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Abstract 
As part of a project course in automatic control, we have been given the task of controlling an 
inverted pendulum with an inertia wheel as actuator. The task is to make the pendulum swing up 
from the hanging down position to balancing in the inverted position. This is a non-linear system 
that had to be linearised. We made a model and designed both LQG and PID controllers that 
stabilised the pendulum. We also made a controller that can swing the pendulum up, but so far 
the system does not perform sufficiently. 
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1 Introduction 
The project is part of the automatic control project course 2E1242, at KTH, and we are assigned 
to develop a control system for an inverted pendulum. This is a non-linear problem that has to be 
linearised. The control law is implemented in a DSP, so that the system can function 
autonomously without being connected to a computer. Our task is to design a controller that can 
swing the pendulum up from the hanging down position to the inverted position, and then 
balance it there. This report is a documentation of our progress, half way into the project. 

2 The project 

2.1 Resources 
The project group consists of four people: 
 
- Mikael Ek, project leader and responsible for documentation and web pages 
- Michael Redmond, responsible for implementation in the DSP 
- Magnus Lindhé, responsible for modeling 
- Niklas Mattsson, responsible for automatic control design 
 
The project also has an external resource, Alberto Speranzon, a consultant available one hour per 
week in five weeks. 

2.2 Plan 
The project started on the 17th of March 2003 and the final report has to be handed in before the 
23rd of May 2003. The work is planned for seven weeks plus a three week break for Easter. So 
far we have been slightly ahead of the plan, the way we work has been a little different than 
planned. When we planned the project we thought we should design one thing and deliver it to 
the implementation group, then at the same time design the next feature and when that one is 
ready, deliver it. This resulted in the plan as seen in the table below. 
 

Milestone Date 
System modelled 2003-03-21 
Balancing controller designed 2003-03-28 
Swing controller designed 2003-04-02 
Balancing controller in DSP 2003-04-08 
Controller design ready 2003-04-08 
Swing controller in DSP 2003-04-11 
Safety features designed 2003-05-06 
Swing and balance integrated in DSP 2003-05-06 
Final controller design ready 2003-05-14 
Everything implemented 2003-05-16 

 Table 1. Milestones for the project 
 
This plan was based on the assumption that it would be difficult to get to know the DSP and to 
implement the controller in it. Since this was easier than we thought, we are much ahead with the 
implementation, and we now work more in parallel. As soon as the design group comes up with 
something, we try it in the DSP for real. At the same time we continuously try to improve the 
control law in the DSP. 
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2.3 Future work 
We will make improvements on the controllers so they work better together. We shall also 
implement some safety features. As a final task we will investigate what happens to the 
controller performance when we simplify the controllers, and lower the sampling frequency. 

3 Hardware 

3.1 Description of the hardware 
The embedded system we use is a control kit from Mechatronic Systems Inc. It is based on a 
DSP development system from Texas Instruments and consists of the following parts: 

• TMS320C6711 DSK board (a DSP board with parallel interface port) 
• PWM/Optical Encoder data Acquisition board (a typical digital I/O board)  
• PWM amplifier board 
• 5V and 25V power supplies. 
• 25V DC motor with 1000 counts/rev optical encoder 
• Pendulum arm attached to a 1000 counts/rev optical encoder 
• Inertia wheel 
• A Matrix Digital LK202-25 LCD screen 

 
There are two ways of controlling the system and those are either programming the DSP board 
flash memory or using the parallel port and a computer IDE, in our case Code Composer Studio. 
The controlling program in the DSP then uses predefined functions for the digital I/O daughter 
board to send a control signal to the PWM and receive data from the two optical encoders. Both 
the input and output are handled and translated on the daughter board. The PWM control signal 
goes from the daughter board to the PWM amplifier board and it is a translator between the 25V 
power supply and the 24V motor. The output voltage to the motor is based on the control signal 
from the daughter board.   

3.2 Getting to know the system 
Our first goal was to be able to get data out of the system to create and verify our models of the 
system. However we had neither of the recommended software for this venture and had to come 
up with our own method. We decided to use the serial port of the daughter board, used by the 
LCD screen, and connect it directly to the computer’s serial port. For this we created our own 
serial cable and conveniently used the daughter board’s predefined function for writing to the 
LCD screen. The data was received and saved by a program named CodeVisionAVR, by HP 
InfoTech. The data was then imported to Matlab. The second step was to collect the required 
data for model verification and we started to examine the daughter board’s encoder and PWM 
functions closer. We tested the inertia torque reaction when starting the motor when standing 
still, and the step response for the angular velocity of the motor.   
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4 The model 
We have decided on using the following notation for the mechanics of the pendulum: 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. The notation for the pendulum 

4.1 Physical effects 
There are a number of physical effects that affect the movement of the pendulum. We have tried 
to identify the most important of these and quantify them: 
 
4.1.1 Gravity 
The mass of the pendulum arm, the motor and the inertia wheel combine to one single centre of 
mass, situated somewhere on the pendulum arm. It gives a gravitational torque (defined as 
positive in the positive θ-direction): 
 
 θsinmglM g −= , (1) 
 
where m is the combined mass, g is the gravitational acceleration and l is the distance from the 
pivot. 
 
