horizon control (5.6), (5.7) results
in an asymptotically stable closed loop for all T ≥ 1.

Proof. To ease notation, we define q(x,u) = x>Qx+ u>Ru and qT (x) = x>QT x, and note that
Theorem 2.2.6 implies that the suggested terminal cost matrix QT is positive semi-definite. Let
{x̂?k} and {û?k} be the optimal solution to (5.11) with x = xt at time t. Then

J?(xt) =
T−1

∑
k=0

q(x̂?k , û
?
k)+qT (x̂?T ).

Since J?(xt) ≥ 0 for all xt , and J?(0) = 0, the predicted cost is a positive semi-definite function.
We have shown in Section 3.2 that J? is a quadratic function of xt . We will now show that it can be
used as a Lyapunov function for the receding-horizon control law.

Assume that we apply the first element of the optimal predicted control sequence, i.e. let ut = û?0.
If our model agrees with the actual system, this leads us to xt+1 = Axt +Bû?0 = x̂?1. We would now
like to show that it is possible to find a solution to (5.11) from x = xt+1 so that J?(xt+1)≤ J?(xt).
To that end, consider the control sequence {û?1, . . . , û?T−1, ũT}. This control yields the predicted
state trajectory {x̂?1, x̂?2, . . . , x̂?T , x̃T+1} where x̃T+1 = Ax̂?T +BũT . The associated cost is

J(xt+1) =
T−1

∑
k=1

q(x̂?k , û
?
k)+q(x̂?T , ũT )+qT (x̃T+1) =

=−q(x̂?0, û
?
0)+q(x̂?0, û

?
0)+

T−1

∑
k=1

q(x̂?k , û
?
k)+qT (x̂?T )︸ ︷︷ ︸

J?(xt)

−qT (x̂?T )+q(x̂?T , ũT )+qT (x̃T+1)

=−q(x̂?0, û
?
0)+ J?(xt)−qT (x̂?T )+q(x̂?T , ũT )+qT (x̃T+1).

We now let ũT =−L̃x̂?T , so that x̃T+1 = (A−BL̃)x̂?T and observe that the last three terms satisfy

−qT (x̂?T )+q(x̂?T , ũT )+qT (x̃T+1) = (x̂?T )
>(−QT +Q+ L̃>RL̃+(A−BL̃)>QT (A−BL̃))x̂?T

Therefore, if we pick QT and L̃ as suggested in the theorem, these terms vanish, and it holds that

J(xt+1) = J?(xt)−q(x?0,u
?
0).
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Since ũT was chosen without minimizing J(xt+1), it holds that J?(xt+1)≤ J(xt+1), and thus that

J?(xt+1)≤ J?(xt)−q(x̂?0, û
?
0) = J?(xt)−

(
x>t Qxt +u>t Rut

)
where we have used that x̂?0 = xt and û?0 = ut . By summing both sides of the inequality

lim
k→∞

k

∑
t=0

(
x>t Qxt +u>t Rut

)
= J?(x0)− lim

k→∞

J?(xk)≤ J?(x0)

where the inequality follows since J? is non-negative for all arguments. Since (A,B) is stabilizable,
J? is bounded, and Cauchy’s convergence criterion implies that

lim
t→∞

(
x>t Qxt +u>t Rut

)
= 0.

As both terms inside the parentheses are non-negative, they must both tend to zero. Since R� 0,
limt→∞ u>Ru = 0 implies that limt→∞ ut = 0. Similarly, x>t Qxt → 0 implies that Q1/2xt → 0 and,
by the detectability assumption on (A,Q1/2), that limt→∞ xt = 0. �

Receding-horizon linear quadratic control is somewhat artificial, since the optimal infinite-
horizon feedback policy is already known and can be computed off-line. However, this will no
longer be the case when we introduce state and control constraints. Yet, as we will show shortly,
the line of argument used in the proof of Theorem 5.2.2 can be extended to the constrained case.

5.3 Stability and recursive feasibility of MPC
The approach that we have used in Theorem 5.2.2 can be extended to prove stability of model
predictive control of systems constrained systems. However, to do so, we need to address two new
challenges that appear due to the presence of constraints. First, we must ensure that the planning
problem remains feasible, i.e. that it will always admit at least one solution. Second, since the true
value function is difficult to compute, we need to find a substitute that ensures closed-loop stability
and does not increase the complexity of the planning problem (too much). Let us address these
problems one at a time.

Initial and recursive feasibility
A model-predictive controller can only operate in states for which the planning problem (5.4) has
a feasible solution. These are the states from which it is possible to reach XT in T steps while
the predicted controls and states satisfy their respective constraints. We call such states initially
feasible. However, we have seen in Example 5.2 that even if the initial state is feasible and we are
able to solve the planning problem for some time, we may end up in a state for which the planning
problem has no solution. To avoid such a situation, we need a way to ensure that that the planning
problem remains feasible for all future states that will be encountered under the model-predictive
control. The next example helps to build additional intuition.

� Example 5.5 — Initial feasibility does not imply recursive feasibility. Consider the vertical
quadcopter dynamics studied in earlier examples, and assume that the system is subject to constraints
|ut | ≤ 1 and ‖xt‖∞ ≤ 10 for all t. The system is controlled using an MPC controller with

Q =

(
1 0
0 1

)
, R = 1, T = 3

but no terminal constraint or terminal cost (i.e. we let QT = 0 and XT = R2). Clearly, we must
require that ‖x0‖∞ ≤ 10, i.e., that the initial state satisfies the constraints in (5.4). However, as
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shown in Figure 5.8, the set of initially feasible states is even smaller. Moreover, even if the initial
state is feasible, this does not necessarily guarantee that all future states will be feasible. For
example, with the initial value x0 =

(
−9 7

)
, the MPC planning problem is feasible and suggests

u0 =−1. Applying this control yields x1 =
(
−2.5 6

)
, which does not belong to the set of initially

feasible states. Hence, we cannot solve the MPC planning problem from this state.
In Chapter 2, we have discussed maximal control invariant sets. These are the set of states for

which there exists an admissible control so that the constraints are satisfied for all future times. As
shown in Figure 5.8 (right), x0 does not belong to the maximal control invariant set of this system,
so there is in fact no controller (and, in particular, no MPC controller) that is able to satisfy the
constraints for all future times. We should, therefore, not be surprised that we lose feasibility. �
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Figure 5.8: Left figure shows the set of initial values for which the MPC planning problem in
Example 5.5 admits a feasible solution. Even for initial states in this set, the MPC planning problem
can become infeasible in the future. As the right figure shows, x0 lies outside the maximal control
invariant set for the system (filled blue), so no admissible controller can handle this initial value.

The property that the MPC planning problem remains feasible for all future times is referred to
as recursive feasibility, defined next.

Definition 5.3.1 — Recursive feasibility. The MPC problem (5.4) is recursively feasible if the
existence of a feasible solution with initial state xt implies that the problem (5.4) is feasible also
when initialized with the next state xt+1 under the control law (5.5).

The next result shows that a control invariant terminal set guarantees recursive feasibility.

Proposition 5.3.1 If the terminal set XT is control invariant, then the MPC problem (5.4) is
recursively feasible.

Proof. Let us consider an initial state x0 from which the MPC planning problem is feasible.
Thus, x0 allows us to solve (5.4) and find optimal controls {û?0, . . . , û?T−1}, with an associated
predicted state evolution {x̂?0, . . . , x̂?T}. Since x1 = Ax0 + Bu?0 = x?1, we can apply the control
sequence {û?1, . . . , û?T−1, ũT} from x1 resulting in the predicted state trajectory {x̂?1, . . . , x̂?T , x̃T+1}
where x̃T+1 = Ax̂?T +BũT . Since x̂?T ∈ XT and XT is control invariant, there exists an admissible
ũT which brings x̃T+1 = Ax̂?T +BũT into XT . Using such a ũT in the proposed control sequence
(and the corresponding x̃T+1 as the final element of the predicted state sequence) yields a feasible
solution to (5.4). Recursive feasibility is established.

As we have discussed in Chapter 2, many control invariant sets can be represented as linear
inequalities and are thus readily included in the MPC planning problem. This includes the maximal
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control invariant set itself, the maximal invariant set for a given state feedback law, and the origin.
Since the MPC controller has to drive the state into the terminal state at the end of the horizon, a
smaller terminal set results in a smaller set of recursively feasible states. We will discuss this in
more detail once that we have derived conditions for asymptotic stability of the closed loop.

Asymptotic stability of the model predictive controller in closed-loop
Now that we know how to ensure recursive feasibility, we can guarantee closed-loop stability using
essentially the argument that we used for linear-quadratic receding-horizon control.

Theorem 5.3.2 — MPC stability. Consider the linear system xt+1 = Axt +But subject to con-
straints xt ∈ X and ut ∈U for all t ≥ 0 under the model predictive control (5.4),(5.5). If the
following conditions hold:

(a) Q� 0 with (Q1/2,A) detectable, R� 0 and QT � 0;
(b) X , U and XT are closed and contain 0 in their interior;
(c) XT is control invariant under the given dynamics and constraints; and
(d) For every x ∈ XT , there exists ũ ∈U such that Ax+Bũ ∈ XT and

(Ax+Bũ)>QT (Ax+Bũ)− x>QT x+ x>Qx+ ũ>Rũ≤ 0

then limt→∞ xt = 0 from all initial values x0 for which (5.4) admits a feasible solution.

Proof. By Proposition 5.3.1, Condition (c) implies recursive feasibility. To prove stability, we will
use a Lyapunov function argument based on the predicted cost

J?(x) =

min
û0,...,ûT−1
x̂0,x̂1,...,x̂T

T−1

∑
k=0

x̂>k Qx̂k + û>k Rûk + x̂T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0, . . . ,T −1
x̂k ∈ X , ûk ∈U k = 0, . . . ,T −1
x̂T ∈ XT

x̂0 = x

(5.12)

By the same arguments as in the proof of Theorem 5.2.2, J?(x) is a positive semi-definite function.
Moreover, by Theorem 5.4.1, J?(x) is continuous, and therefore a valid Lyapunov function candidate.
Let xt admit a feasible solution to (5.4) at time t and let {û?0, . . . , û?T−1} and {x̂?1, . . . , x̂?T} be the
corresponding optimal predicted control sequence and state trajectory, respectively. By the same
arguments used in Proposition 5.3.1, there is a ũT such that {û?1, û?2, . . . , û?T−1, ũT} is feasible
when evaluating the predicted cost for the system state xt+1 = Axt +Bu?0 at time t + 1. Letting
q(x,u) = x>Qx+u>Ru and qT (x) = x>QT x, the associated cost can be written as

J(xt+1) =
T−1

∑
k=1

q(x̂?k , û
?
k)+q(x̂?T , ũT )+qT (Ax̂?T +BũT ) =

= J?(xt)−q(x̂?0, û
?
0)−qT (x̂?T )+q(x̂?T , ũT )+qT (Ax̂?T +BũT )

Since x̂?T ∈ XT , (c) and (d) imply that we can find ũT such that the last terms are negative, i.e.

J(xt+1)≤ J?(xt)−q(x̂?0, û
?
0) = J?(xt)−q(xt ,ut)

Since ũT was chosen without minimizing the predicted cost, J?(xt+1)≤ J(xt+1) and therefore

J?(xt+1)≤ J?(xt)−q(xt ,ut).

Asymptotic stability now follows by summing both sides of the inequality over time and proceeding
just as in the proof of Theorem 5.2.2. �
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Condition (c) demands that the terminal set is control invariant, while (d) requires that x>QT x
is an upper bound on the infinite horizon LQR cost for all initial states in the terminal set. Together,
the two conditions are quite complex to deal with in their fullest generality.

The simplest solution is to let XT = {0}, in which case ũ = 0 satisfies condition (d) for all QT .
But this terminal set is very small and requires large prediction horizons to avoid a small operating
region of the MPC controller. The largest terminal set that we can use is the maximal control
invariant set itself. With this terminal set, condition (d) is difficult to guarantee, since it requires a
quadratic upper bound on the cost-to-go for a control policy that makes the state stay in XT . We
have neither given an explicit construction of such a policy nor discussed tools that can estimate
its infinite-horizon cost. A good compromise is to let ũT =−L̃x̃T for some state feedback gain L̃.
One can then let XT be the maximal positive invariant set of xt+1 = (A−BL̃)xt under the given
constraints, and find the terminal weight QT by solving a Lyapunov equation as in Theorem 5.2.2.

Proposition 5.3.3 Consider the discrete-time linear system xt+1 = Axt +But under the constraints
xt ∈ X and ut ∈U for all t ≥ 0. Let ut be defined by the model predictive control law (5.4), (5.5). If
conditions (a) and (b) of Theorem 5.3.2 hold and

(c’) XT ⊆ X ∩{x | − L̃x ∈U} is positively invariant under xt+1 = (A−BL̃)xt

(d’) QT = P where P satsifies the Lyapunov equation

(A−BL̃)>P(A−BL̃)−P =−(Q+ L̃>RL̃)

then limt→∞ xt = 0 from all initial values x0 for which (5.4) admits a feasible solution.

A natural choice for L̃ is to use the infinite-horizon linear-quadratic controller for the weight
matrices Q and R. As shown in Equation (4.12), the QT proposed in (d’) is then equivalent to the
solution to the algebraic Riccati equation (4.9) for the given system and cost matrices.

How terminal constraints and horizon length impact recursive feasibility and optimality
The set of recursively feasible states on an MPC controller with a control invariant terminal set XT

and planning horizon T is simply the set of initial states from which we are able to reach XT in T
steps while respecting the constraints in x and u. In other words, it is the T -step controllable set of
XT . This set becomes larger if we choose a larger terminal set or a longer planning horizon.

The smallest valid choice for a terminal set is the origin, XT = {0}, and the largest choice is
the maximal control invariant set for the given dynamics and constraints. The positively invariant
set of the infinite horizon LQR controller is often able to strike a nice balance between the two,
and has some interesting properties that we will explore in Proposition 5.3.4 below. But let us first
illumuniate the discussion with an example.

� Example 5.6 — The terminal set impacts the set of recursive feasible states. Let us return
to the constrained quadcopter dynamics studied in Example 5.5 and add a terminal constraint to the
planning problem. Figure 5.9 (left) shows the maximal control invariant set along with the set of
recursive feasible states for XT = {0} (in blue), and for XT being the invariant set of the LQ-optimal
state feedback for Q = I and R = 1 (grey). Clearly, the larger terminal set gives a larger set of
initially feasible states. Similarly, Figure 5.9 (right) shows that a larger horizon gives a larger set of
initially feasible states; in fact, for large values of T , we recover the maximal control invariant set. �

When we increase the control horizon, we expect not only that the set set of recursively feasible
states becomes larger, but also that the MPC control approaches the infinite-horizon optimal
(constrained) control. Recall that we introduced MPC by dividing an infinite-horizon optimal
control problem into a T -step constrained LQR problem and an infinite-horizon tail problem which
we only can solve in the absence of constraints. For short planning horizons, we should expect
some degree of suboptimality, since we “glue” the two solutions together by forcing xT into XT . At
the same time, if the constraint sets X , XT and U contain origin in their interior, and if the stage cost
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Figure 5.9: The left figure shows the set of recursively feasible states when we use the origin as
terminal set (in gray), and when we use the maximal invariant set of the LQ-optimal state feedback
as terminal set (in blue). The smaller terminal set gives a smaller set of recursively feasible states.
The right figure shows how a longer prediction horizon T allows us to enlarge the set of recursively
feasible states, approaching the maximal control invariant set of the system.

vanishes only for (x,u) = (0,0), then the finite-horizon optimal control will drive xT → 0 as T →∞.
Hence, if the horizon is long enough, we should expect that xT ∈ XT , even if this is not explicitly
enforced, which means that no optimality is lost. One can prove that this intuition is indeed true.

Proposition 5.3.4 Consider the same set-up as in Proposition 5.3.3 and let (a), (b), (c’) and (d’)
hold with L̃ chosen as infinite-horizon LQ-optimal state feedback gains defined by matrices Q and
R. Then there exists a finite horizon T∞, dependent on x0, with the property that whenever T ≥ T∞,
the sequence {û?0, . . . , û?T−1} that attains the minimum cost in (5.4) is equal to the first T elements
of the infinite sequence {u?0,u?1, . . .} that minimizes the infinite-horizon constrained LQR cost (5.1).

Proof. First note that in the absence of constraints, the optimal solution to (5.1) is the infinite-
horizon LQ-optimal control ut =−Lxt where L is given by (4.10). Its infinite-horizon cost-to-go is
equal to V (x) = x>Px, where P is the solution to the associated Riccati equation (4.9); V is also a
Lyapunov function for the closed-loop system under the LQ-optimal control, so every level set of
V is invariant under xt+1 = (A−BL)xt . Since the origin lies in the interior of both X and U , there
exists a level set LV (α) of V fully contained in X in which the LQ-optimal control is admissible.

Now, since the system is reachable, the infinite-horizon optimal controller (5.1) will drive the
state to the origin. This means that there exists some T∞ so that the optimal control will drive
the state to LV (α). Its cost-to-go at this point will be equal to V (x), since the optimal control
will be the linear LQ-optimal controller for all future times. Hence, with T ≥ T∞, the proposed
model-predictive controller solves the same problem as the infinite-horizon optimal controller.
Equivalence of the two control sequences follows since they are both unique as the objective of the
two control problems are strongly convex in u. �

The negative aspect of using a long horizon is the computational cost of solving a large
optimization problem at every sample. In practice, we may therefore need to use T smaller than T∞.
As the next example shows, this does not necessarily mean that we loose optimality.

� Example 5.7 Consider the system

xt+1 =

(
0.5 −1.25
1.0 0.0

)
xt +

(
1
0

)
ut
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under constraints ‖xt‖∞ ≤ 5, and |ut | ≤ 1. We let the stage-cost be defined by Q = I and R = ρI. We
apply Proposition 5.3.3 and use the infinite-horizon LQR cost-to-go function as terminal penalty,
and the maximal invariant set for the closed-loop dynamics of the corresponding LQR-optimal
controller as terminal set. Figure 5.10 demonstrates how the predicted trajectories for different
horizon lengths differ. When the horizon is short, one has to accept to deviate from the infinite-
optimal control to drive the system into the terminal state at the end of the prediction horizon. As
shown in the same figure (right), the two control laws nevertheless generate the same closed-loop
trajectories. The reason is that the initial parts of the predicted optimal trajectories agree, and since
only the first predicted action is used in each sample, the closed-loop trajectories will also agree. �
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Figure 5.10: Predicted trajectories for two different horizon lengths (left), and corresponding
closed-loop trajectories (right). The need to drive the terminal state into the terminal state (light
blue polyhedron) requires the control with short horizon to deviate from the infinite-horizon optimal
controller. Still, the initial control signals are the same, and the closed loop trajectories coincide.

5.4 The MPC policy is a static nonlinear state feedback law

The model-predictive control policy is defined through the solution of an optimization problem
that depends on the current process state. This makes it different from traditional approaches that
define the control action as an explicit function of the state. Nevertheless, we have shown that the
linear-quadratic receding-horizon controller, which also solves an optimization problem in every
sample, is actually a linear state feedback. In this section, we will show that the model predictive
control law for linear systems defines a static nonlinear mapping from the process state to the
control action. More specifically, the control law is piecewise linear. This fact can be proven using
properties of multiparametric quadratic programs reviewed in Appendix C.

Theorem 5.4.1 The MPC control law defined by (5.4), (5.5) is a continuous function of xt . It is
piecewise affine, in the sense that there exists a partition of the feasible set of (5.4) into a finite
number of polyhedra {R1, . . . ,RK} such that ut is an affine function of xt in each Rk. Moreover,
the predicted cost (5.12) is a continuous and piecewise quadratic function of the initial state,
defined on the same polyhedral partition as the control law.

Proof. Recall from Chapter 3 that the planning problem (5.4) can be formulated in condensed form
and described by a quadratic program

mininimze z>Pz+2q>z+ r
subject to Az≤ b

where q, r, and b depend on the initial value response (and therefore on xt). To simplify the



5.4 The MPC policy is a static nonlinear state feedback law 155

dependency on xt , we perform a variable-transformation x = z−P−1q, which results in the problem

minimize x>Px+ r−q>P−1q
subject to Ax≤ b−AP−1q

Constant terms in the objective do not influence the optimal solution (only the optimal value of the
problem). We can therefore disregard r−q>P−1q when we find its optimal solution. Moreover,
since b is affine in xt and q is linear in xt , the inequality constraint can be written as Ax≤ w+Sxt .
Hence, for a given xt , we can find the MPC control action (5.5) by first solving

minimize x>Px
subject to Ax≤ w+Sxt

(5.13)

for x?, then forming z? = x?+P−1q, and extracting the first component(s) of z? to obtain ut = û?0
One can view the components of xt as parameters of the planning problem. With this perspective,

(5.13) is a multiparametric quadratic program reviewed in Appendix C. For such problems, one
can characterize precisely how the optimizer and the optimal value depend on the parameters. By
Proposition C.6.1, the optimal solution to (5.13) x?(xt) is continuous and piecewise affine in xt .
Since P−1q is linear in xt , it follows that z?(xt) is also piecewise affine and continuous in xt . Hence,
ut , which is defined as the m first components of z?(xt) is continuous and piecewise affine.

As z?(xt) is continuous and piecewise affine, it is clear that z?(xt)
>Pz?(xt) is continuous and

piecewise quadratic. Similarly, since q depends linearly on xt , 2q>z?(xt) is also continuous and
piecewise quadratic. Finally, as r is a quadratic function of xt , we conclude that the optimal value
of (5.13) is a continuous and piecewise quadratic function of xt . �

There are a number of algorithms for multiparametric quadratic programming that construct a
polyhedral partition of the feasible set of (5.13) and determine the affine expressions that describe
how the control signal depends on the state in each such region. This information is typically
computed off-line and stored in memory. During run-time, finding an optimal solution to (5.13)
then simply amounts to finding which polyhedron in the partition the current state belongs to, and
then evaluating the corresponding affine expression for how ut depends on xt . In the context of
model predictive control, this approach is known as explicit MPC. The advantage of explicit MPC
is that it requires a very limited online effort, and that it is easy to get an estimate of the worst-case
execution time of the MPC controller. The disadvantage of explicit MPC is that mpQP solvers
sometimes generate partitions with many polyhedra, which means that the corresponding explicit
control law requires significant memory to store. This is especially true for systems with high state
dimensions and planning problems with long horizons and many constraints.

� Example 5.8 Let us return to the quadcopter dynamics |ut | ≤ 1 and states constrained to ‖xt‖∞ ≤
10. For simplicity, we use T = 3, Q = I, R = 1, QT = 0 and the terminal set defined by the maximal
invariant set of the associated linear-quadratic controller. Figure 5.11 shows the partition of the
state space into convex 21 polyhedra (left), and the resulting continuous piecewise affine feedback
law (right). Note that the feasible set of the controller agrees with the one in Example 5.6. With
horizons T = 6 and 9, the explicit controller has 55 and 85 critical regions, respectively. �

We have given a brief exposition of the nonlinear nature of the basic MPC controller based on
results for a specific class of multiparametric quadratic programs. A few additional details of how
such a solver works is given in Appendix C. With a small additional effort, the approach can be
extended to derive explicit expressions for many of the more advanced MPC strategies that we will
encounter in the remainder of this chapter; see [3] for details.
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Figure 5.11: Partition for explicit MPC controller for the quadrotor (left) and the corresponding
control law (right).

5.5 A few practical enhancements to the basic MPC policy
There are several variations of the basic MPC formulation that are very useful in practice, but result
in control policies that are somewhat more difficult to analyze theoretically. We will explore a few
of them here. In particular, we will elaborate on how we can guarantee that the planning problem
always remains feasible by softening its constraints, discuss how the planning problem can be
expressed in terms of separate control and prediction horizons, and illustrate how the fixed terminal
set can be replaced with explicit constraint checking over an extended horizon.

Ensuring a feasible planning problem by softening constraints
Although we have proven that a careful combination of terminal set and terminal cost guarantees
both recursive feasibility and closed-loop stability, there are reasons to be critical to our analysis.
We have assumed that the model used for predictions in the controller is identical to the actual
process dynamics and that no unknown disturbances are acting on the system. So even if our
idealized analysis tells us that we should have recursive feasibility, the optimization problem (5.4)
may still become infeasible when the controller runs against the real process.

To increase the likelihood that the planning problem remains feasible, we allow the optimizer
to violate certain constraints if this becomes necessary. To this end, we distinguish between hard
constraints that must be respected at all times, and soft constraints that can be breached without
severe consequences. Examples of hard constraints include limits on the control that the actuator
can deliver and safety-critical operating limits on process states. Soft constraints, on the other hand,
are typically introduced from a performance perspective and can be violated without significant
consequences. To signal to the optimizer that a constraint of the form

a>z≤ b

can be violated, we introduce a non-negative slack variable s≥ 0 and modify the constraint to

a>z≤ b+ s.

This inequality can always be satisfied with s = max{0,a>z−b}. Constraint violations are discour-
aged by adding a positive slack cost σ(s) to the objective of the planning problem. Common costs
include the linear σ(s) = κs and quadratic σ(s) = κs2, each with its distinct characteristics. The
quadratic penalty starts with a zero slope at the origin but increases rapidly with s, making it lenient
for minor violations while penalizing larger ones heavily. Conversely, the linear penalty begins
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with a non-zero slope and increases gradually, discouraging even small violations but being more
forgiving for large constraint violations. The next example attempts to quantify this intuition.

� Example 5.9 Let us consider the quadratic function f (x) = (x−1)2 under the constraint x≤ 0.
Clearly the optimal solution is x? = 0, for which f ? = f (x?) = 1. Now consider the softened version

minimize f (x)+σ(s)
subject to x≤ s, s≥ 0

with σ(s) = κs2. Then, compared to x? = s = 0 letting x = x?+ s with s≥ 0 changes the cost by

f (x)+κσ(s)− f (x?) = (x?+ s−1)2 +κs2− (x?−1)2 = s2− s+κs2 = (κ +1)s2− s

which is negative for s ∈ (0,1/(κ +1)). Hence, no matter how large we choose κ , it will always be
optimal to pick s? = 1/2(κ +1)> 0 and to violate the constraint (if even by a little).

For the linear penalty σ(s) = κs, a similar small variation in x and s changes the cost by

(x?+ s−1)2 +κs− (x?−1)2 = s2 +(κ−2)s

which is positive for all s if κ ≥ 2. Therefore, there will be no constraint violation if κ ≥ 2. �

One can demonstrate that the observations from our simple example hold true for more general
quadratic programs. A small relaxation of the constraints will lead to a decrease in the optimal
value of the QP that depends linearly on the perturbation. Thus, if σ(s) is quadratic, it will always
be better to violate the constraint slightly (decreasing the cost proportionally to the violation, and
accepting a slack penalty cost with the slower quadratic growth for small violations).

In the context of model-predictive control, we often enforce multiple constraints at multiple
(possibly all) times in the planning horizon. When softening these constraints, we can either use a
single slack variable for all constraints or assign individual slack variables to each constraint at every
sample. Opting for a single slack variable focuses on minimizing the most significant violation,
but allows all soft constraints to be violated to the same level which may lead the optimizer to
breach constraints that could actually have been met. On the other hand, employing individual slack
variables for each constraint increases the total number of variables but enables us to discourage
violations of each constraint. In the latter case, original constraints on the form

Mxx̂k ≤ mx

are softened using different slack vectors sk for each time in the horizon, i.e.

Mxx̂k ≤ mx + sk

and the objective of the planning problem becomes

T−1

∑
k=0

x̂>k Qx̂k + û>k Rûk +σ(sk)+ x̂>T Qt x̂T

where σ(s) = κ‖s‖1 or σ(s) = κ‖s‖2
2. Although certainly possible, it is rather uncommon to use

different weights κ for different points in time (or different weights for different components of sk).
The next example demonstrates the effect of constraint softening in an MPC problem.

� Example 5.10 — Softening constraints with quadratic and linear penalties. Consider

xt+1 =

0.8 −0.6 0.2
1 0 0
0 0.8 0.6

xt +

1
0
0

ut

yt =
(
−1 1 1

)
xt
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subject to the constraints |ut | ≤ 1 and |yt | ≤ 1. For simplicity, we use an MPC controller without
terminal state and terminal cost, and let Q =C>C, R = 1 and T = 20.

From the initial value x0 = (0.8,0.8,0.8), it is impossible to respect the upper limit on the
output, and without softened constraints the MPC problem would have been infeasible. Figure 5.12
demonstrates the effect of constraint softening with linear and quadratic penalties, respectively. The
simulations show how larger penalties on the slacks give better constraint satisfaction. We also see
that the quadratic penalty is better at avoiding large deviations, while the linear penalty is better at
ensuring that the constraints are violated for a short period of time, when possible. �
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Figure 5.12: Larger penalties on slacks reduce constraint violations. Quadratic penalties are better
at reducing the amplitude of violations, while linear penalties are better at limiting the duration of
constraint violations.

Although there are theoretical guidelines for adjusting the slack penalty weights, many practical
applications use a quadratic slack penalty with its weight tuned to be large enough in simulations.
However, it’s important to be cautious, as setting the weight too high can cause numerical issues,
making the planning problem difficult to solve due to ill-conditioning.

The dual mode concept and separate control and prediction horizons
The subdivision of the model-predictive control strategy into a finite-horizon planning problem and
a remaining linear-quadratic tail problem is sometimes referred to as a dual mode strategy: the first
mode drives the system through a constrained transient into the terminal set, and the second mode
applies an admissible control policy to steer the state towards the target inside of the terminal set,
see Figure 5.13. When the second mode uses a linear state feedback, uk = −Lxk, several useful
modifications of the MPC planning problem (5.4) become natural. One such modification is to
replace the terminal set by explicit constraint checking in the second mode. Since ûk =−Lx̂k for
k ≥ T , we can express the predicted states in the second mode explicitly in terms of x̂T :

x̂T+k = (A−BL)kx̂T .

Recall that the terminal set is defined as the set of states for which the proposed control policy is
admissible and able to ensure that the state vector satisfies the imposed constraints. Assume that
the origin lies in the interior of X and U so that we can express the state constraints as

x̂k ∈ X = {x |Mxx≤ 1}

and the control constraints as

ûk ∈U = {u |Muu≤ 1} .
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Mode 1: constrained transient Mode 2: linear (unconstrained) operation

Figure 5.13: The dual mode perspective: the MPC controller plans for a first mode optimizing a
constrained transient, and a second mode that uses a fixed linear state feedback to regulate the state
around its target and away from constraints.

Then, since ûT+k =−Lx̂T+k when k ≥ 0, the constraints for t ≥ T can be written as(
Mxx̂T+k
MuûT+k

)
≤ 1⇔

(
Mx

−MuL

)
x̂T+k ≤ 1⇔ M̄x̂T+k ≤ 1

with the obvious definition of M̄. With x̂T+k = (A−BL)kx̂T , the requirement that x̂T+k and ûT+k
should satisfy their constraints throughout the second mode can therefore be expressed as

M̄(A−BL)kx̂T ≤ 1 for k = 0,1, . . . (5.14)

If we compare with Theorem 2.3.1, we see that these inequalities define the maximal invariant set
for x̂k+1 = (A−BL)x̂k contained in {x | M̄x≤ 1}. Moreover, if (A−BL) is Schur and (A−BL,M̄)
is observable, the determinedness index ν of the invariant set is finite, and it is enough to impose
the constraint (5.14) over a finite horizon Tc ≥ ν . The corresponding MPC planning problem is

minimize
T−1

∑
k=0

x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0, . . . ,T −1
Mx̂k +Nûk ≤ m k = 0, . . . ,T −1
M̄(A−BL)ix̂T ≤ 1 i = 0, . . . ,Tc

x̂0 = xt

(5.15)

Note that the terminal constraint is replaced by constraint checking over k = T,T +1, . . . ,T +Tc.
In the literature, T is known as the control horizon since we optimize the control action over

the T first samples, while T +Tc is known as the prediction horizon since we predict the effect of
our control actions over all these samples. We will mainly use dual mode formulation (5.15) when
it is difficult to compute an invariant-set off-line. However, the original reason for using a separate
control horizon and prediction horizon was to decrease the computational effort required to solve
the associated quadratic program. A small control horizon gives an optimization problem with
fewer decision variables, but also a more shortsighted controller. As the analogy with the terminal
set shows, stability can still be guaranteed if the prediction horizon is sufficiently long and if QT is
chosen to reflect the infinite-horizon cost of the dual mode controller. Of course, a short control
horizon leads to a small set of recursively feasible states also in this formulation.
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The use of pre-stabilized predictions to improve numerical conditioning
Another modification that comes naturally in the dual-mode framework is to re-parameterize the
planning problem in terms of deviations vk from a known control law. Specifically, if we let

ûk =−Lx̂k + v̂k for k = 0,1, . . . ,T +Tc

then we can express the state predictions as

x̂k+1 = Ax̂k +Bûk = (A−BL)x̂k +Bv̂k.

These pre-stabilized predictions may lead to a better numerical conditioning of the resulting
quadratic program (and hence faster and more reliable solutions) than the original formulation. The
control gain L is typically the same that we use in the dual mode, but could in principle be a gain
that is chosen just to improve the numerical conditioning of the optimization problem.

5.6 Model predictive control for reference tracking
Let us begin by considering the problem of making the output yt =Cxt converge to a stationary
reference value r. This problem can be addressed using the same ideas that we used for the
linear-quadratic regulator, i.e. to determine xref and uref such that{

xref = Axref +Buref

r = Cxref (5.16)

and then penalize the deviations ∆xt = xt − xref and ∆ut = ut −uref from these reference values. In
the absence of constraints, we have shown that the optimal tracking problem can be posed as a
standard LQR problem in the deviations

minimize ∑
∞
t=0 ∆x>t Q∆xt +∆u>t R∆ut

subject to ∆xt+1 = A∆xt +B∆ut

This allowed us to argue that the optimal control is on the form ∆ut =−L∆xt where L is obtained
by solving a standard LQR problem, and that the cost-to-go function for this problem is v(xt) =
∆x>t P∆xt where P satisfies the corresponding discrete-time algebraic Riccati equation.

In light of these observations, it is natural to formulate the MPC planning problem in the
coordinates (∆x̂t ,∆ût) using a terminal cost on the form ∆x̂>T QT ∆x̂T . Since the constraints are
typically stated in terms of the actual states, e.g. Mxxt ≤mx and Muut ≤mu, we use the relationships
xt = ∆xt + xref and ut = ∆ut +uref and pose the planning problem as

minimize ∑
T
k=0 ∆x̂>k Q∆x̂k +∆û>k R∆û+∆x̂>T QT ∆x̂T

subject to ∆x̂k+1 = A∆x̂k +B∆ûk t = 0,1, . . . ,T −1
Mx(∆x̂k + xref)≤ mx t = 0,1, . . . ,T −1
Mu(∆ûk +uref)≤ mu t = 0,1, . . . ,T −1
∆x̂T ∈ X̄T

∆x̂0 + xref = xt

.

The applied control is simply û?0 = ∆û?0 +uref. To guarantee recursive feasibility, the terminal set
X̄T should be control invariant for the dynamics of ∆x̂k under the control constraint

∆ûk ∈ Ū =
{

∆u |Mu∆u≤ mu−Muuref}
and X̄T should be contained in the set

X̄ =
{

∆x |Mx∆x≤ mx−Mxxref} .
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Since these sets depend on the reference (through xref and uref), the terminal set will typically need to
be re-calculated whenever the reference changes. The terminal set X̄T = {0} is a valid choice if xref

is feasible, but it severely limits the set of recursively feasible states. A better solution is to replace
the control invariant set with explicit constraint checking for a fixed control law ∆ûk =−L∆x̂k for
k = T, . . . ,T +Tc. An inconvenience is that the determinedness index of the associated invariant set
changes as the reference changes, so one may need to accept a heuristic choice of Tc.

It is possible to integrate the reference calculation in the planning problem. Doing so has the
advantage that we can deal with infeasible reference requests by softening the requirement on
perfect tracking. We then replace r = Cxref by r+ s = Cxref and add a slack penalty σ(s) to the
objective function of the planning problem This leads to the following MPC formulation

minimize
T−1

∑
k=0

∆x̂>k Q∆x̂k +∆û>k R∆ûk +∆x̂>T QT ∆x̂T +σ(s)

subject to ∆x̂k+1 = A∆x̂k +B∆ûk k = 0, . . . ,T −1
Mx(∆x̂k + xref)≤ mx k = 0, . . . ,T −1
Mu(∆ûk +uref)≤ mu k = 0, . . . ,T −1
∆x̂T ∈ X̄T(

A− I B
C 0

)(
xref

uref

)
=

(
0

r+ s

)
∆x̂0 + xref = xt

(5.17)

in variables {∆x̂k,∆ûk},xref,uref and s. The applied control is

ut = ∆û?0 +uref. (5.18)

The next example demonstrates this approach on a simple tracking problem.

� Example 5.11 The following model represents the influence of the elevator surface deflection δ

on the pitch rate q of an aircraft, see Figure 5.14.

δ
α

q

Figure 5.14: The elevator surface deflection δ affects the angle of attack α and the pitch rate q.

(
αk+1
qk+1

)
=

(
0.9719 0.0155
0.2097 0.9705

)(
αk
qk

)
+

(
0.0071
0.3263

)
δk

The control problem is to determine the appropriate elevator surface deflection δk for tracking a
given reference angle αr. Both states and the control are subject to upper and lower bounds

X = {(α,q) : −15≤ α ≤ 30 and −100≤ q≤ 100} U = {δ : −25≤ δ ≤ 25}
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We consider the cost defined by

Q =

(
10 0
0 1

)
. R = 1

whose stationary optimal control in linear operation is

ut =−L
(

αk
qk

)
+ lrαr =−

(
1.9603 0.8385

)(αk
qk

)
+3.1973αr

The planning problem uses a horizon of T = 40 samples.
As shown in Figure 5.15, constraint softening allows the MPC controller to act on both feasible

and infeasible reference values (e.g., αr < αmin =−15). The phase plane plot shown in Figure 5.16
(left) gives an alternative perspective of how the MPC controller steers the system state trajectory
(blue crosses) to track the given reference (green circles).

Figure 5.16 (right) shows the terminal sets defined by the maximal invariant sets of the closed-
loop under the LQ-optimal feedback for the different reference requests. In this example, the
reference states in the interior of the constraint set (shown in grey) have a determinedness index of
2 and would thus only require Tc = 2. However, the equilibrium corresponding to α =−15 lies on
the boundary and is (much) more complex to represent with a determinedness index of 38. �
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Figure 5.15: Upper plot shows how the controller is able to track feasible references without error
and at the same time deal with unfeasible reference requests.

Preview of known future signals
If the reference changes are known in advance, then we can include this information in the MPC
planning problem to optimize the state transition even further. Thus, rather than using a constant
reference r in (5.17), we supply the known reference trajectory {rk} over the prediction horizon.
In the MPC planning problem, we replace the constant target state, controls and slack vectors
(xref,uref,s) by sequences ({xref

k },{uref
k },{sk}) which are allowed to vary over the prediction horizon

as long as they satisfy (5.16). The next example illustrates the potential benefits of preview.

� Example 5.12 We return to the aircraft problem studied in Example 5.11 and assume that the
future reference is known over the prediction horizon. As shown in Figure 5.17, the preview allows
the controller to prepare the transition earlier and ensure a faster convergence to the new set-point. �
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Figure 5.16: The closed-loop trajectories in the phase-plane shows how the system deals with
the feasible and infeasible reference requests (left). The right figure shows the invariant sets for
the LQ-optimal controller under the given constraints and for the different set-points. The three
set-points inside the constraint sets result in invariant sets with simple representations (grey) while
the reference on the constraint boundary gives a more complex invariant set (blue).

Preview is not limited to only reference signals; it can also be used to improve disturbance
suppression if we can obtain a forecast of the future disturbances over the planning horizon. When
the disturbances can be modelled as outputs of linear systems, we can can include these in the
prediction equations following a method similar to what we described in the previous chapter.
Alternatively, the controller might receive forecasts of future disturbances from another system
component, as illustrated by the reference example. In such instances, we simply incorporate the
time-varying disturbance sequence in the prediction equations.
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Figure 5.17: By including preview (lighter colors), the controller acts on the reference change
ahead of time, ensuring a faster and smoother transition.
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5.7 Disturbance compensation and offset-free MPC
We will now consider the slightly more complex problem of reference tracking in the presence
of disturbances. As discussed above, if we have a good model of the disturbances, then we can
simply include this model in the prediction equations, estimate the disturbances using an observer,
and compensate for them in the MPC planning problem. This is also the essence of the approach
to offset-free MPC which we will describe here. When the disturbances are constant and we are
only concerned about the disturbance compensation in stationarity, it is possible to give strong
guarantees. Under rather mild conditions, any unconstrained equilibrium of the closed-loop system
then attains offset-free tracking. Much like statements about integral action in linear systems, this
argument does not rely on a perfect match between the system dynamics and the model, neither
when it comes to the system matrices nor the disturbances. Instead, the argument relies on the
assumption that the MPC controller will be able to remain feasible and attain an equilibrium.

To account for the effect of disturbances, we consider the following system model

xt+1 = Axt +But +Bddt

yt = Cxt +Cddt
(5.19)

where dt ∈ Rnd is the disturbance vector, while Bd ∈ Rn×nd and Cd ∈ Rp×nd are matrices that
describe how the disturbance vector acts on the state evolution and on the measured output. We
would like to ensure that yt → r as t→ ∞ for any feasible reference vector r ∈ Rp.

Assume that the disturbance is constant, dt = d. We can then re-write (5.19) as(
xt+1
dt+1

)
=

(
A Bd
0 I

)(
xt

dt

)
+

(
B
0

)
ut := Ae

(
xt

dt

)
+Beut

yt =
(
C Cd

)(xt

dt

)
:= Ce

(
xt

dt

) (5.20)

The state vector of this extended system includes both the system state xt and the disturbance vector
dt . If the full state vector cannot be measured, it is natural to ask under what conditions it can be
estimated from output and input sequences {yt} and {ut}. The next result answers this question.

Proposition 5.7.1 Assume that the nominal system (A,C) is observable. Then (Ae,Ce) is observ-
able if and only if the matrix(

A− I Bd
C Cd

)
has rank n+nd .

Proof. By the PBH test, the extended system is observable if and only if there is no λ and no
(v1,v2) 6= 0 such thatA Bd

0 I
C Cd

(v1
v2

)
= λ

v1
v2
0

 (5.21)

Note that if we let v2 = 0, these equations reduce to the conditions in the PBH test for observability
of the nominal system which, by assumption, only admit the solution v1 = 0. If v2 6= 0, on the other
hand, we must have λ = 1 and (5.21) simplifies to(

A− I Bd
C Cd

)(
v1
v2

)
= 0

Under the rank condition posed in the theorem, the only solution to these equations are (v1,v2) = 0.
Hence, the extended system is observable and the proof is complete. �
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The rank condition requires that p≥ nd , so we must measure at least as many signals as the
number of disturbances in our model. If the extended system is observable, then we can attempt to
estimate the extended state vector using an observer on the form(

x̂t+1

d̂t+1

)
=

(
A Bd
0 I

)(
x̂t

d̂t

)
+

(
B
0

)
ut +

(
Kx

Kd

)
(yt − ŷt)

ŷt =
(
C Cd

)(x̂t

d̂t

) (5.22)

Ae−KCe is Schur stable.
Given that we have estimated the disturbance correctly, we can determine reference states xref

and controls uref that make the output equal to the desired reference, i.e.

xref = Axref +Buref +Bdd

r =Cxref +Cdd

We re-write these conditions as(
A− I B

C 0

)(
xref

uref

)
=

(
−Bdd

r−Cdd

)
(5.23)

and note that we can find (xref,uref) for every right-hand side if the matrix(
A− I B

C 0

)
has rank n+ p. This requires that m≥ p, so to ensure offset-free tracking we must, in general, have
at least as many control signals as we have outputs that we want to track.

We can now use an MPC controller whose objective function penalizes deviations from xeq and
ueq. The values of the target state and control are computed from the estimated disturbance under
the assumption that the observer has converged, d̂t = d:

minimize
T−1

∑
k=0

∆x̂>k Q∆x̂k +∆û>k R∆ûk +∆x̂>T QT ∆x̂T

subject to ∆x̂k+1 = A∆x̂k +B∆ûk k = 0, . . . ,T −1
Mx(∆x̂k + xref)≤ mx k = 0, . . . ,T −1
Mu(∆ûk +uref)≤ mu k = 0, . . . ,T −1
∆x̂T ∈ X̄T(

A− I B
C 0

)(
xref

uref

)
=

(
−Bdd

r−Cdd

)
d = d̂t

∆x̂0 + xref = x̂t

(5.24)

in variables {∆x̂k,∆ûk},xref, uref and s. The applied control is

ut = ∆û?0 +uref (5.25)

The following theorem shows that offset-free tracking can be ensured under mild conditions.