4.1.2 Inertia wheel 
When the motor attempts to change the rotational velocity of the inertia wheel, this requires a 
torque which also affects the motor itself, in the opposite direction. The wheel has a mass 
moment of inertia, Jr: 
 
 rrrmotor JMM ω&−=−=  (2) 
 
The torque that acts on the motor can then be translated to a torque acting on the whole 
pendulum (defined as positive in the positive θ-direction) [1]: 
 
 

{ motormotorpend MFrMM =×+=
=

∑
0

 (3) 
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4.1.3 Mass moment of inertia 
When torques are applied to the pendulum or inertia wheel, they change their angle and 
rotational velocity according to the torque equation: 
 
 ωθ &&& JJM ==  (4) 
 
The inertia wheel and rotating parts of the motor have one mass moment of inertia, Jr, and the 
whole pendulum has another, Jp. 
 
4.1.4 Electric characteristics of the motor 
The motor can be  modelled as this equivalent circuit: 
 
 
 
 
 
 
 
 Figure 2. Equivalent circuit for the motor 
 
The voltage E is the electromotorical force (EMF) that is proportional to the angular velocity of 
the motor. L is the inductance in the motor windings and R causes the active power that is 
converted into heat and mechanical power. According to the data sheet of the motor, the 
inductance is 6.27 mH [2]. Since we have a voltage of 24 V, it would take only 0.5 ms to change 
the current from 0 to the maximum rated current of 2 A. This time constant is so small in 
comparison to the rest of the system that we can omit the inductance. There is a controller in the 
amplifier that controls the voltage to make the current follow the control signal u(t). The torque 
produced by the motor can be modelled as proportional to the motor current (the reversed sign is 
caused by the sign convention of the ready-made software function to control the motor): 
 
 ( ) )(tuktikM iielectric −==  (5) 
 
4.1.5 Friction 
The pendulum is affected by both friction in the bearings and air resistance when it swings. We 
made a simple experiment, just letting the pendulum swing back and forth with the motor turned 
off. The amplitude of the swinging decreased slowly over more than a minute, so we decided 
that the friction there could be omitted. 
 
The motor shaft also has some friction that has a stronger influence on the system. We modelled 
this friction as a reverse torque proportional to the angular velocity of the motor and inertia 
wheel: 
 
 rffriction kM ω−=  (6) 
 
This looks very much like the effect of the EMF, and in the modelling we decided to treat it as 
one single breaking torque, proportional to the angular velocity. 

U

+ + 

U 
R L

E 

i(t) 
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4.2 A non-linear state-space model 
We could then write the sum of all the torques acting on the inertia wheel and the pendulum: 
 
 ( ) ( )tktukJM rfirrr ωω −−== &  (7) 

 rp MmglJM −−== θθ sin&&  (8) 
 
Using three states, this can be converted to a state-space model: 
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mgla ==== ,,, . The values for these parameters could be 

found in a document [3]. They are a=78.4, bp=1.08, br=198 and c=0.012. 

4.3 Linearising the model 
To be able to use linear control design methods, we linearised the model around the instable 
equilibrium (pendulum pointing upwards). This is done by replacing the sinus term with its 
linear Taylor expansion at θ=π: 
 
 ( ) ( )2cos0sin θπθπθ O+−+=  (10) 
 
The linear model then becomes 
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4.4 Verifying the model 
As described in the section about the DSP, we managed to get data from both encoders in the 
Mechkit. We tried two different experiments. 
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4.4.1 Verifying the motor dynamics 
For three seconds the motor is accelerated to full forward speed and then instantaneously 
switched to full reverse speed, for three more seconds. We held the motor still all the time to 
minimise vibrations. 

 
 Figure 3. Validation of motor dynamics. 
 