Theorem 5.7.2 Consider the discrete-time linear system (5.19) with nd = p,

rank
(

A− I Bd
C Cd

)
= n+nd (5.26)
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and

rank
(

A− I B
C 0

)
= n+ p (5.27)

Let (x̂t , d̂t) be estimated by an observer on the form (5.22), designed to have asymptotically
stable estimation error dynamics, and let ut be given by the model predictive control law (5.24),
tuned to ensure a asymptotically stable closed loop when rt and dt are known and fixed.

Assume that the MPC problem is feasible for all times and unconstrained for all t ≥ Tlin for
some fixed time Tlin. If the closed-loop system reaches a steady-state, then limt→∞ yt = r.

Proof. If the closed-loop system reaches a steady state (x̄, d̄, ū), then so does the observer, since its
error dynamics are asymptotically stable. Let (x̂eq, d̂eq) be the stationary estimates of the observer,
and note that stationarity of the observer equations necessitates that

Kd(ȳ− ŷeq) = 0 (5.28)

where ȳ =Cx̄ and ŷeq =Cx̂eq +Cd d̂eq. Moreover, by the asymptotic stability of the observer

det
(

I−
(

Ae−
(

Kx

Kd

)
Ce

))
= det

(
I−A+KxC −Bd +KxCd

KdC KdCd

)
=

= det
(

I 0
0 Kd

)
det
(

I−A+KxC −Bd +KxCd
C Cd

)
6= 0.

This condition requires that both the determinants are non-zero, which implies that Kd ∈Rp×p must
have full rank. Hence, (5.28) can only hold if ȳ = ŷeq. Next, note that when the MPC controller
uses the stationary observer estimates, the target state xref satisfies Cxref = r−Cd d̂eq, so

ȳ = ŷeq =Cx̂eq +Cd d̂eq =Cx̂eq + r−Cxref = r+C(x̂eq− xref)

To ensure that ȳ = r, it remains to show that x̂eq−xref = 0. To this end, we combine the steady-state
conditions of the estimator with the target calculation in the MPC controller

x̂eq− xref = Ax̂eq +Bū+Bd d̂eq− (Axref +Buref +Bd d̂eq) =

= A(x̂eq− xref)+B(ū−uref)

Since we have assumed that the MPC controller operates without violating any constraints when
t ≥ Tlin, the MPC control will be linear and on the form ut −uref =−L(x̂t − xref). In particular, for
ut = ū and x̂t = x̂eq we have ū−uref =−L(x̂eq− xref). It must therefore hold that

x̂eq− xref = (A−BL)(x̂eq− xref)⇔ (I−A+BL)(x̂eq− xref) = 0

Since we have assumed that the MPC controller is asymptotically stable, the matrix I−A+BL is
invertible and the only solution is x̂eq = xref. Hence, ȳ = r and we have offset-free tracking. �

Several remarks are in order. First, note that the theorem does not assume that the equilibrium
states and control (x̄, ū) are equal to the reference states and controls (xref,uref) computed in the
planning problem. Neither does it assume that the model used in the controller and the actual
system dynamics match. It does, however, assume that the estimator and the planning problem are
based on the same model, and that the closed-loop attains an unconstrained steady-state. Hence,
when we design the model to be used in the disturbance observer and the MPC predictions, the
disturbances do not need to correspond to physical signals acting on the system. Rather, they
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can be seen as a means for introducing integral action and ensuring offset-free tracking. If there
are only a few real disturbance signals, one may need to introduce artificial disturbances to meet
the requirement that nd = p. These artificial disturbances should then be introduced so that the
corresponding matrices Bd and Cd make the matrix (5.26) have full rank.

Second, the proof can be adapted to the use observers on the form(
x̂t|t−1
d̂t|t−1

)
=

(
A Bd
0 I

)(
x̂t−1|t−1
d̂t−1|t−1

)
+

(
B
0

)
ut−1(

x̂t|t
d̂t|t

)
=

(
x̂t|t−1
d̂t|t−1

)
+

(
Kx

Kd

)(
yt −Cx̂t|t−1−Cd d̂t|t−1

)
.

Recall that asymptotic stability of the error dynamics for this filter implies that

det
(

I−
(

Ae−
(

Kx

Kd

)
CeAe

))
6= 0

However, we can use the same factorization trick as before to conclude that Kd must have full rank.
All other parts of the proof remain the same.

Finally, a limitation of the theorem is that it assumes that the planning problem is feasible at
all times. This is not trivial to guarantee when the MPC controller is driven by estimated states.
During transients, these state estimates will typically exhibit errors which may render the planning
problem infeasible. Careful tuning of the observer helps, but it is often a good practice to soften
constraints, especially the constraint on perfect reference tracking.

� Example 5.13 Let us return to the quadruple tank system used in Example 4.11, but now
reconfigured to have a more challenging dynamics. Specifically, we use γ1 = 0.25 and γ2 = 0.35,
which means that a majority of the inflow will enter the opposing tank system through its upper
tank, creating a lingering effect on its lower tank level. The dynamics of this configuration becomes
non-minimum phase and much slower than that in Example 4.11. The control objective is to track
reference levels in the two lower tanks, using measurements of only these tanks. We use a sampling
time of h = 3 seconds and design a one-step ahead predictor for the system states using the Kalman
filter approach with Σw = 100 · I and Σv = I. The tank levels are limited to the interval [0,19.8] cm
(the natural constraint of 20 cm has been tightened a little to get a safety margin to avoid overflow),
and the pump voltages are restricted to the interval [0,10] V.

Figure 5.18 shows a simulation of two different controllers in two different scenarios. The
dashed line is a reference tracking controller, designed without integral action, simulated for a
scenario where no disturbances act on the system. The design uses Q = I, R = 0.01 · I and T = 40.
The lower tank level has a distinct non-minimum phase behaviour, where the response first moves in
the wrong direction, but the controller attains perfect tracking in steady-state. The MPC controller
handles the constraints on both the states and the control signals and avoids overflow. We then
simulate a scenario where a unit disturbance is acting on the second inflow from t = 500. Since
the disturbance is not modeled, both the estimator and the MPC controller struggle and the overall
controller is unable to track the references. Finally, we design an offset-free MPC with Bd = B (to
model input disturbances) and Cd = 0. The simulation, in full lines, shows how the controller is
able to compensate for the disturbance and attain perfect tracking in stationarity. �

Alternative approaches for offset-free MPC
The literature contains a few seemingly different techniques for achieving offset-free MPC. However,
it turns out that many of them can either be seen as special cases of the approach described above
or analyzed using the same techniques [20].
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Figure 5.18: While the standard reference tracking solution works well (dashed blue) works well
in the absence of disturbances, both the observer and the controller struggle in the presence of
disturbances (dotted blue). In contrast, the off-set free MPC controller (full blue) attains perfect
tracking in stationarity. Note how the MPC controller handles both control and state constraints.

One such technique is the state disturbance observer approach. It attempts to explain all
discrepancies in predicted states and output measurements by the presence of constant disturbances:

xt+1 = Axt +But +dx

yt =Cxt +dy

Compared to our previous model (5.19), we have replaced Bdd by a disturbance dx ∈ Rn and Cdd
by another disturbance dy ∈ Rp. Hence, if we knew xt and xt+1, we could immediately compute

dx = xt+1− (Axt +But)

dy =Cxt − yt

and use these as predictions of future disturbances. If we instead estimate xt+1 by an observer

x̂t+1 = Ax̂t +But +K(yt −Cx̂t), ŷt =Cx̂t

the corresponding estimates of the disturbances become

d̂x = x̂t+1− (Ax̂t +But) = K(yt − ŷt)

d̂y =Cx̂t − yt

We then use d̂x and d̂y instead of Bd d̂t and Cd d̂t in the MPC planning problem.
From an implementation perspective, this controller has a slightly reduced complexity since we

do not need to estimate the disturbances, but instead compute them from the estimates produced
by an observer of reduced order. However, as the next result states, this approach can be seen as a
special case of the disturbance observer approach.

Proposition 5.7.3 The state disturbance observer is a particular case of the disturbance observer
approach where Bd = K, Cd = I, while Kx = K and Kd = I. If (A−KC) has all eigenvalues inside
the unit disc, then so does(

A K
0 I

)
−
(

K
I

)(
C I

)
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and, in addition,

rank
(

A− I K
C I

)
= n+ p

Proof. With the particular choices of disturbance models and estimator gains, the observer equations
for the extended system read

x̂t+1 = Ax̂t +But +Kd̂t +K(yt −Cx̂t − d̂t) = Ax̂t +But +K(yt −Cx̂t)

d̂t+1 = d̂t +(yt −Cx̂t − d̂t) = yt −Cx̂t

For asymptotic stability of the error dynamics of the extended system, note that(
A K
0 I

)
−
(

K
I

)(
C I

)
=

(
A−KC 0

0 0

)
Since the matrix is block-diagonal, its eigenvalues are the eigenvalues of (A−KC) and 0. So the
extended systems has n eigenvalues at the locations of the eigenvalues of A−KC and p eigenvalues
at the origin. Finally, to show that the rank condition holds, we show that any solution(

A− I K
C I

)(
x
d

)
= 0

must be identical to zero. Specifically, any solution must satisfy d = −Cx and thereby (A− I−
KC)x =−(I− (A−KC))x = 0. But since (A−KC) is Schur, I− (A−KC) has full rank, the only
solution is x = 0 and thereby d = 0. The claim is proven. �

Another common technique for offset-free MPC considers the control increments δut = ut −
ut−1 as inputs and implements a receding-horizon control strategy with the system(

xt+1
ut

)
=

(
A B
0 I

)(
xt

ut−1

)
+

(
B
I

)
δut , ŷt =

(
C 0

)( xt

ut−1

)
(5.29)

and cost
T−1

∑
k=0

(yk− r)>Q(yk− r)+δu>k Rδuk.

for some positive definite matrices Q and R. These implementations typically do not use a terminal
cost, which means that they are not covered by our stability guarantees and may need long
prediction horizons in practice. However, the absence of terminal cost and constraint simplifies the
implementation, since the reference state and reference control are not needed, and the planning
problem can be phrased directly in terms of the predicted control increments and extended states.
Specifically, when xt and ut−1 are estimated by a one-step ahead predictor(

x̂t+1
ût

)
=

(
A B
0 I

)(
x̂t

ût1

)
+

(
B
I

)
δut +

(
Kx

Ku

)
(yt −Cx̂t) (5.30)

the MPC controller solves the planning problem

minimize
T−1

∑
k=0

(Cx̂k− r)>Q(Cx̂k− r)+δ û>k Rδ ûk

subject to x̂k+1 = Ax̂k +Bûk−1 +Bδ ûk k = 0, . . . ,T −1
ûk = ûk−1 +δ ûk k = 0, . . . ,T −1
Mxx̂k ≤ mx k = 0, . . . ,T −1
Mu(ûk−1 +δ ûk)≤ mu k = 0, . . . ,T −1
û−1 = ût

x̂0 = x̂t

(5.31)
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and applies the control

ut = ut−1 +δ û?t (5.32)

Although this formulation is not formally a special case of the disturbance compensation approach,
one can use the same argument as in Theorem 5.7.2 to establish offset-free tracking.

Proposition 5.7.4 Consider the discrete-time linear system (5.29) with p = m, (A,C) detectable
and (A,B) reachable, and assume that

rank
(

A− I B
C 0

)
= n+m

Let (x̂t , ût−1) be estimated by a one-step ahead predictor (5.30) designed to have asymptotically
stable estimation error dynamics, and let ut be given by the model predictive control law (5.31),
(5.32), tuned to ensure an asymptotically stable closed loop. Assume that the MPC problem is
feasible for all times and unconstrained for all t ≥ Tlin for some fixed time Tlin. If the closed-loop
reaches a steady-state, then limt→∞ yt = r.

Proof. For notational convenience, we introduce

Ae =

(
A B
0 I

)
, Be =

(
B
I

)
, Ce =

(
C 0

)
By the PBH tests, reachability of (A,B) implies reachability of (Ae,Be), and the rank condition and
the assumption that (A,C) is detectable implies that (Ae,Ce) is also detectable. Although there is
no explicit reference state, we can re-write the problem in terms of zref

e = (xref,uref) that satisfies

Cezref
e = r

zref
e = Aezref

e

By the rank condition, zref
e exist and is unique for all values of r. Now, by re-phrasing the optimal

control problem in linear operation in terms of zt =
(
xt ut−1

)
and the reference state,

minimize ∑
T
t=0(zt − zref

e )>C>e QCe(zt − zref
e )+δuT

t Rδut

subject to zt+1− zref
e = Ae(zt − zref

e )+Beδut

we see that the optimal control has the form

δut =−L(zt − zref
e ) =−L

(
xt

ut−1

)
+Lzref

e

so that the closed-loop dynamics satisfy zt+1− zref
e = (Ae−BeL)(zt − zref

e ). By assumption, the
MPC controller is tuned so that Ae−BeL is Schur stable (under the reachability and detectability
conditions, this is guaranteed to happen as T → ∞). We are now ready to proof our claim. If the
closed-loop system reachabes a steady-state (x̄, ū), the so does the observer, since its error dynamics
is asymptotically stable. Let ẑeq

e be the stationary estimate of the observer and note that Ku has full
rank, so stationarity of the observer necessitates that ȳ = ŷeq. When the MPC controller uses the
stationary estimate, it produces a control input

δ ū =−L(ẑeq
e − zref

e )

In addition,

ẑeq
e − zref = Aeẑeq +Beδ ū−Aezref

e = (Ae−BeL)(ẑeq
e − zref

e )

which implies that ẑeq
e = zref

e , and thereby that ȳ = ŷeq =Ceẑeq
e =Ceẑref

e = r. �

Note, that although the MPC controller could maintain ut = ∑
t
k=0 δu?k , we still need to estimate

the full extended state vector and use the estimated values of both xt and ut−1 in the planning
problem to ensure offset-free control in the presence of disturbances and model mismatch.
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5.8 Tuning rules
A model-predictive controller has a wealth of parameters to tune, ranging from sampling times
and horizon lengths to system model, cost criterion, and constraints. Some of these parameters
are selected based on the same principles that you are familiar with from other design techniques,
while others are new and unique to model-predictive control. In this subsection, we briefly discuss
the various parameters and suggest rules-of-thumb of design principles tailored for MPC.

Sample time selection
As discussed in Chapter 1, the sampling time is fundamentally limited by the Nyquist sampling
theorem. Once we sample faster than the Nyquist frequency, the sampling time selection involves a
compromise between the computational load on the controller (since we have to compute a new
control signal in every sampling interval), and the effectiveness in tracking references and rejecting
disturbances (since the controller cannot react until the next sampling instance after the disturbance
hits the system). In addition, the delay incurred by slow sampling can reduce stability margins of
the controller, resulting in increased sensitivity to model uncertainties.

We propose to use least 4−10 samples in the rise-time that we target for the closed-loop system.
Once you have determined enough parameters to be able to design and simulate a simple controller,
it is a good idea to add an unmeasured disturbance to the simulation and see if you obtain significant
performance improvements when you sample faster. If you do, you should consider decreasing the
sampling interval.

System model
Like many advanced control methodologies, LQR and MPC require a model of the system to be
controlled. In addition, we may need a system model to evaluate our controller in simulations. The
simulation model is typically not the same as the one that we use for design. For example, we may
choose to design the controller based on a linear model, but simulate its response on a more detailed
nonlinear system model. Another common situation is that we use a simpler model of lower order
for control design in order to reduce the complexity of the resulting controller. Finally, we may
purposefully perturb the simulation model (either by changing the system matrices, or by adding
additional disturbances) to evaluate the robustness of our control design.

Models of dynamical systems are typically derived from physical knowledge or identified
from experimental data. Physics-based models are most often developed in continuous-time and
therefore need to be linearized and sampled as discussed in Chapter 1. Experimental models, on
the other hand, are typically obtained in discrete-time, since data collection is naturally performed
by sampling of analog sensor signals. The identification of linear system models from data is well
understood in theory and practice, see, e.g. [16] for a thorough treatment.

For model-predictive control, it is particularly attractive to use a subspace identification method
since they estimate a state-space model that attempts to match the dynamics in the collected input-
output signals. However, subspace methods only return one state-space realization (out of many
possible ones), and there is no guarantee that the state vector in the proposed realization corresponds
to physical states. It is therefore a good idea to set-up the system identification experiments to
measure (a) the actual outputs to be used by the output feedback MPC, and (b) the process states
which we would like to constrain. It may also be good for system insight to transform the identified
system model to a form where each output in the identification experiment maps to a single state.

Finally, it is good practice to scale the model so that inputs and outputs have unit ranges, i.e.

‖ut‖∞ ≤ 1, ‖yt‖∞ ≤ 1.

Weight matrices
It is convenient to tune the MPC controller for linear operation first. After all, most controllers have
set-points that stay constant for extended periods of time, and they spend most of their operational
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time regulating the system outputs around these set-points.
For the weight matrices, we simply propose to follow the LQR controller tuning procedure

described in Chapter 4. At this point, it is useful to evaluate frequency domain properties of
the closed-loop system. Similarly, it is advisable to simulate the effect of typical references,
disturbances, and measurement noise sequences on the the control signal and the system output.

Horizon lengths
The horizon length T is determined by the slowest process dynamics, since we need to reach
the terminal set in T steps. If we have selected the sampling time to have 8− 10 samples in a
closed-loop rise time, then we suggest to use a horizon of at least 4−5 samples. We may need to
extend this value in order to handle larger reference changes. However, if there is As the horizon
lengths increase, matrices that define the planning problem grow in size and require more memory
for storage. In addition, the solution times for the planning problem typically increase, and so
does the delay between the time that the sensor signals were read and the new control input can be
applied.

In theory, when we increase the prediction horizon, the performance gets closer to that of the
optimal infinite-horizon controller. However, this property only holds if the model that we use in our
design is an accurate description of the true system dynamics. If the prediction model is inaccurate,
extending the horizon length beyond a certain value may actually lead to worse performance. By
a similar token, if the system is unstable, then the prediction equations may become very poorly
conditioned over long horizons, and we may need to limit our selection.

Terminal set and terminal penalty
The terminal penalty and the terminal set are essential for our theoretical convergence proof. At
the same time, we have shown that these features are also, effectively, imposed by having a long
prediction horizon. Hence, the terminal penalty and terminal state are most important when we
want to keep the control horizon T small.

In order to limit the number of tuning parameters, it is convenient to use the solution to the
infinite-horizon Riccati equation (4.9) to define the terminal penalty, and the maximal invariant set
of the associated state-feedback law as terminal set. The invariant set is readily calculated off-line,
as described in Chapter 2. We can spend a significant amount of computations to find, and possibly
also simplify, this invariant set before the MPC controller is configured and deployed.

However, if the MPC controller is intended to track a time-varying reference, then it can be more
convenient to rely on explicit constraint checking. For tuning of the constraint checking horizon,
we propose to compute the invariant sets for the closed-loop system under the infinite-horizon LQR
controller and a set of different reference values. The determinedness indexes of these sets give a
reasonable range for the constraint-checking horizon. A more heuristic choice is to let T +Tc be
equal to the number of samples in the target closed-loop settling time.

Constraint softening
We recommend to soften all constraints that we can accept to violate, in order to ensure feasibility of
the QP also in the presence of unforeseen disturbances. In many cases, only the control magnitude
constraints and some safety-critical outputs cannot be softened.

The slack-penalty weights should be large enough to avoid constraint violation whenever this is
possible. However, too large slack weights may lead to poor conditioning of the underlying QP
(whose other variables, after the scaling proposed above, typically have unit ranges).

Disturbance modeling and integral action
Although there are many ways of incorporating integral action into an MPC controller, we advise
to stick with the uniform approach to disturbance compensation that we have used throughout these
notes. In this approach, we model the disturbances as outputs of linear systems, estimate the system
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and disturbance model states using an observer, and compensate for the estimated disturbances in
the MPC design. In this framework, constant disturbance models yields integral action.

To avoid performance degradation due to the observer dynamics, we recommend to use a
Kalman filter that estimates the states using observations up until the current sampling instant. Note
that modeling errors may lead to biased state estimates (irrespective of the estimator that we use),
so we may need to physically measure all states that are subject to hard constraints.

Observer gain selection
Even if the observer or filter gains can be selected using a variety of methods, we suggest to use the
Kalman filter approach, since it naturally extends to systems with many inputs and outputs. The
observer bandwidth should be (significantly) faster than the closed-loop dynamics, while avoiding
unnecessary overshoots and oscillations in the observer dynamics.

For the output feedback MPC, it is absolutely essential to simulate the effect of disturbances,
measurement noises, and process variations, since it may be much less robust than a controller which
has access to the full state vector. It is also advisable to analyze the frequency domain properties of
the controller in linear operation (i.e., of the output feedback LQ controller corresponding to the
proposed weight matrices and noise covariances).

Choosing the right quadratic programming solver
For problems with relatively long sampling times (say in the order of seconds) and applications
where we can afford to perform the computations on a standard computer, this is hardly an issue. For
such scenarios, quadratic programming is a mature technology with a wealth of reliable commercial
and free solvers. However, for systems that require fast sampling, or applications with significant
constraints on the implementation platform, one has to be more careful. If we have a lot of memory,
it can be convenient to rely on explicit MPC, since the execution times (and therefore also the
computational delay from sensor measurements to actuator commands) is small and easy to bound.
If we cannot afford to store the explicit MPC controller, then we have to use on-line optimization.
Fast (dual) gradient methods are the simplest to implement and cheapest to execute, but they may
generate (slightly) suboptimal or (slightly) infeasible solutions that the controller then needs to
cope with. Interior-point methods are reliable and generate accurate solutions, but require rather
advanced numerical computations on-line, while active set methods often strike a good balance
between numerical accuracy, memory and code footprint, and execution time.
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5.9 Exercises
Problem 5.1 Consider an MPC problem:

minimize ∑
T−1
k=0 x̂T

k Qx̂k + ûT
k Rûk + x̂T

T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0,1, . . . ,T −1
−ylim ≤Cx̂k ≤ ylim k = 0,1, . . . ,T
−ulim ≤ ûk ≤ ulim k = 0, . . . ,T −1

Assume that you have a system with m = 1 inputs, p = 1 outputs and a state dimension of n = 2.
(a) Formulate the planning problem for T = 2 as a quadratic program

minimize zT Hz

subject to Pz≤ h
Cz = b.

where
z =

(
û0 x̂1 . . . ûT−1 x̂T

)T
.

(b) How do the dimensions of the matrices depend on T ? What are their dimesions for T = 5,
T = 10, and T = 50?

(c) You would also like to impose a rate limitation on the input. Add rows in the P and h matrices
so that the input rate is limited to ±rlim

Problem 5.2 In this exercise, we will explore stability properties of the receding-horizon LQ
control law. In each sample, this control policy solves a planning problem on the form

minimize ∑
T−1
k=0 x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk
x̂0 = xt

and implements the first control move, ut = u?0. At the next sampling instant, the controller measures
the full state vector again and repeats the procedure.

Consider the specific system given by

A =

(
4/3 −2/3
1 0

)
, B =

(
1
0

)
.

Note that the open-loop system is stable but oscillatory (in fact, it is also non-minimum phase and
generally hard to control). Let the cost be defined by

Q =
(
−2/3 1

)> (−2/3 1
)
+0.01I, R = 0.0001, QT = Q.

(a) Let T = 1. Use the Riccati recursion to compute L such that

u?0 =−Lxt

Does the receding-horizon control result in an asymptotically stable closed-loop?
(b) What is the smallest value of T for which the receding-horizon policy results in an asymptot-

ically stable closed-loop?
(c) Compute the infinite-horizon control law. Does it yield an asymptotically stable closed-loop?
(d Per definition, the receding-horizon control law should never be able to attain a lower infinite-

horizon cost than the optimal controller. Quantify the difference between the two costs when
T = 5 and QT = Q. For what initial states do you get the largest difference in cost?
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Problem 5.3 Consider the double integrator under zero-order hold sampling

xt+1 =

(
1 1
0 1

)
xt +

(
0.5
1

)
ut

yt =
(
1 0

)
xt

(a) Use an algebraic modeling language to implement an MPC controller based on the following
planning problem

minimize ∑
T−1
k=0 x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bût k = 0,1, . . . ,T −1
|ûk| ≤ ulim k = 0,1, . . . ,T −1
|Cx̂k| ≤ ylim k = 0,1 . . . ,T

(b) Use Q = I, R = 10I, QT = Q and T = 10. Set ulim = 1 and ylim = 20. Simulate the system
and plot the control input along with the state trajectory.

(c) You are not happy with the overshoot in the position (the first state). Try to reduce the
overshoot by decreasing the value of ylim. Will this work? How small can you make ylim?
What stops you from making it even smaller?

(d) Set ylim = 12.5 and reduce the planning horizon to T = 2. Explain what you observe!

Problem 5.4 The discrete-time dynamics of an inverted pendulum can be described by the system

xt+1 =

(
1.16 0.1053
3.283 1.16

)
xt +

(
0.02332
0.4785

)
ut

yt =
(
1 0

)
xt

The control signal is amplitude limited, |ut | ≤ 10 and you would like to keep |yt | ≤ π/6.
You are interested in designing a model predictive controller that (approximately) minimizes

the infinite-horizon criterion
∞

∑
k=0

x>t xt +u>t ut

(a) Determine the optimal LQR state-feedback ut =−Lxt and draw the intersection of the region
where this controller does not saturate, i.e.

{x | −Lx≤ 10}

and the set of states that obey the output constraint,

{x |Cx≤ π/6}

(b) Compute the maximal invariant set of the closed-loop dynamics xt+1 = (A−BL)xt contained
in the region that you constructed in (a). Does x0 =

(
0 5

)
belong to the computed set?

What does this imply?
(c) Construct the 10-step controllable set for the control invariant set that you constructed in

(b). Does x0 =
(
0 5

)
belong to the computed set? What about x0 =

(
0 7.5

)
? What is the

implication of this?
(d) Modify your MPC code from Exercise 5.3 to accommodate for a terminal set. Use T = 10,

QT = P where P solves the Riccati equation for the infinite-horizon LQR problem, and
use the terminal set computed in (b). Simulate the closed-loop system from initial values
x0 =

(
0 5

)
and x0 =

(
0 7.5

)
. Comment on what you observe!
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(e) In some cases, it is the limited control magnitude that hinders us from reaching the terminal
set during the planning horizon, and in other cases, it is the output constraint. Modify your
code to soften the output constraints. Use a quadratic slack penalty on the form σ(s) = 100s2.
Simulate the closed-loop system from the two initial states in (d). Explain what you observe!

Problem 5.5 Consider the discrete-time system

xt+1 = Axt +But ,

yt =Cxt

with

A =

(
0 1
−1 0

)
B =

1
2

(
−1
1

)
C =

1√
2

(
1 1

)
.

We want to design a model predictive controller that minimizes the cost function

J =
∞

∑
t=0

1
2
(y2

t +u2
t ).

(a) Use the results from Chapter 2 to show that if ut =
1√
2
yt , then

∞

∑
t=0

1
2
(y2

t +u2
t ) = ‖x0‖2.

(b) A receding-horizon LQ controller is defined at each time step t by

ut = û?0

where {û?0, û?1, . . . , û?T} is the minimizing argument of

minimize ∑
T−1
k=0

1
2(ŷ

2
k + û2

k)+‖x̂T‖2

subject to x̂k+1 = Ax̂k +Bûk, ŷk =Cx̂k

Show that the control law yields a stable closed-loop system.
(c) The system is now subject to the constraint −1≤ yt ≤ 1, for all t.

Show that if ut =
1√
2
yt , then |yt | ≤ 1 and |yt+1| ≤ 1 imply that

−1≤ yt+k ≤ 1 ∀k ≥ 0

In other words, the set I =
{

x | |Cx| ≤ 1 ∧ |C(A+BC/
√

2)x| ≤ 1
}

is positively invariant.
(d) Now, consider the model predictive control law ut = û?0 where {û?0, . . . , û?T} is the minimizing

argument of

minimize ∑
T−1
k=0

1
2(ŷ

2
k + û2

k)+‖x̂T‖2

subject to x̂k+1 = Ax̂k +Bûk k = 0,1, . . . ,T −1
ŷk =Cx̂k k = 0,1, . . . ,T
−1≤ ŷk ≤ 1, k = 0,1, . . . ,T

Will this MPC controller guarantee a stable closed-loop system? Justify your answer!
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Problem 5.6 Consider the linear system

xt+1 =

(
0.8 −0.1
1 1.6

)
xt +

(
0
1

)
ut := Axt +But (5.33)

subject to the input and state constraints

xt ∈ X =

{
x ∈ R2 such that

(
−5
−5

)
≤ x≤

(
5
5

)}
, ∀t ≥ 0

ut ∈U = {u ∈ R such that −3≤ u≤ 3} , ∀t ≥ 0

We are interested in solving the following infinite-horizon optimal control problem

minimize
{ut}∞

t=0

∑
∞
t=0 xT

t Qxt +uT
t Rut

such that xt+1 =

(
0.8 −0.1
1 1.6

)
xt +

(
0
1

)
ut , t = 0, . . . ,∞

xt ∈ X , t = 0, . . . ,∞
ut ∈U, t = 0, . . . ,∞
x0 = x

(5.34)

where the penalty matrices are given by

Q =

(
0.8 0.18
0.18 1.05

)
, R = 1.

(a) Consider the stabilizing control law

ut =−Lxt =−
(
1 1

)
xt (5.35)

Estimate the infinite-horizon cost of this control law as a function of x. Verify that the
proposed feedback law is indeed stabilizing.

(b) Show that the set

XT =

x ∈ R2 such that

x1 + x2 ≤ 3

x1 + x2 ≥−3

2x2− x1 ≤ 3

2x2− x1 ≥−3


is control invariant under xt+1 = Axt +But by verifying that it is positive invariant under
xt+1 = (A−BL)xt for L as defined in (5.35). Moreover, show that the feedback law (5.35) is
admissible in XT .

(c) Consider the following finite-dimensional optimization problem

minimize
û0,...,ûT−1

∑
T−1
k=0 x̂T

t Qx̂t + ûT
t Rût + x̂T

T QT x̂T

such that x̂t+1 =

(
0.8 −0.1
1 1.6

)
x̂t +

(
0
1

)
ût , t = 0, . . . ,T −1

x̂t ∈ X , t = 0, . . . ,T
ût ∈U, t = 0, . . . ,T −1
x̂T ∈ XT

x̂0 = x

(5.36)

where QT = P and P is the solution to the Riccati equation of the infinite-horizon LQR
problem in (a) and XT is the set defined in (b). Explain, with reference to the theory presented
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-2 -1 0 1 2
x1

-3

-2

-1

0

1

2

3

x 2 f

in the course, why a feasible solution to (5.36) defines an input-admissible control sequence
{û0, . . . , ûT−1} that drives the system to a state from which the feedback law (5.39) can
stabilize the system while satisfying the state constraints. Comment on the optimality of
solutions to (5.36) in relation to (5.34).

(d) The largest control invariant set C∞
X×U ⊆ X under xt+1 = Axt +But is shown below

-4 -2 0 2 4
x1

-4

-2

0

2

4

x 2 f

( f; )

Comment on the feasibility of (5.36) for
– x0 =

(
−4 −4

)T

– x0 =
(
−4 2

)T

for any given horizon length T > 0.
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Problem 5.7 Consider the linear system

xt+1 =

(
0.5 0
−0.5 1.5

)
xt +

(
0
1

)
ut := Axt +But (5.37)

subject to the input and state constraints

xt ∈ X =

{
x ∈ R2 |

(
−5
−5

)
≤ x≤

(
5
5

)}
, ∀t ≥ 0

ut ∈U = {u ∈ R | −2≤ u≤ 2} , ∀t ≥ 0

We are interested in solving the following infinite-horizon optimal control problem

minimize
{uk}∞

k=0

∑
∞
k=0 xT

k Qxk +uT
k Ruk

such that xk+1 =

(
0.5 0
−0.5 1.5

)
xk +

(
0
1

)
uk, k = 0, . . . ,∞

xk ∈ X , k = 0, . . . ,∞
uk ∈U, k = 0, . . . ,∞
x0 = x

(5.38)

where the penalty matrices are given by

Q =

(
1 0
0 2

)
, R = 1.

(a) Consider the stabilizing control law

ut =−Lxt =−
(
−1 1

)
x (5.39)

Estimate the infinite-horizon cost of applying this control law to (5.37). Verify that the
feedback law is indeed stabilizing.

(b) Show that the set

XT =

{
x ∈ R2

∣∣∣∣∣ −2≤ x1 ≤ 2

−2≤ x1− x2 ≤ 2

}
is control invariant under xt+1 = Axt +But by verifying that it is positive invariant under
xt+1 = (A−BL)xt for L as defined in (5.39). Moreover, show that the feedback law (5.39) is
admissible in XT .

(c) Consider the following finite-dimensional optimization problem

minimize
û0,...,ûT−1

∑
T−1
k=0 x̂T

k Qx̂k + ûT
k Rûk + x̂T

T QT x̂T

such that x̂t+1 =

(
0.5 0
−0.5 1.5

)
x̂t +

(
0
1

)
ût , t = 0, . . . ,N−1

x̂k ∈ X k = 0, . . . ,T
ût ∈U, k = 0, . . . ,T −1
x̂T ∈ XT

x̂0 = x

(5.40)

where QT = P and P is the solution in (a) and XT is the set defined in (b). Explain, with
reference to theory presented in the course, why a feasible solution to (5.40) defines an
input-admissible control sequence {û0, . . . , ûT−1} that drives the system to a state from which
the feedback law (5.39) can stabilize the system. Comment on the optimality of solutions
to (5.40) in relation to (5.38).
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(d) The largest control invariant set C∞
X×U ⊆ X under xt+1 = Axt +But is shown below. Comment

on the feasibility of (5.40) for
– x0 =

(
4 −4

)T

– x0 =
(
4 4

)T

for any given horizon length T > 0.

Problem 5.8 For certain classes of systems, the general stability conditions for the closed-loop
system under model-predictive control can be simplified significantly. In this problem, we will
study one such class of systems, namely asymptotically stable linear systems with input constraints:

xt+1 = Axt +But , ut ∈U = {u | |u| ≤ 1}

(a) Let P satisfy the Lyapunov equation

AT PA−P+Q = 0

Justify why the MPC controller based on the planning problem

minimize ∑
T−1
k=0 x̂>k Qx̂k + û>k Rûk + x̂>T Px̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0,1, . . . ,T −1
|ûk| ≤ 1 k = 0,1, . . . ,T −1
x̂0 = xt

with Q� 0 and R� 0 results in an asymptotically stable closed-loop for all horizon lengths.

Note. it is the same matrix Q in the stage cost and the Lyapunov equation.
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(b) Let T = 1 and assume that ut ∈ R (i.e. that there is a single control input). Determine an
explicit expression for how the MPC control policy resulting from the planning problem in
(a) depends on the state xt .

(c) Given the explicit solution in (b), it is attractive to use T = 1. Is there any reason to use
T > 1, even if this means that you will need to solve the planning problem numerically in
every sample?
Hint. How does the MPC controller in (a) behave in linear operation (near x = 0) as T
increases?

Problem 5.9 In the stability proof for linear MPC, we have assumed that the system is reachable.
We will now explore some potential challenges that can appear in the absence of reachability.

(a) Use the PBH test to show that the system

xt+1 =

(
1 0
0 1/2

)
xt +

(
1
0

)
ut

is not reachable. Is it stabilizable?
(b) Now consider the infinite-horizon LQR problem defined by the cost

∞

∑
t=0

xT
t xt +uT

t ut

Show that the algebraic Riccati equation admits a diagonal solution, despite your findings in
(a). Compute the optimal control law and verify that the closed-loop system is asymptotically
stable.

(c) You feel ready to include the control signal constraint

|ut | ≤ 1

and to attempt to control the system using a MPC control law. For simplicity, you use the
terminal set XT = {0}. However, you quickly realize that this does not always work. Explain
why!

(d) You decide to change the terminal set to

XT = {x | |x1| ≤ 1 and |x2| ≤ 1}

Will this work? What is the minimal horizon you need to use to ensure that the initial state

x0 =

(
100
100

)
is feasible? (you can disregard any other constraints)

Problem 5.10 A model aircraft has the following discrete dynamics in the vertical direction(
ht+1
γt+1

)
=

(
1 2
0 0.9

)(
ht

γt

)
+

(
0.1
0.1

)
ut

where ht is the altitude above ground and γt is the flight path angle, see Figure 5.19. Note that
a negative angle means that the aircraft is decreasing its altitude. We have the following two
constraints on the system

−0.25 ≤ γt ≤ 0.25 [rad]
0 ≤ ht ≤ 100 [m].

(5.41)

We will design a controller to bring the aircraft to land, that is, drive the altitude to h = 0.
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(a) We first try to solve this problem using LQR, where we minimize

J =
∞

∑
t=0

(xT
t Qxt +uT

t Rut), Q =

(
1 0
0 35

)
, R =

(
633
)

The solution to the discrete-time algebraic Riccati equation is given by

P = Q+AT PA−AT PB(R+BT PB)−1BT PA =⇒ P≈
(

20 240
240 3805

)
– Given this P, what is the optimal LQR feedback solution ut =−Lxt?
– In practice, will this controller be good with respect to (5.41)?

(b) Next, we formulate a finite-horizon predictive control law. At each step ut = û?0, where
{û?0, û?1, . . . , û?T−1} is the minimizing argument of

minimize ∑
T−1
k=0 (x̂

T
k Qx̂k + ûT

k Rûk)+ x̂T
T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk k = 0,1, . . . ,T −1

where QT = P from the previous task. Show that if the system is not subject to any state
constraints, then this control law yields a stable closed-loop system.

(c) In addition to the constraints (5.41), we should also limit the vertical velocity at touchdown.
The vertical velocity is approximated as

ḣ = 20sinγ,

where we have assumed that the plane is traveling with a constant velocity v0 = 20 m/s. If
we want the vertical velocity at touchdown to be limited to

ḣ≥−1 [m/s]

what is the approximately equivalent constraint

γ ≥ γ
td [rad]

which must be enforced at touchdown, assuming that γ is small?
(d) Next, you will add a constraint on the flight path angle such that there is a continuous

transition between the constraint γ ≥ γmin =−0.25 at h = 10 m and γ ≥ γ td at h = 0 m.
Start by formulating the constraint on the form

γ + k1 ·h≤ k2.

After this, find the matrix H and vector h such that you can write all the state constraints at
time t, including (5.41), on the form

Hxt ≤ h (5.42)

Figure 5.19: The aircraft vertical state is here described with two variables – altitude [m] and flight
path angle [rad].
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(e) Assume that the mode two control is given by

ut =
(
−0.04 0.6

)
xt .

Is the state constraint set (5.42) which you found in (d), a suitable terminal set with regards
to invariance?

Problem 5.11 In this task, we will use a longitudinal truck model, illustrated in Figure 5.20, where
the truck displacement s(t) is given by

ṡ(t) = v(t). (5.43)

The truck velocity is modeled by

v̇(t) =−cair

m
v2(t)+

ctrac

m
u(t), (5.44)

where v(t) is the velocity of the truck, u(t) is the input torque and m = 40000 kg is the mass of the
vehicle. The velocity and input torque should stay within the limits

vmin ≤ v(t)≤ vmax, vmin = 55 km/h, vmax = 85 km/h
umin ≤ u(t)≤ umax, umin = 0 Nm, umax = 1850 Nm.

Further, the reference speed is
vref = 70 km/h.

s(t)

s(t)=v(t)

Figure 5.20: The forces acting on a truck moving on a road with slope α .

The standard way to predict the state evolution in MPC is based on differential equations with
respect to time

dx
dt

= ft(x).

Now, we shall instead use equations with respect to the displacement of the truck

dx
ds

= fd(x).

To do this, we will perform a variable change from velocity v(t) to kinetic energy E(t) as the state
variable. Remember that kinetic energy is given by E = mv2

2 .
(a) Perform the change of variable described above, starting with the dynamics of equation (5.44).

You should get a linear equation of the form

dE
ds

= AsE +Bsu.

Hint: Derive the relation between the derivatives using

dE
ds

=
dE
dt

dt
ds

=
1
v

dE
dt
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(b) What is the corresponding value of the minimum, maximum, and reference energy, i.e. Emin,
Emax and Eref?

(c) Above, we approximate the maximum input constraint umax as a constant value. However, as
illustrated in Figure 5.21, the maximum torque is dependent on the engine speed and thus it
is also dependent on the velocity of the truck.
The relationship between engine speed ω(t) in RPM and velocity (m/s) is given by

v(t) =
2π ·0.5
2.45 ·60

ω(t).

Derive a piecewise linear constraint for the maximum input, by calculating constants
m1,m2,m3,k1,k2,k3 such that1 −k1

1 −k2
1 −k3

(u(t)
E(t)

)
≤

m1
m2
m3

 ,

is the approximation of the upper bound, as illustrated in Figure 5.22.
(d) Write down the optimization problem to be solved in the spatial MPC truck problem, where

a tradeoff between input and velocity deviation should be penalized. Assume that the
discretized dynamics is given by

Ek+1 = AEk +Buk +Bwwk

where A,B and Bw are the discretized matrices of the spatial dynamics.
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Figure 5.21: The maximum input torque as a function of engine speed.
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Figure 5.22: The maximum input torque as a function of kinetic energy, and a piecewise linear
approximation (red dashed line).

Problem 5.12 This problem considers model-predictive control for ship heading; see Figure 5.23.
Specifically, the following linear system

xt+1 =

(
0.9480 0
0.4869 1

)
xt +

(
0.0014
0.0003

)
ut

describes the linearized dynamics of a container ship with sampling time 0.5 seconds. The second
state is the heading angle (in radians), and the first state describes its rate of change (also referred
to as yaw rate). The system input ut is the rudder angle.

The system is subject to two constraints: the input is limited to±35 degrees (that is, 35π/180≈
0.6109 radians) and the yaw rate is limited to ±0.006 radians/second.

(a) Figure 5.24 shows three designs for the weights R = 10−3 and Q = diag(1,q22) where
q22 ∈ {0.1,1,10}. Which plot (full line, dashed line, dotted line) corresponds to what value
of q22? Justify your answer.

(b) Moving on, we focus on the weights R = 10−3 and Q = I. Verify that

P =

(
84.8235 22.3528
22.3528 10.4803

)
solves the algebraic Riccati equation for the corresponding LQ-optimal design. Determine
the corresponding optimal state feedback gains L.

(c) In the state-space, draw the set of states for which the controller from (b) does not saturate,
and for which the yaw rate constraint is also satisfied.

(d) In general, the maximal invariant set for the closed-loop dynamics under LQR control for
given constraints is just a subset of the set that you have constructed above. What about this
specific case? Is the set that you have constructed in (c) invariant under the LQ-optimal state
feedback computed in (b)?
Hint. What is the next state at the vertices of the polyhedron in (c)?



5.9 Exercises 187

Figure 5.23: Ship heading control.

(e) You consider an MPC design defined by the planning problem

minimize ∑
T−1
t=0 xT

t Qxt +uT
t Rut + xT

T QT xT

subject to xt+1 = Axt +But , xt ∈ X , ut ∈U t = 0, . . . ,T −1
xT ∈ XT

where XT is the maximal invariant set for the LQR optimal controller, and X and U define
the state and control constraints described above.
You select T = 10 but find that the set of initially feasible states is too small. Of course, you
could increase T in hope of increasing the size of the set, but are there any other changes to
your design that could also increase the set of initially feasible states? Please motivate your
answer!
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Figure 5.24: MPC designs for three different weight choices in subproblem (a).

Problem 5.13 A reactor is used to decompose a chemical A into a product B. The reaction is
exothermic and produces heat, which means that the reactor needs to be cooled during operations.
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Our aim is to design a control system that adjusts the flow rate of the product A and of the coolant
to follow desired set-points in the production rate of B and in the reactor temperature.

The system dynamics can be written as

xt+1 = Axt +But +wt

yt =Cxt + vt

where w and v are disturbances acting on the system and

A =


0.9580 0 0 0

0 0.9418 0 0
0 0 0.9048 0
0 0 0 0.9277

 , B =


0.25 0
0.25 0

0 0.50
0 0.50

 ,

C =

(
0.1678 0.0 0.9516 0.0

0.0 0.2329 0.0 0.2890

)
(a) Implement a reference-tracking MPC controller. Evaluate the design given by Q = 10I, R = I,

QT = Q and T = 10. You can use a quadratic slack penalty for the reference with weight
κ = 100. The control signals are magnitude limited, |[ut ]1| ≤ 2 and |[ut ]2| ≤ 0.6.
Simulate the closed-loop system with a reference

(
0.45 −0.45

)
for the first 25 time steps,

and
(
0 0

)
for the last 25 time steps. Do you achieve offset-free tracking?

(b) Simulate the effect of an input disturbance on the feed flow (first input). Use the reference(
0.45 −0.45

)
for the full simulation, and add the input disturbance of d =−0.5 after 25

simulation steps. Do you still achieve offset-free tracking?
(c) Since the disturbance acts on the first input, it is natural to use

Bd =


0.25 0
0.25 0

0 0
0 0

 .

Our theoretical result for offset-free tracking requires that the number of disturbances is
equal to the number of outputs. Hence, we need to add an additional (artificial) disturbance
to our model. Does it matter what output you add the disturbance to?