The motor dynamics agree very well with the model, except at high velocities when the velocity 
saturates earlier than predicted. It even decreases some, at constant current. Judging from the 
sound of the motor we currently believe that this is caused by high-frequency vibrations, 
possibly taking energy from the rotational movement. So far we have decided not to incorporate 
this in the model, as this would make it unnecessarily complex. 
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4.4.2 Verifying coupling between motor torque and pendulum swinging 
This test showed the pendulum response to a step in the control signal. We started with the 
pendulum hanging down and the motor turned off, then at t=0.1 s we made a step to u=10. At 
t=5.8 s we stopped the motor again: 
 

 
 Figure 4. The pendulum angle response to a step in the control signal 
 
This too agrees very well with simulations. The step response also shows that the friction in the 
bearings of the pendulum are negligible as the amplitude decays very slowly. 

5 Controller design 
To make the control design simpler we decided to divide the controller into three different parts, 
balance, swing and stop. The balance controller is responsible for balancing the pendulum at the 
inverted equilibrium, the swing controller should swing the pendulum until it reaches the 
inverted position and the stop controller should bring the pendulum to the down position when 
shutting the systemn down.   

5.1 Balance controller 
We had two requirements on our controllers; we wanted them to stabilise the pendulum at the 
inverted equilibrium while keeping the motor velocity as low as possible. A low motor velocity 
gives the controller a maximal ability to react to sudden disturbances, from any direction. If the 
motor has a high velocity in any direction, it will not be able to accelerate much more in that 
direction if needed to produce torque.  
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5.1.1 LQG controller 
Our first approach was to use an LQG controller. This approach felt appropriate to use for this 
kind of problem, as we wanted to minimise all the states and make the system non-sensitive and 
robust. It also guarantees a phase margin of at least 60° and an infinite amplitude margin. The 
LQG-method minimises the integral: 
 

 ( )∫
∞

+
0

2 dtuzzT RQ  (12) 

 
Here z are the states of the system, u the input to the system and Q and R are penalty matrices. 
We chose R=100 and Q=I, meaning that all states are equally important to minimise. When 
simulating the system with the state feedback from the LQG it worked fine, the system stabilised 
at the inverted equilibrium even if the pendulum was perturbed at the start. The control law is 
 
 ( )xu 1127.02.47232.53−=  (13) 
 
The first problem we ran into, during the control design, was when trying to calculate the 
sensitivity S and complementary sensitivity function T. The sensitivity function showed that the 
system would be extremely sensitive to disturbance and the complementary sensitivity function 
looked very strange, probably due to numerical calculation errors. 
 

 
 Figure 5. The sensitivity and complementary sensitivity of the closed-loop system with an 
 LQG controller 
 
Despite the bad sensitivity and the strange complementary sensitivity function we decided to 
make a test implementation of the controller. Just like in the simulation the implemented 
controller was able to stabilise the pendulum at the inverted position. The controller was even 
able to swing the pendulum to the inverted position and stabilise it. This was an unexpected 
consequence of the fact that we used a modulo operator to keep the angle (θ-π) in the interval 
[-π,π]. The angle thus made an abrupt change at the down position, resulting in the controller 
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giving the pendulum impulses that made it swing. However, the controller was not able to 
stabilise the pendulum when the velocity was too high. 
 
5.1.2 PID controller 
After our first consultant meeting we decided to try a simpler approach than the LQG, a PID 
controller. We decided to use the angle θ as the input to the controller. To make sure that the 
motor velocity did not become too large, we also added a small proportional term, keeping it 
down. The first approach was to use lead-lag design directly on the instable system, but this gave 
strange results and a system that was theoretically stable but did not work when implemented in 
practice. When simulated, this controller behaved well, even when we inserted noise at the 
output of the process. We currently do not know why it did not reveal the true instability of the 
system. 
 
Our second approach was to first design a PI-controller, using pole placement, that theoretically 
stabilised the system but gave very poor performance. We then treated that closed-loop system 
as a new process and used the lead-lag algorithm on that. To implement this, we then integrated 
both the inner and outer loop into one control law. This gave reasonable results, both 
theoretically and practically, but still a little worse than the LQG controller. 
 

 
 Figure 6. Bode diagram for the open-loop system designed with an inner PI-
 controller and an outer controller designed with lead-lag. 
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The transfer functions of the inner and outer controller were 
 

 
s1386+s74.64+s

2755 + s 1891 + s 280.9 + s 11.93,
s

180 + s 100
23

23

== oi FF  (14) 

 
When implementing the PID controller, we had some problems with integral windup. We first 
countered this by just resetting the integral state whenever the control signal saturated, but then 
we refined the approach some and just did not update the integral state when the control signal 
saturated. Both approaches gave good results, but the controller had some problems taking 
control of the system again once it had fallen out of the balancing state. We hope to avoid this 
problem by using a more advanced approach, with an integrator that tracks the difference 
between the control signal and its saturated version, subtracting this from the integral state. So 
far the simulations have not been satisfactory, so we have not implemented that yet. 