(d) Augment the system model with the two constant disturbances and design an observer for the
augmented system so that the error dynamics has poles in {0.50,0.51,0.60,0.61,0.62,0.63}.
Implement an offset-free MPC controller and re-do the simulations in (b). Do you achieve
offset-free tracking despite the input disturbance?

Problem 5.14 The stability analysis for MPC presented in this chapter assumes that the planning
problem can be solved to optimality and uses the predicted cost J?(x) as Lyapunov function. If the
optimizer can only be guaranteed to produce a feasible solution with a predicted cost Jδ (x) where
Jδ (x)≤ J?(x)+δ for some δ > 0, can we still guarantee that the closed-loop system is stable?

To answer this question, assume that the linear system

xt+1 = Axt +But

is controlled using an MPC controller based on the following planning problem

minimize ∑
T−1
k=0 x̂>k Qx̂k + û>k Rûk + x̂>T QT x̂T

subject to x̂k+1 = Ax̂k +Bûk
x̂k ∈ X , ûk ∈U, x̂T ∈ XT

x̂0 = xt

(5.45)
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In each sampling interval, we compute a feasible solution to the planning problem that attains
an objective value of Jδ (xt) ≤ J?(xt)+ δ . The first move in the computed (suboptimal) control
sequence is applied, before the procedure is repeated in the next sampling instance. For simplicity,
we assume that (A,B) is controllable, that Q and R are positive definite, that QT = P where P solve
the algebraic Riccati equation for the associated infinite-horizon LQR problem, and that the LQR
controller ut =−Lxt is admissible in XT and that XT is invariant for xt+1 = (A−BL)xt .

(a) Demonstrate that the closed-loop under the inexact MPC control satisfies

Jδ (xt+1)− Jδ (xt)≤−q(xt ,ut)+δ

where q(x,u) = x>Qx+u>Ru.
(b) Use the following Lemma (proven in the Exercises of Chapter 2) to prove convergence of the

suboptimal MPC controller to a ball around the origin.
Lemma. Let xt+1 = f (xt). Assume that there exists a continuous function V that satisfies

α1‖x‖2
2 ≤V (x)≤ α2‖x‖2

2

V ( f (x))−V (x)≤−β‖x‖2
2 +m

for some positive scalars α1,α2,m, and β ∈ (0,α2). Then,

lim
t→∞
‖xt‖2 ≤ α2

α1β
m

To be able to apply the lemma, we need to bound Jδ and q. One can show, although the proof
is somewhat technical, that

Jδ (xt)≤ cλmax(P)‖xt‖2
2

for some constant c. Justify why

Jδ (xt)≥ λmin(Q)‖xt‖2
2

−q(xt ,ut)≤−λmin(Q)‖xt‖2
2

and determine the solution accuracy δ needed to guarantee that the state converges to the ball

Bε =
{

x | ‖x‖2
2 ≤ ε

}
Problem 5.15 It is easy to design an open-loop optimal control policy that reaches a desired target
in finite time. Specifically, consider the discrete-time linear system

xt+1 = Axt +But

and let {x̂?0, . . . , x̂?T , û?0, . . . , û?T−1} be the optimal solution to

minimize ∑
T−1
t=0 x̂>t Qx̂t + û>t Rût

subject to x̂t+1 = Ax̂t +Bût t = 0,1, . . . ,T −1
x̂t ∈ X , ût ∈U t = 0,1, . . . ,T −1
x̂T = xtgt
x̂0 = xt

(5.46)

at t = 0. Then, letting ut = û?t for t = 0,1, . . . ,T −1 ensures that xT = xtgt. However, we know that
open-loop policies are sensitive to model uncertainties, so it is interesting to see if we can get a
similar closed-loop behavior using MPC.
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(a) Let us first prove that the terminal constraint itself is not enough to ensure finite-time
convergence when (5.46) is used as a planning problem for MPC.
To simplify the calculations, we consider the scalar integrator

xt+1 = xt +ut

and a receding-horizon control law based on solving the planning problem

minimize ∑
2
t=0 x̂2

t + û2
t

subject to x̂t+1 = x̂t + ût t = 0,1
x̂2 = 0
x̂0 = xt

and then applying ut = û?0 (note that this is a special case of (5.46) with A = B = Q = R = 1,
xtgt = 0 and T = 2.). Derive an explicit expression for how the receding-horizon control ut

depends on xt . Justify why the state under this control law will not reach origin in finite time.
(b) It is, of course, the receding-horizon implementation that hinders you from reaching the

target state in finite time: at t = 0, you plan to reach the target at t = T , at t = 1 you plan
to reach at T +1, etc. Let us instead consider an MPC controller that decreases T in each
step. In other words, at t = 0 it solves the planning problem (5.46) with T = T0 and applies
u0 = û?0, at t = 1 plans using (5.46) with T = T0−1 and applies u1 = û?0, etc.
Prove that this policy is recursively feasible, i.e., if you can solve the planning problem from
x0 with horizon T0, then you can solve it from x1 = Ax0 +Bu0 = Ax0 +Bû?0 with horizon
T0−1. Will the state vector reach the target in finite time under this control policy?

(c) A limitation with the policy proposed in (b) is that the tuning of the Q and R matrices does
not affect the behaviour of the controller when the controller regulates the state close to the
target. Can you explain why? (it may help to revisit your solution to (a)).

(d) To avoid the issue discussed in (c), one may put a lower limit Tmin on T . In other words,
starting from some T0, the horizon is initially decreased at every sampling time, until T = Tmin
(which happens at t = T0−Tmin), after which the horizon is kept at Tmin for all future times.
Will this policy be able to drive the system state to the target in finite time? Will it behave as
the infinite-horizon LQR controller near the target? Justify your answers!

In practice, existing proposals for (near) time-optimal MPC adapt Tmin and T in every sample.
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A. Mathematical preliminaries

This appendix summarizes a few key results from basic calculus and linear algebra that we make use
of in the proofs. A more complete treatment of these topics can be found in a variety of textbooks.

A.1 Sequences and series

Recall that a sequence of real numbers {ak}∞
k=0 is said to converge to a limit L if, for any ε > 0, there

is an integer N such that if n≥ N, then |an−L| ≤ ε . To each sequence {ak}∞
k=0 we can associate

a series ∑
∞
k=0 ak. We say that the series converges if the sequence of partial sums sn = ∑

n
k=0 ak

converges. We will make use of the following fact.

Theorem A.1.1 — Cauchy’s convergence criterion. If the series ∑
∞
k=0 ak of real numbers

converges, then limk→∞ ak = 0

There are many ways to test if a series convergence. One such test is by comparison.

Theorem A.1.2 If the series of non-negative terms ∑
∞
k=0 bk converges and |ak| ≤ bk for all k,

then the series ∑
∞
k=0 ak also converges.

If we use bk = |ak| in the comparison theorem, we conclude that if the series is absolutely
convergent, i.e. if ∑

∞
k=0 |ak| converges, then the series itself ∑

∞
k=0 ak is also convergent.
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A.2 Linear systems of equations
A linear system of equations consists of a set of m equations where each equation represents a
linear relationship among the same set of n variables:

a11x1 +a12x2 + · · ·+a1nxn = b1,

a21x1 +a22x2 + · · ·+a2nxn = b2,

...

am1x1 +am2x2 + · · ·+amnxn = bm,

Here, x1, . . . ,xn are the variables, and the coefficients ai j along with the constants bi are real or
complex numbers. The solution of such a system is a set of values for x1, . . . ,xn that simultaneously
satisfies all m equations. These equations are conveniently represented in matrix form

Ax = b

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bm

 .

The next few results are central to characterizing the solution set to systems of linear equations.

Definition A.2.1 — Range of a matrix. The range of the matrix A ∈ Rm×n is defined as

R(A) = {Ax | x ∈ Rn} ⊆ Rm

The range of A defines the vectors b for which the linear system Ax = b has a solution.

Definition A.2.2 — Matrix rank. For A ∈ Rm×n, the dimension of R(A) is denoted rank(A).
The rank of A is equal to the number of linearly independent columns in A.

The number of linearly independent columns in a matrix is sometimes referred to as the column
rank. In a similar manner, one can define the row rank as the number of linearly independent rows
in the matrix. It turns out, however, that the column rank is always equal to the row rank, so we
simply refer to it as the rank of the matrix. Since row and column ranks are equal, we must have
rank(A)< min(m,n).

Theorem A.2.1 — Rank and Solutions of Linear Systems. A linear system Ax = b has at least
one solution if and only if rank(A) = rank([A|b]), where [A|b] is the augmented matrix of A
and b. If rank(A) = n, the system has a unique solution. If rank(A)< n, the system may have
infinitely many solutions.

Definition A.2.3 — Nullspace of a matrix. The nullspace of a matrix A ∈ Rm×n is defined as

N(A) = {x | Ax = 0}

The nullspace of A is the set of vectors x that are mapped to zero by the linear mapping x 7→ Ax.
If a matrix has a non-trivial null-space (a nullspace with dimension one or more), then there will be
many vectors x that result in the same y = Ax. In particular, if y = Ax and x̃ ∈ N(A), then it also
holds that A(x+ x̃) = y.
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Theorem A.2.2 — Dimension Theorem. For any A ∈ Rm×n, it holds that

dim(R(A))+dim(N(A)) = n.

In words, the dimension of R(A) plus the dimension of N(A) equals the number of columns of
A.

For square matrices, i.e. matrices with the same number of columns and rows, the rank is
intimately connected to the matrix determinant.

Definition A.2.4 — Determinant. Let A = [ai j] ∈ Rn and Ai j ∈ R(n−1)×(n−1) be the matrix
obtained by deleting the ith row and jth column from A. If n = 1, the determinant of A, denoted
det(A) is the scalar value A itself. If n > 1, the determinant can be computed recursively via

det(A) =
n

∑
j=1

(−1)ī+ jaī jdet(Aī j)

where ī ∈ {1,2, . . . ,n} is an arbitrary row.

The quantity ci j = (−1)i+ jdet(Ai j) is known as the cofactor of the element ai j. The definition
can be readily used to derive an explicit expression for the determinant of 2×2 matrices

A =

(
a11 a12
a21 a22

)
⇒ det(A) = a11a22−a12a21

by expanding along the first row (ī = 1). Similarly, for a lower-triangular matrix

A =


a11 0 . . . 0

a12 a22
. . .

...
...

. . . 0
a1n a2n . . . ann


an expansion along the first row reveals that det(A) = a11a22 . . .ann. It is also possible (albeit with
more work) that the determinant satisfies the following properties.

Proposition A.2.3 Let A,B ∈ Rn×n. Then
(a) det(A>) = det(A)
(b) det(AB) = det(A)det(B)

The next results provides a link between determinants and full matrix rank.

Proposition A.2.4 A ∈ Rn×n has full rank if and only if det(A) 6= 0.

Definition A.2.5 — Invertible Matrix. A matrix A ∈ Rn×n is said to be invertible (or non-
singular) if there exists another matrix B ∈ Rn×n such that AB = BA = I, where I is the identity
matrix of dimension n. The matrix B is called the inverse of A and is denoted by A−1.

The next results collects some of the many equivalent conditions for a matrix to be invertible.

Theorem A.2.5 — Matrix Invertibility. Let A ∈ Rn×n. The following statements are equivalent
(a) A is invertible.
(b) det(A) 6= 0.
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(c) The columns of A are linearly independent.
(c) Ax = b has a unique solution for every b ∈ Rn.

When A is invertible, it is given by

A−1 =
adj(A)
det(A)

where adj(A) = [ci j]
> is the adjoint matrix of A, i.e. the cofactor matrix of A transposed. Hence,

A =

(
a11 a12
a21 a22

)
⇒ A−1 =

1
det(A)

(
a22 −a21
−a12 a11

)>
=

1
a11a22−a12a21

(
a22 −a12
−a21 a11

)
Determining the inverses of large matrices by hand can be tedious, unless they have a special

structure. However, it is easy to verify that a given matrix expression B is the inverse of A: we
simply need to multiply the two matrices and verify that AB = BA = I.

Proposition A.2.6 Let X ∈ Rn×n, Y ∈ Rk×k and Z ∈ Rn×k be real matrices of appropriate dimen-
sions with X and Y invertible. Then

(X +ZY Z>)−1 = X−1−X−1Z(Y−1 +Z>X−1Z)−1Z>X−1 (A.1)

and

Y−1Z>(X−1 +ZY−1Z>)−1 = (Y +Z>XZ)−1Z>X . (A.2)

In many cases, matrices have a structure that makes it natural to partition them into blocks
along the rows or columns of the original matrix. For example

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
As long as the matrix blocks have compatible dimensions, we can add, subtract and multiply block
matrices just as if the blocks would have been elements. This, for the block matrices just defined

A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
, AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
The next results summarize important properties of the determinant and the inverse of specific
block matrices.

Proposition A.2.7 The determinant of a block triangular matrix is the product of the determinants
of its diagonal blocks,

det
(

A11 0
A21 A22

)
= det(A11)det(A22) = det

(
A11 A12

0 A22

)
Proposition A.2.8 Consider the matrix A ∈ Rn×n partitioned as

A =

(
A11 A12
A21 A22

)
where A11 ∈ Rk×k and A22 ∈ R(n−k)×(n−k) are both invertible. Then

A−1 =

(
(A11−A12A−1

22 A21)
−1 −A−1

11 A12(A22−A21A−1
11 A12)

−1

−A−1
22 A21(A11−A12A−1

22 A21)
−1 (A22−A21A−1

11 A12)
−1

)
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A.3 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors are fundamental concepts in linear algebra, particularly in the study
of linear transformations.

Definition A.3.1 — Eigenvalue and Eigenvector. Given a square matrix A, a scalar λ is
called an eigenvalue of A if there exists a non-zero vector v such that

Av = λv.

The vector v is called an eigenvector of A corresponding to the eigenvalue λ .

In some cases, we do not need to know all the eigenvalues, but only bound their magnitude. It
can then be convenient to define the spectral radius.

Definition A.3.2 — Spectral Radius. The spectral radius of a matrix A, denoted as ρ(A),
is the largest absolute value of its eigenvalues, mathematically given by ρ(A) = max{|λ | :
λ is an eigenvalue of A}.

Eigenvalues are often computed numerically using specialized routines. The easiest way to
compute the eigenvalues of a given matrix by hand is often through its characteristic polynomial.

Definition A.3.3 — Characteristic Polynomial. The characteristic polynomial of a square
matrix A is

p(λ ) = det(λ I−A),

where I is the identity matrix of the same dimension as A, and λ is a scalar.

The roots of the characteristic polynomial are the eigenvalues of the matrix A. Another useful
property of the characteristic polynomial is given by the Cayley-Hamilton theorem.

Theorem A.3.1 — Cayley-Hamilton Theorem. Every square matrix A satisfies its own char-
acteristic polynomial. If p(λ ) is the characteristic polynomial of A, then p(A) = 0.

In these notes, we use the Cayley-Hamilton theorem in our discussion about reachability and
observability, but we can also use it together with Proposition A.2.3 to prove the following result.

Proposition A.3.2 The matrix A and its transpose A> have the same eigenvalues.

A.4 Vector and matrix norms

Vector norms are used to measure the length of vectors.

Definition A.4.1 — Vector norm. A norm on Cn is a function ‖ · ‖ : Cn 7→ R+ that assigns a
nonnegative real number to each vector x ∈ Cn and satisfies the following conditions:

(a) ‖x‖ ≥ 0 and ‖x‖= 0 if and only if x = 0
(b) ‖λx‖= |λ |‖x‖ for every λ ∈ R
(c) ‖x+ y‖ ≤ ‖x‖+‖y‖ for every y ∈ Cn

Common vector norms are the Euclidean norm, the one norm and the infinity norm, defined as

‖x‖2 =
√

∑
i

x2
i , ‖x‖1 = ∑

i
|xi|, ‖x‖∞ = max

i
|xi|

respectively. In a similar way, matrix norms are used to measure the “size” of matrices:
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Definition A.4.2 — Matrix Norm. A matrix norm on a set of matrices M is a function ‖ · ‖ :
M→ R that satisfies the following properties for all matrices A,B in M and scalar c:

• Non-negativity: ‖A‖ ≥ 0 and ‖A‖= 0 if and only if A = 0.
• Scalar multiplication: ‖cA‖= |c|‖A‖.
• Triangle inequality: ‖A+B‖ ≤ ‖A‖+‖B‖.
• Sub-multiplicativity: ‖AB‖ ≤ ‖A‖‖B‖.

A particularly useful class of matrix norms are those that are induced by a given vector norm.
These norms measure the maximum amount by which the matrix A can stretch any vector x

Definition A.4.3 — Induced Matrix Norm. For a given vector norm ‖ · ‖, the induced matrix
norm ‖ · ‖ is defined for any matrix A as:

‖A‖= max
x 6=0

‖Ax‖
‖x‖

where ‖Ax‖ and ‖x‖ are computed using the same vector norm.

The Euclidean vector norm induces the spectral norm

‖A‖2 =
√

ρ(A∗A),

where A∗ is the conjugate transpose of A. From the definition of the induced norm, it follows that

‖Ax‖ ≤ ‖A‖‖x‖

for all x. Matrix norms do not necessarily need to be induced by an underlying vector norm. An
important norm that is not induced is the Frobenius norm

‖A‖F =
√

∑
i, j
|ai j|2

where ai j are the entries of A. The following useful result states that if ρ(A) < 1, then we can
always find a norm such that ‖A‖< 1.

Theorem A.4.1 — Matrix norms and the spectral radius. For every A ∈Rn×n and any ε > 0,
there is an induced matrix norm ‖ · ‖ such that

‖A‖ ≤ ρ(A)+ ε

Moreover, in this norm, it also holds that ‖A>‖ ≤ ρ(A)+ ε .

The introduction of matrix norms allows us to define convergence and matrix sequences and
series. We say that a matrix sequence {Ak}∞

k=0 converges to a matrix L if, for any ε > 0, there is
an integer such that if n ≥ N, then ‖An−L‖ ≤ ε . The following result generalizes the absolute
convergence test to matrix series.

Theorem A.4.2 Consider the sequence {Ak}∞
k=0 with Ak ∈ Rn×n and let ‖ · ‖ be an induced

matrix norm on Rn×n. If ∑
∞
k=0 ‖Ak‖ converges, then so does ∑

∞
k=0 Ak.

A.5 The matrix exponential
The matrix exponential is a matrix-valued function used for solving systems of differential equations.
Analogous to how the solution to a scalar differential equation ẋ(t) = ax(t) is given in terms of the
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exponential function x(t) = eatx(0), the solution to a system of linear ordinary differential equations

ẋ(t) = Ax(t) (A.3)

with x(t) ∈ Rn is given by

x(t) = eAtx(0) (A.4)

where eAt is the matrix exponential (of the matrix At).

Definition A.5.1 The matrix exponential of M ∈ Rn×n is defined by the power series

eM = I +M+
1
2!

M2 +
1
3!

M3 + · · ·

which converges for all M ∈ Rn×n.

We can directly verify that the solution (A.4) satisfies (A.3):

ẋ(t) =
d
dt

(
I +At +

1
2!

A2t2 + · · ·
)

x(0) =

=

(
A+A2t +

1
2!

A3t2 + · · ·
)

x(0) =

= A(I +At +
1
2!

A2t2 + · · ·)x(0) = AeAtx(0) = Ax(t)

For nilpotent matrices, the definition is practical for evaluating the matrix exponential (since
the series converges after a finite number of terms). In general, however, it is often more convenient
to use the Laplace transform. To understand how this works, recall that

(I−M)−1 = I +M+M2 +M3 + · · ·
provided that the series converges (you can verify the identity by multiplying both sides of the
equation with (I−M)). Thus,

(sI−A)−1 =
1
s
(I− A

s
)−1 =

1
s

I +
1
s2 A+

1
s3 A2 + · · ·

which converges for large enough |s|. By the inverse Laplace transform, we find

L−1 ((sI−A)−1)= I + tA+
t2

2!
A2 + · · ·= eAt .

The next example demonstrates the two techniques for computing the matrix exponential.

� Example A.1 Consider

A =

(
0 1
0 0

)
then since Ak = 0 for k ≥ 2 (A is nilpotent) the power series allows us to conclude that

eAt = I +At =
(

1 t
0 1

)
.

Using the inverse Laplace transform approach, we would first evaluate

(sI−A)−1 =

(
s −1
0 s

)−1

=
1
s2

(
s 1
0 s

)
=

(
1/s 1/s2

0 1/s

)
.

Then we determine the matrix exponential by taking the inverse Laplace transform to find

eAt =L−1 ((sI−A)−1)= (L−1(1/s) L−1(1/s2)
0 L−1(1/s)

)
=

(
1 t
0 1

)
�
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A.6 Quadratic forms and functions
A quadratic form f : Rn 7→ R is a polynomial where each term is of order two:

f (x) =
n

∑
i=1

n

∑
j≥i

mi jxix j =
n

∑
i=1

miix2
i +

n

∑
i=1

n

∑
j>n

mi jxix j.

It is convenient to represent such functions in matrix form

f (x) =


x1
x2
...

xn


>

p11 p12 · · · p1n

p12 p22 p2n
...

...
. . .

...
p1n p2n · · · pnn




x1
x2
...

xn

= x>Px

Note that

x>Px =
n

∑
i=1

n

∑
j=1

pi jxix j = ∑
i

piix2
i +

n

∑
i=1

n

∑
j>i
(pi j + p ji)xix j

Hence, the two parameterizations are equal if we let pii = mii and pi j = p ji = mi j/2. This means
that we can always assume that P is a symmetric matrix, i.e. that P = P>.

When performing optimization of functions of several variables, we repeatedly need to compute
gradients and Hessians. Let f : Rn 7→ R. Then its gradient at x, ∇ f (x) : Rn 7→ Rn, is defined by

∇ f (x) =


∂ f (x)
∂x1

∂ f (x)
∂x2
...

∂ f (x)
∂xn


The quadratic form f (x) = x>Px has gradient

∇ f (x) =


∂ f (x)
∂x1

∂ f (x)
∂x2
...

∂ f (x)
∂xn

=


2p11x1 +(p12 + p21)x2 +(p13 + p31)x3 + · · ·+(p1n + pn1)xn

(p12 + p21)x1 +2p22x2 +(p23 + p32)x3 + · · ·+(p2n + pn2)xn
...

(p1n + pn1)x1 +(p2n + pn2)x2 +(p3n + pn3)x3 + · · ·+2pnnxn


So if P is symmetric, i.e. pi j = p ji then we find that

∇ f (x) = 2Px

A quadratic function is a polynomial where each term is at most two. We can write it as a sum
of a quadratic form, a linear form, and a constant:

f (x) = x>Px+2q>x+ r (A.5)

A simple calculation reveals that the linear form q>x has gradient q, so the (A.5) has gradient

∇ f (x) = 2Px+2q

A.7 Positive definite matrices and functions
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Definition A.7.1 — Positive definite functions. We say that the function f :Rn 7→R is positive
semidefinite if

f (x)≥ 0 ∀x ∈ Rn

and that f is positive definite if

f (x)> 0 ∀x ∈ Rn with x 6= 0

Since a quadratic form f (x) = x>Px is characterized by the matrix P, it is natural to link positive
definiteness of the quadratic form to properties of P. This leads to the following definition.

Definition A.7.2 A square symmetric matrix P = P> ∈ Rn×n is called positive semidefinite if
f (x) = x>Px is a positive semidefinite function; it is called positive definite if f (x) = x>Px
defines a positive definite function.

We use the notation P� 0 to denote that P is positive semidefinite, and P� 0 to denote that it
is positive definite. The following result will be useful.

Theorem A.7.1 The square symmetric matrix P = P> ∈ Rn×n is positive semidefinite if and
only if all its eigenvalues are non-negative and real. A positive semidefinite matrix admits a
representation P = R>R where R ∈ Rn×n.

The square symmetric P = P> ∈Rn×n is positive definite if and only if all its eigenvalues are
positive and real. A positive definite matrix admits a representation P = R>R where R ∈ Rn×n is
of full rank. A positive definite matrix is invertible (and its inverse is itself positive definite).

This theorem tells us that a positive definite quadratic form x>Px can be written as ∑
n
i=1 z2

i =

∑
n
i=1(r

>
i x)2 for some vectors ri ∈ Rn. The quadratic form is zero for x which satisfy r>i x = 0 for all

i; in a positive definite quadratic form, the matrix R spans Rn and Rx = 0 only for x = 0.
The definitions of positive definite matrices and functions extend to complex matrices and

vectors. In particular, we say that a complex-valued matrix M ∈ Cn×n is positive definite if z∗Mz is
real and positive for all non-zero complex column vectors z∈Cn, where z∗ is the complex conjugate
transpose of z. We will only use the fact that if P ∈ Rn×n is positive definite, then

z∗Pz > 0

for all z ∈ Cn with z 6= 0. This follows by writing z = x+ iy with x,y ∈ Rn and evaluating

z∗Pz = (x>− iy>)P(x+ iy) = x>Px+ y>Py.

The right-hand side is positive unless x = y = 0, which proves our claim.





B. Polyhedra and ellipsoids

This appendix reviews some basic properties of polytopes, polyhedra and ellipsoids.

B.1 Polyhedra and polytopes

Figure B.1: Halfspace (left), polyhedron (middle), and polytope (right).

Halfspaces, polytopes and polyhedra, shown in Figure B.1 and defined below, give a geometrical
meaning to the solution set to one or more linear inequalities.

Definition B.1.1 A (closed) half-space is the solution set to a linear inequality

H(a,b) =
{

x ∈ Rn | a>x≤ b
}

The vector a ∈ Rn is the normal vector of the half-space.

Definition B.1.2 A polyhedron is the solution set to a finite number of linear inequalities

P= {x ∈ Rn | Ax≤ b}=
{

x ∈ Rn | a>i x≤ bi, i = 1, . . . ,m
}
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where A ∈ Rm×n and b ∈ Rm. Equivalently, it is the intersection of a finite number of halfspaces

P=H(a1,b1)∩H(a2,b2)∩·· ·∩H(am,bm)

Note that any convex set (e.g. the disk) is the intersection of all half-spaces that include it. It is only
when the set is finitely generated that we call it a polyhedron.

Definition B.1.3 A polytope P(A,b) is a bounded polyhedron, i.e. one that does not contain
any ray {x+ t(y− x) | x,y ∈P, t ≥ 0}.

The representation (A,b) of a polyhedron P is not unique. For example, A and b can be
multiplied by the same positive diagonal matrix without changing the underlying set. Hence, if
0 ∈P then b≥ 0 and we can always normalize the description to have b = 1. More interestingly, a
representation can contain redundant constraints, i.e. constraints that do not alter the underlying
polyhedron. Examples of redundant constraints are repeated intersections with the same halfspace,
or intersections with a halfspace H(ã, b̃) that contains P in its strict interior. For example,

P= {x | x≤ 0}= {x | x≤ 0}∩{x | x≤ 0}= {x | x≤ 0}∩{x | x≤ 1}

are three representations of the same set (the set of non-positive reals).
To determine if H(ã, b̃) is redundant for P, we can simply solve a linear program

maximize ã>x
subject to Ax≤ b

to determine the maximal value of ã>x for x ∈ P. If this value is strictly smaller than b̃, then
P ⊂ H(ã, b̃), so the constraint is redundant. To remove redundant constraints from a given
representation (A,b) of P we can check, for each of the m constraints defined by (A,b), if it is
redundant relative to the polyhedron P′ obtained by removing the corresponding row from (A,b).

The projection of a polyhedron

P= {(x,u) | Ax+Du≤ b}

onto x is defined as

projx(P) = {x | (x,u) ∈P for some u} .

This projection is computed by eliminating u from the inequalities. To understand how this is done,
consider the case where u is scalar and each element di of D is non-zero. Then, each inequality
a>i x+diu≤ bi implies a constraint on u. Specifically, if di > 0, then

u≤ bi−a>i x
di

:=Ui(x)

while if di < 0

u≥ bi−a>i x
di

:= Li(x).

The projection is the set of x for which u can satisfy these bounds,

projx(P) = {x | max
i∈Il

Li(x)≤min
i∈Iu

Ui(x)}

This set is a polyhedron described by the |Il|× |Iu| inequalities

Li(x)−U j(x)≤ 0 i ∈ Il, j ∈ Iu
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In practice, many of these inequalities are redundant and can be removed by the procedure discussed
earlier. In the case that some di = 0, these inequalities are already independent of u and should
be included in the definition of projx(P).The procedure that we have just described is known as
Fourier-Motzkin elimination and is treated in more detail in, e.g., [23].

Fourier-Motzkin elimination is a useful procedure when we do not have too many constraints or
eliminate too many variables. In the worst-case, the number of inequalities go from m to m2/4 in a
single round of elimination; k rounds of this procedure (eliminating k variables sequentially without
removing redundant constraints) would result in m2k

/(22k+1−2) inequalities (a doubly exponential
growth in k). Although the practical performance of Fourier-Motzkin tends to be better than this
worst-case, it remains computationally challenging to project many variables in polyhedra defined
by many inequalities (for example, in high dimensions).

As an alternative, one can also represent a polytope as the convex hull of a finite number of
extreme points v1, . . . ,vK , i.e.

P= {x =
K

∑
i=1

αivi for some αi ∈ [0,1] with
K

∑
i=1

αi = 1}

The extreme points vi are called vertices and the associated representation a V -representation (in
contrast to the H-representation that we have explored above). The V -representations of polyhedra
(which may be unbounded) are slightly more complex and also involve extremal rays; see [Zie;95]
for details. We will not explore the V-representation in detail here, but take the opportunity to
highlight a few important facts. First, there are polytopes with small H-representations and complex
V -representations. For example, the infinity-norm ball ‖x‖∞≤ 1 can be described by the intersection
of 2n hyperplanes H±i = {x | ± [x]i ≤ 1}, but it has 2n extreme points v with [v]i = ±1. There
are also polyhedra with compact V -representations but large H-representations. Second, some
operations that are hard to perform on the H-representation may be easy to perform using the
V -representation (and vice versa). Since the transformation between H and V representations may
be computationally expensive, it is important to use the representation that is most efficient (with
respect to memory and computations) for each particular problem.

B.2 Ellipsoids

Figure B.2: Ellipsoid characterized by its center, its semi-axes and their lengths

In a similar way as the solution set to a linear inequality defines a halfspace, the solution set to
a (convex) quadratic inequality defines an ellipsoid:
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Definition B.2.1 An ellipsoid is the solution set to a convex quadratic inequality

E =
{

x | xT Px+2q>x+ r ≤ 0
}

(B.1)

for some positive definite matrix P.

Let us first consider the case q = 0 and r =−1, i.e. ellipsoids centered around the origin:

E =
{

x | x>Px≤ 1
}

Since P is positive definite, it is real and symmetric and admits and eigendecomposition

P =V ΛV>

where V is an orthogonal matrix whose columns are the eigenvectors of P and Λ is a diagonal
matrix whose entries are the eigenvalues of P. Thus, in a coordinate system described by z =V>x,

E = {z | λ1z2
1 + · · ·+λnz2

n ≤ 1}

defining an ellipsoid with axes aligned to the coordinate system and lengths proportional to 1/
√

λi.
In the original coordinates x =V z, this corresponds to an ellipsoid whose axes are aligned with the
eigenvectors vi of P and stretched a factor 1/

√
λi; see Figure B.2.

Introducing R = Λ1/2V>, we can re-write the ellipsoid on the form

E =
{

x | ‖Rx‖2
2 ≤ 1

}
=
{

x = R−1w | ‖w‖2
2 ≤ 1

}
The final representation is convenient for plotting the ellipsoid, since it represents E as a linear
transformation of the unit disc.

Let us now go back to the original description (B.1) and assume that q 6= 0. Then, by Lemma 3.1,
we can write

E =
{

x | (x− xc)
>P(x− xc)+ r− x>c Pxc ≤ 0

}
(B.2)

where xc = P−1q. Hence, this ellipsoid is centered around xc and has semi-axes aligned with the
eigenvectors of P. To get the right semi-axes lengths, we must divide both sides of the inequality in
(B.2) by x>c Pxc− r, i.e. consider the eigenvalues of P/(q>P−1q− r).



C. Mathematical programming

This section contains a tutorial introduction to selected topics in mathematical programming and
convex optimization. They are written to support the developments in these notes, but are by no
means complete. We refer to the literature, such as [4, 7], for details.

C.1 Optimality conditions for unconstrained optimization
Consider the minimization of a multivariable function f (x). We write this problem as

minimize
x∈Rn

f (x) (C.1)

and refer to f : Rn 7→ R as the objective function and x ∈ Rn as the decision vector. We are thus
interested in finding the vector x which attains the smallest possible value of f . If f is continuously
differentiable, then any minimizer x? must satisfy the first-order optimality condition

∇ f (x?) = 0. (C.2)

(otherwise, we could improve the objective by adjusting x? in the direction of the negative gradient).
However, this condition is not sufficient for guaranteeing optimality. A vector x for which ∇ f (x) = 0
could be a minimum, a maximum or a saddle point; see Figure C.1. In order to say more, we must
put additional restrictions on the objective function, or further conditions on x?. In these notes we
will therefore limit the objective functions and constraints to be convex, as defined next.

C.2 Convexity and optimization
We begin by the definition of convex sets.

Definition C.2.1 The set X ⊆ Rm is convex if for any x1,x2 ∈ X and every θ ∈ [0,1] we have
θx1 +(1−θ)x2 ∈ X .

Thus, a set X is convex if the line segment between any two points in X also lies in X ; see
Figure C.2.
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Figure C.1: Three continuously differentiable functions, whose gradients vanish at the origin. In
the different functions, the origin is a local minima, local maxima and a saddle points, respectively.

Convex Non-convex Non-convexConvex

Figure C.2: A set is convex if every line segment between points in the set also lies in the set. The
unit disc (the second set from the left) is convex, while the unit cirle (the rightmost set) is not.

� Example C.1 One of the most basic convex sets is the half-space, defined by the solution set of
a linear inequality

X =
{

x | a>x≤ b
}
.

To prove that halfspaces define convex sets, we can use the definition and consider y = θx1 +(1−
θ)x2 with x1,x2 ∈ X . Then, for θ ∈ [0,1] it holds that

a>y = a>(θx1 +(1−θ)x2) = θa>x1 +(1−θ)a>x2 ≤ θb+(1−θ)b = b

where the inequality follows since x1 and x2 both lie in X (and therefore satisfy a>x1 ≤ b and
a>x2 ≤ b, respectively). Hence, y ∈ X for every value of θ ∈ [0,1], so X is a convex set. �

Definition C.2.2 The function f : Rn 7→ R is convex if its domain is a convex set and it holds
that for all x1,x2 ∈ dom f and for every θ ∈ [0,1] we have

f (θx1 +(1−θ)x2)≤ θ f (x1)+(1−θ) f (x2) (C.3)

The geometric interpretation of (C.3) is that the line segment between (x1, f (x1)) and (x2, f (x2))
always lies above the graph of f ; see Figure C.3 (right).

� Example C.2 By a similar calculation as in Example C.1, we can easily show that affine functions

f (x) = a>x+b

are convex. We will now show that quadratic functions

f (x) = x>Px



C.2 Convexity and optimization 209

Figure C.3: A function f is convex if the line segment between (x1, f (x1)) and (x2, f (x2)) lies
above the graph of f for every x1 and x2 in its domain (left). A continuously differentiable function
f is convex if its linearization in any point x1 is a global lower bound of the function (right).

are convex when P is a semidefinite matrix. We then have that

f (θx1 +(1−θ)x2)−θ f (x1)− (1−θ) f (x2) =

= θ
2x>1 Px1 +(1−θ)2x>2 Px2−2θ(1−θ)x>1 Px2−θx>1 Px1− (1−θ)x>2 Px2 =

= θ(θ −1)
[
(x1− x2)

>P(x1− x2)
]
≤ 0,

where the last inequality follows since θ(θ −1)< 0 for θ ∈ [0,1] and since we have assumed P to
be positive semidefinite.

It follows from the definition that the sum of two convex functions is also convex. Hence, the
more general quadratic form

f (x) =
1
2

x>Px+q>x+ r

is convex whenever P is positive semidefinite. �

If f is continuously differentiable, then we can give an alternative characterization of convex
functions which is often easier to work with.

Proposition C.2.1 A continuously differentiable function f : Rn 7→ R is convex if and only if

f (x2)≥ f (x1)+∇ f (x1)
>(x2− x1) for all x1,x2 ∈ dom f (C.4)

Condition (C.4) implies that for differentiable convex functions, the linearization at any point
is a global lower bound on the function; see Figure C.3 (right). This also implies that stationary
points x̃ where ∇ f (x̃) = 0 define global minima of f , since f (x2)≥ f (x̃) for all x2 ∈ dom f . Thus,
the first-order optimality condition (C.2) is both necessary and sufficient when f is convex.

Finally, we note in passing that the set

X = {x | f (x)≤ 0}

is convex when f is a convex function. The proof of this claim is analogous to Example C.1 .
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C.3 Constrained convex optimization problems
In practice, the decision vector often has to satisfy additional constraints. We will thererfore study
constrained optimization problems on the form

minimize f0(x)
subject to fi(x)≤ 0 i = 1, . . . ,m

g>i x = hi i = 1, . . . , p
(C.5)

In this formulation, f0(x) is the objective function representing the operating cost of the system
while x ∈ Rn is the decision vector containing the free variables. In addition fi(x) ≤ 0 describe
inequality constraints and g>i x = hi describe linear equality constraints. We say that x is feasible
if it satisfies all constraints. The optimization problem (C.5) is feasible if it admits at least one
feasible x. A vector x? is said to be optimal if it attains the smallest value of f0 among all feasible x.
We let p? = f0(x?) denote the optimal value of (C.5).

It is sometimes convenient to write the optimization problem (C.5) on the compact form

minimize f0(x)
subject to x ∈ X

where we have introduced the feasible set

X =
{

x | fi(x)≤ 0, i = 1, . . . ,m and g>i x−hi = 0, i = 1, . . . , p
}
. (C.6)

as the set of decision vectors that satisfy all the constraints.
We will focus on convex optimization problems in which f0 is a convex function and X is a

convex set. As mentioned in the previous section, X defined in (C.6) is a convex set when all
inequality constraint functions fi are convex.

Convex optimization problems admit a powerful and elegant theory, and can be solved to global
optimality using a range of numerical solvers; see, e.g., [7]. The two most well-known classes of
convex programming problems are linear and quadratic programs. In a linear programming (LP)
problem one minimizes a linear function subject to linear inequality and equality constraints:

minimize c>x
subject to a>i x≤ bi i = 1, . . . ,m

g>i x = hi i = 1, . . . , p
(C.7)

A (convex) quadratic programming (QP) problem, on the other hand, considers the minimization
of a convex quadratic function subject to linear constraints:

minimize x>Px+2q>x+ r
subject to a>i x≤ bi i = 1, . . . ,m

g>i x = hi i = 1, . . . , p
(C.8)

Both linear and quadratic programming problems have been studied extensively and admit a rich
and useful theory. In addition, the numerical solvers for these problems have reached a high level
of maturity and can routinely solve problems with millions of variables and constraints.

C.4 Modeling decision problems as quadratic programs
To make practical use of mathematical programming, it is essential to know how to translate a
given decision problem into the optimization formalism. Although this “optimiztion modeling” is
conceptually simple, different classes of optimization problems have slightly different properties,



C.4 Modeling decision problems as quadratic programs 211

and differ in the type of objectives and constraints that they are able to describe. In this section, we
will give a brief introduction to modeling for quadratic programming.

In an optimization model, the decision vector x contains the free system parameters that we
can choose or influence; the objective function describes the cost of operating the system under
the decisions in x; and the constraints describe the restrictions that x has to obey. For example, in
an investment application, the decision vector may represent the amount invested in each asset,
the objective may be to maximize the expected return, and the constraints may limit the total
investment budget and the risk exposure. In a control application, the decision vector can be the
sequence of controls that we apply, the objective can be to minimize the total energy consumed,
and the constraints may encode the system dynamics and limitations on states and controls; see the
exercises for more examples. The quadratic programming formalism restricts the objective function
to be linear or quadratic, and limits the constraints to be expressed as linear (inequality and equality)
constraints. However, as we will see, several important nonlinear functions and constraints can also
be expressed in the quadratic programming formalism if we introduce additional decision variables.

Objective function modeling
If there are no constraints on x, a linear objective function f0(x) = c>x will result in an unbounded
optimal value. The optimal decision will then be to let the elements of x have the opposite sign
of those of c, and to let their magnitudes grow (arbitrarily) large. Hence, with a linear objective
function, the constraints are essential in defining meaningful solutions.

As an example of this, consider the following problem

minimize ∑
n
i=1 cixi

subject to ∑
n
i=1 xi = 1

xi ≥ 0 i = 1, . . . ,n

You can think of xi as the volume of resource i, and ci ≥ 0 as its unit cost. The problem looks for
the cheapest set of resources with a total volume of one. Of course, the optimal solution is to find
the resource j with smallest unit cost (smallest value c j), set the corresponding x j to one, and all
other decision variables to zero.

Even if this problem is trivial, it exposes some general features of linear programs. In particular,
the optimal solution is always attained at the boundary of the constraint set. It is useful to think
about the weights ci as priorities: the larger the value of ci, the more important it is to make the
corresponding xi small. In the simple resource allocation problem, we could set all variables but
one to zero, but this is of course not necessarily true with other constraints.

If the objective function is quadratic f0(x) = x>Px+q>x+ r, and P is positive definite, then
minimum of f0 is attained at x? = −P−1q, which is bounded if P and q are. Hence, the optimal
solution does not necessarily lie on the boundary of the constraints. To make this more clear, let us
consider a simple resource allocation problem with two resources and quadratic costs:

minimize c1x2
1 + c2x2

2
subject to x1 + x2 = 1

x1, x2 ≥ 0

After substituting x2 = 1− x1 into the objective, a simple calculation yields that

x?1 =
1

1+ c1/c2
, x?2 = 1− x?1

We can still interpret the ci’s as (relative) priorities. The larger the ratio c1/c2, the more important
it is to make x1 small, and the smaller the allocation x?1 in the optimal solution. Conversely, a small
ratio c1/c2 gives an optimal allocation of x1 close to one. Note that the effect of changing the
priorities is much less pronounced than it was for a linear objective function.
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Nonlinear functions in the QP formalism
Although linear and quadratic programs only allow for linear constraints, it is also straightforward
to include convex piecewise linear constraints. For example, the constraint

|x| ≤ 1

with x ∈ R can be written as the two linear constraints x≤ 1 and x≥−1, i.e.(
x
−x

)
≤
(

1
1

)
.

Similarly, the constraint

max
i=1,...,m

a>i x+bi ≤ 1

with x ∈ Rn can be written asa>1
...

a>m

x≤

1−b1
...

1−bm


If we want to minimize |x|, we can minimize an auxiliary variable t ≥ |x|, i.e.

minimize t

subject to
(

1 −1
−1 −1

)(
x
t

)
≤ 0

In a similar way, for x ∈ Rn, we can minimize ‖x‖∞ = maxi |xi|, by minimizing t ≥ |xi|, i.e.

minimize t

subject to
(

I −1
−I 1

)(
x
t

)
≤ 0

Finally, we can minimize ‖x‖1 = ∑
n
i=1 |xi| by

minimize ∑
n
i=1 ti

subject to |xi| ≤ ti

We leave it as an exercise to put this optimization problem on the standard form for linear or
quadratic programs. Sums of the functions described above can be modeled in a similar manner
and can be expressed as linear or quadratic programs. Many algebraic modeling languages
for optimization, such as YALMIP and cvx, implement a rich catalog of functions that can be
represented by linear inequalities and perform the reformulations to standard form automatically.

Hard and soft constraints
A mathematical programming problem only optimizes over the decision vectors that satisfy the
stated constraints. The constraints are therefore hard, in the sense that they have to be satisfied.
However, we can sometimes accept to violate some of the constraints, if this is necessary to find a
solution. Such soft constraints are typically dealt with using slack variables. To make the decision
more precise, consider the following optimization problem

minimize f0(x)
subject to Ahx≤ bh

Asx≤ bs
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where the second set of constraints are soft. To allow for constraint violations, we consider

minimize f0(x)+κs>s
subject to Ahx≤ bh

Asx≤ bs + s
s≥ 0

In this formulation, the soft constraints can always be satisfied, possibly by a large violation s. To
discourage violations, we add a slack penalty κs>s to the objective function. A large value of the
parameter κ puts a high priority on keeping s small. Softening of constraints is essential to MPC.

C.5 Optimality conditions for constrained convex optimization
For unconstrained convex optimization problems, the first-order optimality condition allows for a
simple analytical characterization of the optimizers. The corresponding condition for constrained
convex optimization problems reads that x? must satisfy

∇ f (x?)>(x− x?)≥ 0 ∀x ∈ X .

This condition says that x? is optimal if every perturbation of x? in a feasible direction leads to an
increase in the function value. Unfortunately, this condition is much more difficult to check than
the unconstrained counterpart, and it has therefore limited practical use.