5.2 Swing controller  
The swinging mode is much simpler than the balancing mode. Right now we use a P-controller, 
taking (θ mod 2π)-π as input argument. This gives a step from -π to π in the input signal when 
the pendulum passes the lower position. The controller then rapidly changes the control signal to 
the motor, creating a torque. There are some difficulties in the swing mode design: 
 
The balance controller can run into problems if the velocity of the pendulum is to high when 
entering balance control mode. Therefore we should try to keep the velocity as low as possible 
when swinging, without interfering with the performance, i.e. the time to swing the pendulum up 
to the inverted position.  
 
To be able to minimise the velocity we analysed the system and realised that the swinging mode 
can be entered in three different cases. The first case is when we start the controller and the 
pendulum is in the down position. Here we can use as much power as possible to make the 
pendulum swing and then reduce the power when we get close to the inverted position. The 
second case is when the balance controller fails to catch the pendulum. In this case the pendulum 
already has enough velocity to get to the inverted position. The last case is when the pendulum 
falls out of the balance mode, and then it will just need a small push when swinging back up. 
 
At the moment we have some difficulties in controlling the impulse to the pendulum, so we are 
planning to change the swing controller into a P-controller using the angle θ as input. We can 
then change the P parameter depending on the velocity at some small angle. 
  

5.3 Stop controller  
The stop controller is to be used if the velocity of the pendulum is getting to high to recover 
from. It will also be used when the user would like to end the balancing. This controller is 
similar to the balance controller with the only difference that we’re now stabilising around a 
stable equilibrium. We have tried to stabilise it using only a P-controller and it works but it will 
need improvements to get the pendulum to a complete stop. 
 

5.4 Integrating controllers 
The goal of the overall design is that the swing mode controller should give the pendulum a 
velocity low enough for the balancing mode controller to stabilise it in the inverted position. 
There should be no need for special case routines slowing the pendulum down when it is about 
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to enter balancing mode. Right now we have a zone of ±25° around the inverted position where 
the balancing mode controller takes control of the pendulum. 
 
The stop mode controller of course takes control if the user gives the command to stop the 
balancing. In the future we intent to implement a safety function, starting the stop mode 
controller if the pendulum velocity exceeds a preset value. 

5.5 Implementation of controllers in the DSP 
 
5.5.1 Continuous vs. discrete representation  
To make our calculations simpler, we decided to do the controller design for continuous systems 
and also use a sampling frequency high enough to be able to approximate the controller with a 
time-continuous version. We chose a sampling time of 1 ms. In the future we expect to change to 
a discrete model and design a corresponding discrete controller. 
 
5.5.2 Differentiation 
When implementing the controllers, we needed to be able to measure the derivatives of both θ 
and θr. (The encoder at the motor actually gives us values of the angle θr, that we then have to 
differentiate to get ωr). We started by just taking the differences between two consecutive 
readings, but this gave a very strongly quantized derivative, due to the limited resolution of the 
encoders. After some tests we instead decided to use a fixed lag of five samples and calculate the 
derivative as 

 
s

tt

Tdt
d

5
5−−

≈
θθθ

 (15) 

 
5.5.3 Implementing an LQG controller 
When implementing the LQG controller we chose not to have an observer, but to differentiate 
the angles and treat all three states as measurable. The control law then became a simple vector 
scalar product. We used two arrays to store old values of θ and θr, for the differentiation. 
 
5.5.4 Implementing a PID controller 
At first we calculated the P-, I- and D-parts respectively and then added them to get the control 
signal. This gave bad results, probably due to the imperfections of our derivative and integral 
approximations. We then converted the transfer function of the controller to state-space form, 
which seems more appropriate for computer implementation. This, combined with some kind of 
anti-windup, gave reasonable results. 

6 Conclusions 
The work has so far progressed faster than expected. We have confidence in the model, which 
agrees well with validation data. Implementing controllers has proven to be easier if they are 
expressed in state-space form, possibly since this better matches the way a computer works. 
There are problems when implementing both integration (integral windup) and differentiation 
(high noise due to limited resolution) that need to be addressed. So far the combination of 
controllers for swinging the pendulum up and balancing it are not sufficiently good, because the 
pendulum often reaches the inverted position with a too high velocity that the balancing 
controller cannot stabilise. 
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