A more convenient technique for studying constrained convex optimization is the method of
Lagrange multipliers. Given a problem on the form (C.5), one constructs an associated Lagrangian
function L : Rn×Rm

+×Rp 7→ R

L(x,λ ,µ) = f0(x)+
m

∑
i=1

λi fi(x)+
p

∑
i=1

µi(g>i x−hi).

Here λi ≥ 0 is a Lagrange multiplier for the inequality constraint fi(x)≤ 0, while µi is a Lagrange
multiplier for the equality constraint g>i x− hi = 0. Note that if x is feasible (i.e., satisfies the
constraints) and λi ≥ 0 for i = 1, . . . ,m, then

L(x,λ ,µ)≤ f0(x)

and that equality holds if λi fi(x) = 0 for all i. To explore this lower bound further, one introduces
the dual function g : Rm

+×Rp 7→ R as

g(λ ,µ) = inf
x∈D

L(x,λ ,µ) = inf
x∈D

{
f0(x)+

m

∑
i=1

λi fi(x)+
p

∑
i=1

µi(g>i x−hi)

}
Here, D is the intersection of the domain of f0 and the feasible set X . We assume that D is
non-empty. A key property of the dual function is that it lower bounds the optimal value of (C.5).
Specifically, if λi ≥ 0 for i = 1, . . . ,m, then

g(λ ,µ)≤ p?

Since g is a lower bound to p?, it is natural to try to make this bound as tight as possible, i.e. to

maximize g(λ ,µ)
subject to λ � 0

This optimization problem is called the dual problem to (C.5), and we will denote its optimal value
by d?. The next result follows immediately from our discussion.
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Proposition C.5.1 Weak duality, i.e. d? ≤ p? always holds.

Under various conditions, convex optimization problems allow us to guarantee strong duality,
i.e. that d? = p?. The next result is known as the Slater conditions for strong duality:

Theorem C.5.2 If fi(x), i = 0, . . . ,m are convex and there exists an x ∈ int dom f0 such that

fi(x)< 0, i = 1, . . . ,m and g>i x−hi = 0, i = 1, . . . , p

then d? = p?.

Under strong duality, we can derive several additional useful results. To this end, let x? be
primal optimal and (λ ?,µ?) be a dual optimal point. Then, if strong duality holds, we have

f0(x?) = g(λ ?,µ?) = inf
x∈D

{
f0(x)+

m

∑
i=1

λ
?
i fi(x)+

p

∑
i=1

µ
?
i (g
>
i x−hi)

}
≤

≤ f0(x?)+
m

∑
i=1

λ
?
i fi(x?)+

p

∑
i=1

µ
?
i (g
>
i x?−hi)≤ f0(x?).

Since all inequalities must hold with equality, we conclude that x? minimizes L(x,λ ?,µ?) and that
the so-called complementary slackness λ ?

i fi(x?) = 0 must hold for all i = 1, . . . ,m. This leads to
the Karush-Kuhn-Tucker (KKT) conditions for optimality:

∇ f0(x?)+
m

∑
i=1

λ
?
i ∇ fi(x?)+

p

∑
i=1

µ
?
i gi = 0

λ
?
i fi(x?) = 0 i = 1, . . . ,m

fi(x?)≤ 0 i = 1, . . . ,m

gT
i x?−hi = 0 i = 1, . . . , p

λ
?
i ≥ 0 i = 1, . . . ,m.

Here, the first equality is the first-order optimality condition for x? minimizing L(x,λ ?,µ?), the
second set of equations describe complementary slackness, the third and fourth set of equations are
primal feasibility and the final set of conditions describe dual feasibility.

Theorem C.5.3 Consider the constrained optimization problem (C.5) under the assumption that
f0, . . . , fm are continuously differentiable and convex. Then, if Slater’s condition holds, the KKT
conditions are necessary and sufficient for optimality.

The next example illustrates a typical application of the method of Lagrange multipliers.

� Example C.3 To solve the constrained optimization problem

minimize x>x
subject to Cx = d

using the method of Lagrange multipliers, we first form the Lagrangian function

L(x,µ) = x>x+µ
>(Cx−d)

The associated dual function is

g(µ) = inf
x

L(x,µ).



C.6 A brief overview of quadratic programming solvers 215

By the first-order optimality conditions, the minimizing x is x =−C>µ/2 so

g(µ) = L(−1
2

C>µ,µ) =−1
4

µ
>CC>µ−µ

>d.

The optimal dual value

d? = sup
µ

g(µ)

can also be computed by application of the first-order optimality conditions. Doing so, we find that
the optimal Lagrange multiplier must satisfy

−1
2

CC>µ
?−d = 0

Under the assumption that CC> is invertible, µ? =−2(CC>)−1d and

d? = d>(CC>)−1d.

Since x>x is convex, if there is an x such that Cx = d, then by Theorem C.5.2

p? = d? = d>(CC>)−1d

and an optimal solution is given by the minimizer of L(x,µ?), i.e.

x? =C>(CC>)−1d.

�

C.6 A brief overview of quadratic programming solvers
For many applications, quadratic programming is a mature technology. One can trust that standard
numerical routines are quick to provide an accurate solution or detect that no solution exists.
However, when limits are stretched, e.g. in terms of problem size, acceptable execution times, or
constraints on the underlying execution platform, this may no longer be true. We may then be
restricted in what type of quadratic programming solver that we can use, and be more exposed to
the limitations of different solvers. This is currently the case for many MPC applications.

This section gives a brief overview of the QP solver technologies that are currently used in
model predictive control. It describes the basic underlying ideas and tries to convey intuition that is
useful for selecting the solver for a particular application. For a deeper theoretical treatment of the
details required to implement your own QP solver, we refer to the literature.

The gradient descent method
Let us first begin by studying an unconstrained quadratic program

minimize
z∈Rn

f (z) = 1
2 z>Qz+ p>z (C.9)

where Q is a positive definite matrix with λmin(Q) = µ and λmax(Q) = L. Of course, we know from
the first-order optimality conditions that the optimizer z? of (C.9) satisfies

Qz?+ p = 0

Hence, z? can (and should) be found by solving a system of linear equations. Nevertheless, we can
also find the optimizer by minimizing f (x) numerically.
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One of the simplest methods for minimizing a convex function is the gradient descent algorithm.
Given z0 ∈ Rn, it generates a sequence of iterates {zk} via

zk+1 = zk− γ∇ f (zk).

where γ is a step-size parameter. Clearly, any fixed-point z of these iterations satisfies ∇ f (z) = 0.
As we will see, the algorithm converges to such a fixed-point if the step-size parameter is set
appropriately. Specifically, for our problem (C.9), ∇ f (z) = Qz+ p = Q(z− z?) and

‖zk+1− z?‖2 = ‖zk− γ∇ f (zk)− z?‖2 =

= ‖zk− z?− γQ(zk− z?)‖2 =

= ‖(I− γQ)(zk− z?)‖2 =

≤ ‖(I− γQ)‖2‖(zk− z?)‖2 =

=

(
max

i
|1− γλi(Q)|

)
‖(zk− z?)‖2

Hence, with the step-size γ = 1/L, we have

‖zk+1− z?‖2 ≤
(

1− 1
κ

)
‖zk− z?‖2

where we have introduced the condition number κ = L/µ ≥ 1. The analysis shows that the iterates
move closer to the optimizer in every iteration and that the convergence is slower when the condition
number κ of Q is large. With some additional effort, it is possible to do a more careful analysis
and demonstrate an even faster convergence. Such a refined analysis also shows that the gradient
descent iterations converge slower when the condition number is large.

Gradient descent can also be adapted to QP problems with simple bounds,

minimize 1
2 z>Qz+ p>z

subject to ‖z‖∞ ≤ zmax

by simply projecting the iterates onto the feasible set

zk+1 = ProjZ (zk− γ∇ f (zk))

Here, Z = {z | ‖z‖∞ ≤ zmax} and ProjZ(x) = argminz∈Z ‖z− x‖2
2 is the Euclidean projection of x

onto Z. One can show that this projection simply amounts to projecting each element of the iterate
vector to the interval [−zmax,zmax]. Since z? ∈ Z and the projection operator is non-expansive (see
Problem C.15), it holds that

‖zk+1− z?‖2 = ‖Proj(zk− γ∇ f (xk))−Proj(z?)‖2 ≤ ‖zk− γ∇ f (zk)− z?‖2,

so the same convergence proof (and guarantee) holds for the projected GD.
The projected gradient method can be used with more general constraints, as long as the

projection operator can be evaluated efficiently. However, projecting onto a general polyhedron
{z | Az≤ b}, as we are interested in doing when solving MPC problems, requires solving a quadratic
program. Hence, evaluating the projection operator is as hard as solving the original problem.
However, the corresponding dual optimization problem has simple constraints and can therefore be
solved using the projected gradient descent method; see Problem C.16.

The (projected) gradient method is surprisingly simple to implement, but it has a few disadvan-
tages. First, it is relatively sensitive to the conditioning of the problem (the condition number κ)
and the convergence may be slow if we need high accuracy solutions. There are a number of ways
to improve the practical convergence speed of the gradient descent iterations, and there are several
related algorithms that can accelerate the convergence in both theory and practice, see [12]. The
second problem is that convergence of these methods is only asymptotic, so in the context of MPC,
one may have to accept to operate using (slightly) suboptimal solutions; cf. Exercise 5.14.
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Interior-point methods
Interior-point methods are state-of-the-art for solving medium-sized QPs on standard computers.
They can deal with general quadratic programs and benefit for treating equality and inequality
constraints differently. However, for simplicity, we only explain them for a QP on the form

minimize 1
2 z>Pz+q>z

subject to Az≤ b

Recall that the optimal solution to such a problem satisfies the KKT conditions

Pz+q+A>λ = 0

Az−b≤ 0

λ � (Az−b) = 0

λ ≥ 0

where � in the complementarity condition denotes elementwise multiplication of the two vectors.
One popular class of interior point methods approach the solution to these conditions along a
central path. To define the central path, we re-write the optimality conditions using a slack-variable
s and relax the complementarity condition with a parameter µ

Pz+q+A>λ = 0

Az−b+ s = 0

λ � s = µ1
λ ,s≥ 0

The central path is the unique point (z(µ),s(µ),λ (µ)) that simultaneously satisfies these relaxed
optimality conditions. The conditions are solved for a sequence of parameters µ that converges to
zero. Non-negativity of λ and s is accounted for separately, and the remaining conditions define a
nonlinear system of n+2m equations in n+2m variables. When the QP is convex, one can show
that the equations have a unique solution in the strict interior of the orthant λ ,s≥ 0.

As µ tends to zero, the central path converges to an optimal solution to both the primal and dual
problems. A primal-dual path-following algorithm is defined as any iterative process that starts
from a point in the strict interior of (2.5) and at each iteration estimates a value of µ representing a
point on the central path that is in some sense closer to the optimal solution than the current point
and then attempts to step toward this central-path point making sure that the new point remains in
the strict interior of the appropriate orthant.

The interior point methods have excellent theoretical convergence guarantees and tend to find
high-accuracy solutions in a relatively modest (typically 10-20) number of iterations. However,
they require more memory than the simple gradient iterations and rely on advanced numerical
linear algebra in each iteration to solve the relaxed KKT conditions. Representative interior-point
methods that target embedded MPC controllers incude cvxgen [19] and HPMPC [11].

Active set methods
Active set methods attempt to solve quadratic programs on the form

minimize 1
2 z>Pz+q>z

subject to Az≤ b
(C.10)

by determining what constraints hold with equality at optimal solution. To describe these methods,
we introduce the following terminology. We say that an inequality constraint a>i z ≤ bi is active
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at z̄ if a>i z̄ = bi. For a system of q inequality constraints, Az ≤ b, we define the active set at z̄,
A(z̄)⊆ {1, . . . ,q}, as the set of indices of the constraints that are active at z̄. For ease of notation,
we let A? =A(z?). If M ∈ Rq×r and A ⊆ {1, . . . ,q}, we let MA ∈ R|A|×r represent the matrix
formed by the rows of M whose indicies belong to A.

Now, if we would know the optimal optimal active set A? of (C.10), then the optimal solution
to (C.10) would also be a solution to the equality-constrained QP

minimize 1
2 z>Pz+q>z

subject to AA?z = bA?

The optimality conditions for this problem are the KKT conditions(
P A>A?

AA? 0

)(
z
λ

)
=

(
−q
bA?

)
(C.11)

so its solution can be found by solving a simple system of linear equations. Active set methods
leverage on this observation and find the optimal solution by maintaining a working set W of
constraints, and updating W so that it eventually converges to A?. More specifically, it solves the
KKT system (C.11) defined by A? =W and checks if the corresponding solution satisfies λ ≥ 0
and Az≤ b. If this is the case, an optimal solution has been found. Otherwise, the working set has
to be updated and a new KKT system has to be solved.

Most active set methods replace one constraint in the working set in every iteration. There
are several approaches for selecting what constraint to add and remove, leading to primal, dual,
and primal-dual active set methods, respectively. Primal methods ensure that the primal iterate z
is always feasible, dual methods guarantee that the dual iterate λ is always non-negative, while
primal-dual methods do not enforce feasibility of iterates until convergence.

Active set methods are attractive for MPC applications, since the effort of solving the KKT
system is limited, and the optimal active set can often be found in a few iterations. This is especially
true if the MPC solver is warm-started, i.e. initialized from a good starting guess based on the
solution to the problem solved in the previous sampling time. Once the optimal set is found, a
high-accuracy solution can be computed also with limited precision arithmetics.

A drawback of active set methods is that one has to be careful to avoid cycling, i.e. that the
new working set is equal to some previous working set. In addition, their theoretical worst-case
complexity is poor, since one can construct contrived problems that require an exponential number
of updates of the working set to find the optimal solution. Nevertheless, for the class of problems
that is encountered in MPC applications, it is possible to perform an exact complexity analysis
offline to determine the maximum number of iterations that can possibly be required. Representative
active set solvers for embedded systems include qpOASES [9] and DAQP [1].

Explicit solutions to quadratic programs
For the family of quadratic programs that appear in model predictive control applications, it is also
possible to avoid on-line optimization altogether, and compute an explicit expression of the optimal
solution as function of the initial state. This approach is known as explicit MPC and is based on the
concept of multi-parametric quadratic programming.

Recall that we in Chapter 3 demonstrated how MPC problems on standard form could be
written in a condensed form with only inequality constraints

minimize z>Pz+2q>z+ r
subject to Az≤ b

Here, z contains the predicted optimal control sequence {û0, û1, . . . , ûT−1}, and q, r and b depend
on the free response (and therefore on the initial state). To simplify the exposition, we perform a
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variable transformation x = z+P−1q, which results in the problem

minimize x>Px+ r−q>P−1q
subject to Ax≤ b−P−1q

Since the constant term in the objective does not influence the optimal solution (only the optimal
value of the optimization problem), we will initially disregard it. Moreover, since b is affine in
x0 and q is linear in x0, we can re-write the constraint as Ax ≤ w+Sθ , where we have replaced
x0 by θ to signify that it is a parameter in the optimization problem. This leads to the following
multiparametric Quadratic Programming (mpQP) problem

minimize x>Px
subject to Ax≤ w+Sθ

(C.12)

where x ∈ Rd , w ∈ Rq, θ ∈Θ⊆ Rn, and the remaining matrices are of compatible dimensions. We
are interested in understanding how its optimal solution x?(θ) depends on the parmeter θ . To this
end, we note that the optimal solution to (C.12) is characterized by the KKT conditions

2Px+A>λ = 0

Ax≤ w+Sθ

λ ≥ 0

λ � (Ax−w−Sθ) = 0

As we will see below, given an optimal active set, we can use the KKT conditions to express the
optimal solution of (C.12) as an explicit function of θ . This expression will be valid for all θ that
result in the same optimal active set. We call such a region in the parameter space a critical region,
defined next.

Definition C.6.1 Given an index set A ⊆ {1,2, . . . ,q}, the critical region RA associated with
A is the set of parameters for which the optimal active set is equal to A, i.e. RA = {θ ∈
Rn |A?(θ) =A}.

As discussed in the section on active set QP solvers, all Lagrange multipliers that are not in the
active set will be zero and can be eliminated from the KKT conditions. Using the same notation as
in the previous section, we can therefore write the KKT conditions for a given active set A as

2Px+A>AλA = 0

Ax≤ w+Sθ

λA ≥ 0

AAx−wA−SAθ = 0

For simplicity of exposition, let us assume that P � 0 and that the rows of AA are linearly
independent. Then, we can combine the first and fourth KKT conditions to find explicit expressions
for the optimal dual and primal variables:

λA(θ) =−2(AAP−1A>A)−1(wA +SAθ) (C.13)

x(θ) = P−1A>A(AAP−1A>A)−1(wA +SAθ) (C.14)

Note that the optimal solutions are affine in θ , and that the inverses exist since, by assumption,
P� 0 and the rows of AA are linearly independent. The expressions are valid for all θ that do not
violate primal and dual feasibility, i.e., for which{

AP−1A>A(AAP−1A>A)−1(wA +SAθ) ≤ w+Sθ

2(AAP−1A>A)−1(wA +SAθ) ≤ 0
(C.15)
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Since these inequalities are affine in θ , the critical region RA is a polyhedron in Rn. For all θ that
lie in the critical region defined by (C.15), the optimal primal solution x(θ) is an affine function of
θ , whose explicit expression is given in (C.14).

To define the explicit solution for all feasible θ , one needs to explore all critical regions.
Although there are many possible ways to do this, we will only explain a simple but computationally
demanding procedure. It begins with a convex and compact subset Θ⊂ Rn of the parameter space.
In every step of the algorithm, it picks a θ ∈ Θ and solves (C.12) using a standard QP solver
to find the optimal active set A?(θ) and the corresponding critical region RA?(θ) using (C.15).
It then partitions Θ\RA?(θ) into convex polyhedra and repeats the procedure inside each such
polyhedon; see Figure C.4. More specifically, if RA?(θ) is defined by m inequalities, it partitions the
complement of this set into m polyhedra, where the ith polyhedron is defined from the inequalities of
the critical region by dropping the first i−1 constraints, reversing the direction of the ith inequality,
and keeping the remaining constraints as is. The development of a numerically reliable algorithm
that can also deal with the case that the rows of AA?(θ) become linearly dependent requires some
additional effort. We will not provide the details here, but refer to the literature and describe the
approach on a simple integrator example.

-10 -5 0 5 10
-10

-5

0

5

10

Figure C.4: A simple approach to subdivide a compact region Θ of the parameter space into critical
regions. From an interior point of Θ, the associated QP is solved and an active set is identified.
The complement of the corresponding critical region is subdivided into convex polyhedra (here,
Θ1, . . . ,Θ6, and the procedure is repeated.

� Example C.4 Let us consider the planning problem for an integrator process with magnitude
limits on the control

minimize ∑
T−1
t=0

1
2

(
x̂2

t + û2
t
)
+ 1

2 x̂2
T

subject to x̂t+1 = x̂t + ût

ût ∈ [−1,1]
(C.16)

For simplicity, we consider T = 1 and use the dynamics to eliminate the terminal state, leading to
the planning problem

minimize x̂2
0 + x̂0û0 + û2

0
subject to û0 ∈ [−1,1]
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To find the explicit solution, we apply the variable transformation û = û0 + x̂0/2 and drop terms in
the objective that do not depend on û, leading to

minimize û2

subject to û≤ 1+ x̂0/2
−û≤ 1− x̂0/2

(C.17)

Beginning with x̂0 = 0, the optimal solution to the QP is û = 0 and A(0) = /0. The primal
feasibility conditions reveal that this solution is valid for x̂0 ∈RA?(0) = {x0 | x0 ≤ 2 ∧ −x0 ≤ 2}.
To find the complete solution, we subdivide the remaining parameter space into the two polyhedra
Θ1 = {x0 | x0 ≥ 2 ∧ −x0 ≤ 2} and Θ2 = {x0 | −x0 ≥ 2}. For x̂0 ∈Θ1, we pick x̂0 = 6 and solve the
resulting QP to find û? = 2 and A?(6) = {2}. The KKT conditions reveal that û? = x̂0/2−1, and
that this expression is valid for all x̂0 ≥ 2. For x̂0 ∈Θ2, we choose x̂0 =−6 and solve the resulting
QP to find A?(−6) = {1}. The KKT conditions imply that û? = 1+ x̂0/2, valid for x̂0 ≤ 2. Hence,
we have found the solution to (C.17):

û? =


x̂0/2+1 if x̂0 ≤−2
0 if −2≤ x̂0 ≤ 2
x̂0/2−1 if x̂0 ≥ 2

Finally, we transform the solution back to the original coordinates to find

û?0 =


1 if x̂0 ≤−2
−x̂0/2 if −2≤ x̂0 ≤ 2
−1 if x̂0 ≥ 2

Note that the minimizer is a continuous and piecewise affine function of the parameter x̂0. �

Multi-parametric quadratic programming algorithms, such as [3, 22] are run off-line, and
partition feasible parameter set into non-overlapping polyhedra and compute the associated affine
expressions that determine the optimizer as a function of the parameters in each such polyhedron.
The algorithm itself can take significant time to run, and the partition can sometimes have a (very)
large number of polyhedra, especially when the optimization problem has a large decision vector
and many constraints. However, the online computations are reduced to finding the polyhedron that
contains the current parameters and then evaluating the affine expression valid in that region.

Another advantage of the multi-parametric framework is that it allows us to understand how
the optimal solution and the optimal value depend on the parameters. The next proposition, which
is Theorem 4 in [3] adapted to our notation, summarizes some properties of multi-parametric
quadratic programs that are useful in the analysis of model predictive controllers.

Proposition C.6.1 Consider the mpQP (C.12) with P� 0 and Θ convex. Then the set of feasible
parameters Θ f ⊆Θ is convex. The minimizer function x?(θ) : Θ f 7→Rd is continuous and piecewise
affine in the sense that there exists a partitioning of Θ f into a finite set of full-dimensional polyhedra
R := {R1, . . . ,RK} with ∪K

k=1Rk = Θ f and int(Ri)∩ int(R j) = /0 for all i 6= j, such that x?(θ) is an
affine function of θ in each Rk. The value function

V (θ) = min
x

{
x>Px | Ax≤ w+Sθ

}
is convex, continuous, and piecewise quadratic.
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C.7 Exercises
Problem C.1 Show that the probability simplex

X =

{
x ∈ Rn | xi ≥ 0,∑

i
xi = 1

}

is a convex set.

Problem C.2 Recall that a norm ‖ · ‖ satisfies the following three properties
1. ‖v‖ ≥ 0 for all v and ‖v‖= 0 if and only if v = 0.
2. ‖λv‖= |λ |‖v‖ for all λ ,v.
3. ‖v+w‖ ≤ ‖v‖+‖w‖ for all v,w.

Show that the norm is a convex function. Use this result to show that the unit norm ball

B= {x ∈ Rn | ‖x‖ ≤ 1}

and the second-order cone

K=
{
(x, t) ∈ Rn+1 | ‖x‖2 ≤ t

}
are convex sets.

Problem C.3 Show that the pointwise maximum of two convex functions is convex. In other
words, if f1(x) and f2(x) are both convex functions, then so is f (x) = max{ f1(x), f2(x)}.
Problem C.4 Let f : R 7→R be a sclar and twice continuously differentiable scalar function. Prove
that f is convex if and only if

∇
2 f (x)≥ 0 ∀x

(In Rn, the corresponding result states that f is convex if and only if its Hessian is positive
semidefinite for all x; you can also try to prove this more general result.)

Problem C.5 Draw the feasible set for the following LP. Indicate lines along which the objective
function is constant, and identify the optimal solution.

maximize x1 + x2
subject to x1 +2x2 ≤ 10

2x1 + x2 ≤ 16
−x1 + x2 ≤ 3
x1 ≥ 0, x2 ≥ 0

Validate your results by solving the LP numerically.

Problem C.6 A city has the following minimum requirement for the number of police on duty

00.00−04.00 04.00−08−00 08.00−12.00 12/000−16.00 16.00−20.00 20.00−24.00
15 35 65 80 40 25

Each police comes on duty at 0.00, 4.00, 8.00, 12.00, 16.00 or 20.00 and works for eight
consecutive hours. Assume that the same schedule is repeated day after day. Formulate the problem
of finding the duty schedule that minimizes the total number of police as a linear program. How
many policemen are needed?

Hint. Disregard the fact that the number of police in each shift should be an integer number.
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Problem C.7 A health food shop packages three types of snack foods: chewy, crunchy, and nutty.
These are made by mixing sunflower seeds, raisins, and peanuts. The specifications for each food
are given in the following table:

Mixture Sunflower seeds Raisins Peantus Retail price/kg

Chewy – at least 60% at most 25% 20 SEK
Crunchy at least 60% – at most 25% 16 SEK

Nutty at most 20% – at least 60% 12 SEK
The supplier of ingredients can deliver at most 100kg of sunflower seeds at 10 SEK/kg, 80kg

or raisins at 15 SEK/kg and 60kg of peanuts at 8 SEK/kg. Determine the mixing scheme that
maximizes profit under the assumption that all produced goods will be sold.

Hint. It can be convenient to introduce decision variables xi j that symbolize the amount (in kilos)
of ingredient j used to make snack i.

Problem C.8 An airport is accepting N arriving aircraft in a fixed order 1,2, . . . ,N. Each aircraft i
is given a time-interval [li,ui] when it is allowed to land. The airport wants to assign arrival times ti
that maximize the smallest inter-arrival times, i.e. find ti in order to

maximize min
i=1,...,N−1

ti+1− ti

while maintaining the ordering of the aircraft and respecting the given time windows. Formulate a
linear program that computes the optimal arrival times ti.

Problem C.9 There are many ways to define the center of a polyhedron

P=
{

x ∈ Rn | aT
i x≤ bi, i = 1, . . . ,m

}
The Chebyshev center of P is defined as the center xc of the largest Euclidean ball

B(xc,r) = {x ∈ Rn | ‖x− xc‖2 ≤ r}

that fits inside the polyhedron. Derive a linear program for computing xc.

Hint. Note that the Euclidean ball can also be represented as

B = {x = xc +u | ‖u‖2 ≤ r}

Use this representation to derive a condition for B to be fully contained in a single halfspace
Hu =

{
x ∈ Rn | aT

i x≤ bi
}

and apply this condition to all hyperplanes that define the polyhedron.

Problem C.10 Consider the following quadratic program

minimize q(x1,x2)
subject to x1 + x2 ≤ 1

x1 ≥ 0, x2 ≥ 0

Draw the feasible set, and the level curves where the values of objective function

q(x) = (x1−1)2 +(x2−1)2

take on the values 0,4 and 9. Identify the optimal solution. Repeat the exercise for the objective

q(x) = x2
1 + x2

2.
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Problem C.11 You are given the following data

x =
(
0.53 1.77 1.95 2.15 2.86 3.50 3.71 3.79 4.11 4.21

)
y =

(
−0.67 3.57 4.59 7.04 16.75 33.49 40.24 43.54 54.85 59.90

)
and would like to fit a third-degree polynomial ŷ = f̂ (x) = ax3 +bx2 + cx+d to minimize the loss

10

∑
i=1

(ŷi− yi)
2

Formulate the problem as a least-squares problem and compute the optimal parameters f̂ (x).

Problem C.12 You are given the following data

x =
(

0.38 0.61 1.09 2.35 2.37 2.72 4.18 4.28 4.37 4.50 . . .

5.38 5.61 6.09 7.35 7.37 7.72 9.18 9.28 9.37 9.50
)

y =
(
−0.79 −0.54 −0.34 7.94 9.87 14.63 57.93 63.99 67.31 74.26 . . .

130.0 143.3 171.0 234.2 235.3 250.6 303.5 306.7 309.4 313.0
)

Visual inspection of the data reveals that there is an apparent break-point around x = 5. Use
quadratic programming to estimate the parameters of a piecewise polynomial

f =

{
ax3 +bx2 + cx+d if x≤ 5
a′x3 +b′x2 + c′x+d′ if x≥ 5

under the constraint that f should be continuous and continuously differentiable.

Problem C.13 We are given two set of points {x1, . . . ,xN} and {y1, . . . ,yM} and would like to find
a linear classifier, i.e., an affine function f (x) = a>x+b such that

aT xi +b < 0, i = 1, . . . ,N, aT yi +b > 0, i = 1, . . . ,M.

Since the inequalities are homogeneous in (a,b) we normalize the inequalities and require that

aT xi +b≤−1, i = 1, . . . ,N, aT yi +b≥ 1, i = 1, . . . ,M.

instead. The set

S =
{

z ∈ Rn | −1≤ aT z+b≤ 1
}

defines a “slab” that separates the two point clouds {xi} and {yi}. Verify that the width (also
known as the margin) of the slab is given by 2/‖a‖2 and formulate the problem of finding the linear
classifier with maximum margin as a quadratic programming problem.

Problem C.14 We have considered linear programming problems on the form

minimize cT x
subject to Ax≤ b

(C.18)

Show that the associated dual problem is itself a linear program on the form

maximize dT z
subject to Ez = f , z≥ 0.

(C.19)

Given an optimal solution z? to (C.19), what is the corresponding optimal solution x? to (C.18)?
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Problem C.15 The projection of a vector u onto a convex set X , ProjX(u), is the vector x? ∈ X that
is closest to u, i.e. the solution to the optimization problem

minimize
x

1
2‖x−u‖2

2

subject to x ∈ X

(a) Use the definition of the projection operator to show that the projection onto the non-negative
orthant, X = {x | x≥ 0} is simply max(0,xi) for each component xi of x.

(b) Show that the projection is non-expansive, i.e. that it satisfies

‖ProjX(u)−ProjX(v)‖2 ≤ ‖u− v‖2 for all u,v ∈ Rn.

Hint. Note that the optimality condition for constrained optimization implies that
(ProjX(u)−u)>(x−ProjX(u))≥ 0 for all x ∈ X , and that ProjX(v) ∈ X .

Problem C.16 Consider the quadratic program

minimize z>Pz+2q>z+ r
subject to Az≤ b

(a) Form the associated Lagrangian L(z,λ ) and use the completion-of-squares lemma to show
that the corresponding dual problem is a QP on the form

maximize λ>Pdλ +2q>d λ + rd
subject to λ ≥ 0

where Pd = −AP−1A>/4, qd = −(AP−1q+ b)/2 and rd = r− q>P−1q. Determine an ex-
pression for how the optimal primal solution z? depends on the optimal dual solution λ ?.

(b) Verify your expressions by numerically solving the QP defined by P = I, q = −21, r = 0,
A =

(
I −I

)> and b = 1. This QP attempts to minimize the Euclidean distance between
(2,2) and the feasible set ‖z‖∞ ≤ 1, so z? = (1,1). But what is the optimal solution to the
dual problem, and can you recover the primal optimizer from the dual?

(c) Implement the projected gradient descent method and solve the dual QP. How many iterations
do you need to get a solution of good accuracy?

Hint. Recall that the x that maximizes f (x) minimizes − f (x). You can use this fact in (b) and (c).

Problem C.17 A set of N players in a market share a common resource. The utility of player
i being assigned xi amount of resource is characterized by a concave utility function ui(xi). We
are interested in finding the allocation that maximizes the “social welfare” under the resource
constraint:

maximize ∑
N
i=1 ui(xi)

subject to ∑i xi = xtot.

Use duality theory to show that the players can be aligned to the social optimum by introducing a
price p on the resource under the assumption that they maximize their utility minus resource cost

maximize ui(xi)− pxi

Hint. A function u is concave if and only if −u is convex. You can therefore consider the convex
minimization problem

minimize ∑i−ui(xi)
subject to ∑i xi = xtot.
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D.1 Proofs from Chapter 1
Proof of reachable subspace decomposition
The proof relies on the following lemma.

Lemma D.1 The set of reachable states is A-invariant, i.e. if xtgt is reachable, then so is Axtgt.

Proof. We begin by establishing that range(ACn)⊆ range(Cn). To this end, note that

ACn =
(
AnB An−1B . . . AB

)
The last n−1 blocks are present in the controllability matrix, and by the Cayley-Hamilton theorem,
we can write AnB as a linear combination of the columns of the controllability matrix. Hence,
range(ACn)⊆ range(Cn). Now, if xtgt is reachable, then there exists Un such that xtgt = CnUn and
Axtgt = ACnUn. As the range of ACn is contained in the range of Cn, there exists Vn such that
Axtgt = CnVn. Hence Axtgt is also reachable. �

We are now ready to proceed and prove Theorem 1.2.2. Let V ∈ Rn×nr be a matrix whose
columns span the range of Cn, and let W ∈ Rn×n−nr be a matrix whose columns are independent of
each other and those of V . Consider the state transformation z = T−1x with T =

(
V W

)
, i.e.

x =
nr

∑
i=1

zivi +
n

∑
j=nr+1

z jw j−nr .

Note that z j = 0 for all j = nr +1, . . . ,n if x lies in the range of Cn. In other words, the last n−nr

components of T−1x are zero if x ∈ range(Cn).
Since the range of Cn is A-invariant, Avi lies in the range of Cn and the last n−nr components

of T−1Avi must equal zero. Hence, the n− nr last rows of T−1AV must be zero, and T−1AT =
T−1A

(
V U

)
has the desired block structure. Similarly, B lies in the range of Cn so T−1B must

also have the desired structure.
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D.2 Proofs from Chapter 2
Proof of existence of matrix series
Lemma D.2 Let Q ∈ Rn×n be positive semidefinite and A ∈ Rn×n have spectral radius strictly less
than one. Then, the series

P =
∞

∑
k=0

(A>)kQAk

converges.

Proof. We will show that there is an induced matrix norm, in which the matrix series is absolutely
convergent. Since A has spectral radius strictly less than one, Theorem A.4.1 guarantees that there
is a matrix norm ‖ · ‖ such that ‖A‖ ≤ r < 1. In this norm, we also have ‖A>‖ ≤ r and thus

∞

∑
k=0
‖(A>)kQAk‖ ≤

∞

∑
k=0
‖A>‖k‖Q‖‖A‖k = ‖Q‖

∞

∑
k=0

(
r2)k

= ‖Q‖ 1
1− r2 .

Now, by Theorem A.4.2 this implies that the matrix series itself converges.

D.3 Proofs from Chapter 4
Proof that the infinite-horizon LQ cost-to-go function is quadratic
We begin by establishing that v(λx0) = λ 2x0. Recall that

xt = Atx0 +
t−1

∑
k=0

AkBut−1−k.

so multiplying both x0 and the input sequence by the same scalar λ leads to

λxt = At
λx0 +

t−1

∑
k=0

AkBλut−1−k.

Introducing

J(x0,u) =
∞

∑
t=0

x>t Qxt +u>t Rut

we note that J(λx0,λu) = λ 2J(x0,u), and therefore

v(λx0) = λ
2v(x0). (D.1)

Next, consider two initial states x0 and x̃0. We would like to show that

V (x0 + x̃0)+V (x0− x̃0) = 2V (x0)+2V (x̃0).

To this end, we let u and ũ be two input sequences and consider

xt+1 = Axt +But

x̃t+1 = Ax̃t +Bũt

Adding or subtracting the above equations yields

xt+1 + x̃t+1 = A(xt + x̃t)+B(ut + ũt), xt+1− x̃t+1 = A(xt − x̃t)+B(ut − ũt).
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Therefore,

J(u+ ũ,x0 + x̃0)+ J(u− ũ,x0− x̃0) =
∞

∑
t=0

((xt + x̃t)
T Q(xt + x̃t)+(xt − x̃t)

T Q(xt − x̃t)

+
∞

∑
t=0

(ut + ũt)
T R(ut + ũt)+(ut − ũt)

T R(ut − ũt))

=
∞

∑
t=0

2xT
t Qxt +2x̃T

t Qx̃t +2uT
t Rut +2ũT

t Rũt

= 2J(u,x0)+2J(ũ, x̃0)

By minimizing both sides with respect to u and ũ we obtain

min
u,ũ
{J(u+ ũ,x0 + x̃0)+ J(u− ũ,x0− x̃0)}= min

u
2J(u,x0)+min

ũ
2J(ũ, x̃0)

The right-hand side of this equation is simply 2v(x0)+2v(x̃0). When it comes to the left-hand side,

min
u,ũ
{J(u+ ũ,x0 + x̃0)+ J(u− ũ,x0− x̃0)} ≥min

u,ũ
J(u+ ũ,x0 + x̃0)+min

u,ũ
J(u− ũ,x0− x̃0)

so we have established the inequality

v(x0 + x̃0)+ v(x0− x̃0)≤ 2v(x0)+2v(x̃0). (D.2)

Applying this inequality to x0 = (x′0 + x̃′0)/2 and x̃0 = (x′0− x̃′0)/2, as v(λx0) = λ 2v(x0), we find

v(x′0)+ v(x̃′0)≤
1
2

v(x′0 + x̃′0)+
1
2

v(x′0− x̃′0)

i.e.

v(x′0 + x̃′0)+ v(x′0− x̃′0)≥ 2v(x′0)+2v(x̃′0) (D.3)

Since (D.2) and (D.3) hold for all arguments, it must be that

v(x0 + x̃0)+ v(x0− x̃0) = 2v(x0)+2v(x̃0). (D.4)

We are now ready to show that v′(x0) = ∇v(x0) is linear in x0. To this end, we take the derivative
of both sides of (D.4) with respect to x0 and x̃0, respectively

v′(x0 + x̃0)+ v′(x0− x̃0) = 2v′(x0)

v′(x0 + x̃0)− v′(x0− x̃0) = 2v′(x̃0)

and add these equations to find

v′(x0 + x̃0) = v′(x0)+ v′(x̃0)

In addition, differentiating both sides of (D.1) with respect to x0 yields λv′(λx0) = λ 2v′(x0), i.e.

v′(λx0) = λv′(x0)

We can therefore conclude that v′ is linear in x0, i.e. on the form

v′(x0) = Mx0
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for some M ∈ Rn×n.
Next, (D.1) implies that v(0) = 0, and therefore

v(x0) =
∫ 1

s=0
v′(sx0)

T x0 ds =
∫ 1

s=0
s · xT

0 MT x0 ds =
1
2

xT
0 MT x0

From the appendix about quadratic forms, we know that we can let M be symmetric without loss of
generality, i.e. that we can write

v(x0) = xT
0 Px0

with P = (M/2+MT/2)/2. Since the cost is non-negative, P must be positive semi-definite. This
concludes our proof.

Proof of the least-squares filter equations
We begin by eliminating the disturbances wt and vt from (4.20). Since

wt = xt+1− (Axt +But)

vt = yt −Cxt

the optimal estimate time t is obtained by minimizing

Jt(x0, . . . ,xt) = r0(x0)+
t−1

∑
k=0

rv(xk)+ rw(xk,xk+1) (D.5)

where

r0(x0) = (x0− x̄0)
>R0(x0− x̄0)

rv(xt) = (yt −Cxt)
>Rv(yt −Cxt)

rw(xt ,xt+1) = (xt+1− (Axt +But))
>Rw(xt+1− (Axt +But)).

We note that Jt(x0, . . . ,xt) has the multi-stage structure

J(x0, . . . ,xt) = g0(x0)+
t

∑
k=1

gk(xk−1,xk)

discussed in Section 3.3 with g0(x0) = r0(x0) and gk(xk−1,xk) = rv(xk−1) + rw(xk−1,xk). The
optimal solution can therefore be computed using forward induction. It will be convenient to
structure the solution in terms of x̂t|s, i.e. the best estimate of xt given information up until time s.
We let x̂0|−1 denote the best guess of x0 before any measurements are made. Hence, x̂0|−1 = x̄0 and
the initial arrival cost has the form

w0(x0) = (x0− x̂0 |−1)
T R0(x0− x̂0 |−1)

To be able to apply dynamic programming in an efficient way, it would be convenient if the arrival
cost remains quadratic. It turns out that the arrival costs will admit the parameterization

wk(xk) = (xk− x̂k |k−1)
>Sk(xk− x̂k |k−1)+ sk.

for some positive semidefinite matrix Sk and non-negative constant sk. This claim is clearly true for
k = 0. We can now proceed by induction from an arbitrary stage k. The forward induction step is

wk+1(xk+1) = min
xk
{wk(xk)+gk+1(xk,xk+1)}= min

xt
{wk(xk)+ rv(xk)+ rw(xk,xk+1)}
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To structure the optimal solution into a measurement update and a prediction step, we will derive
the optimal solution by applying the completion-of-squares lemma twice. First, we combine the
two first terms into a single quadratic

w̄k(xk) = wk(xk)+ rv(xk) =

= (xk− x̂k |k−1)
>Sk(xk− x̂k |k−1)+ sk +(yk−Cxk)

>Rv(yk−Cxk) =

= x>k (Sk +C>RvC)xk−2(Skx̂k |k−1 +C>Rvyk)
>xk + sk + x̂>k |k−1Skx̂k |k−1 + y>k Rvyk

This function represents the accumulated cost up until measurement k, and depends on y0, . . . ,yk.
We will refer to the minimizer of this expression as x̂k |k. By the completion-of-squares lemma,

x̂k |k = (Sk +C>RvC)−1(Skx̂k |k−1 +C>Rvyk) = x̂k |k−1 +Kk(yk−Cx̂k |k−1)

where we have introduced Kk = (Sk +C>RvC)−1C>Rv. Moreover, w̄k(xk) can be expressed as

w̄k(xk) = (xk− x̂k |k)
>S̄k(xk− x̂k |k)+ s̄k

where

S̄k = Sk +C>RvC

s̄k = sk + x̂>k |k−1Skx̂k |k−1 + y>k Rvyk− x̂>k |k(Sk +C>RvC)x̂k |k

While this is an important intermediate result, we need to complete the induction to find how
Sk and sk evolve. To this end, we re-write the induction step in terms of w̄k as

wk+1(xk+1) = min
xk
{w̄k(xk)+ rw(xk,xk+1)}=

= min
xk

{
x>k (S̄k +A>RwA)xk−2(S̄kx̂k |k +A>Rw(xk+1−Buk))

>xk+ (D.6)

+x̂>k |kS̄kx̂k |k +(xk+1−Buk)
>Rw(xk+1−Buk)+ s̄k

}
By the least-squares lemma, the optimizer is

x?k = (S̄k +A>RwA)−1(S̄kx̂k |k +A>Rw(xk+1−Buk))

and the arrival cost can be expressed as

wk+1(xk+1) = x̂>k |kS̄kx̂k |k +(xk+1−Buk)
>Rw(xk+1−Buk)+ s̄k− (x?k)

>(S̄k +A>RwA)x?k

It now remains to massage this expression to show that it can be written on the form

wk+1(xk+1) = (xk+1− x̂k+1 |k)
>Sk+1(xk+1− x̂k+1 |k)+ sk+1

To this end, let x̂k+1 |k = Ax̂k |k +Buk and ek+1 = xk+1− x̂k+1|k. Then xk+1−Buk = ek +Ax̂k|k and

wk+1(xk+1) = x̂>k|kS̄kx̂k|k +(ek+1 +Ax̂k|k)
>Rw(ek+1 +Ax̂k|k)+ s̄k

− (S̄kx̂k|k +A>Rw(ek+1 +Ax̂k|k)
>(S̄k +A>RwA)−1(S̄kx̂k|k +A>Rw(ek+1 +Ax̂k|k) =

= e>k+1(Rw−RwA(S̄k +A>RwA)−1A>Rw)ek+1 + s̄k

which is on the desired form. Hence, Sk+1 = Rw−RwA(S̄k +A>RwA)−1A>Rw and sk+1 = s̄k satisfy
the recursion and we are done.
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Proof of the Kalman filter equations
Recall that the Kalman filter cost is parameterized as

JN = (xT
0|−1−µ0)

T
Σ
−1
0 (x0|−1−µ0)+

N−1

∑
k=0

wT
k Σ
−1
1 wk + vT

k Σ
−1
2 vk

i.e. the same as the least-squares filter with Σ0 = R−1
0 , Σ1 = R−1

1 and Σ2 = R−1
2 . It maintains an

arrival cost parameterized in terms of Pt = S−1
t . Hence, we do not need to re-derive the update

equations, but rather manipulate the update equations so that they express Pt+1 in terms of Pt , Σ0,
Σ1, Σ2 and the system matrices. To this end, we use the matrix identities in Proposition A.2.6.

We can now transform the update equations of the least-squares filter one by one. For K̄t , we
let Y = St , Z =C, X = R2 and apply (A.2):

K̄t = (St +CT R2C)−1CT R2 =

= S−1
t CT (R−1

2 +CS−1
t C)−1 = PtCT (Σ2 +CPtCT )−1

No modification is needed for x̂t|t−1, while the update for P̄t = S̄−1
t can be derived by direct

application of (A.1) with X = St , Z =C and Y = R2:

P̄t = (St +CT R2C)−1 = S−1
t −S−1

t CT (R−1
2 +CS−1

t CT )−1CS−1
t =

= Pt −PtCT (Σ2 +CPtCT )−1CPt .

Again, no change is needed for x̂t|t , while Pt+1 = S−1
t+1 can be found by the reverse application of

(A.1) with X = R−1
1 ,Y = P̄t and Z = A:

Pt+1 = Σ1 +AP̄tAT .

The proof is complete.
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