

The embedded system project

Final review

2003-05-22

 Doctype: Page:
 Final Review 2 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

Abstract

As part of a project course in automatic control, we have been given the task of controlling an
inverted pendulum with an inertia wheel as actuator. The task is to make the pendulum swing up
from the hanging down position to balancing in the inverted position. This is a non-linear system
that we linearized. We made a model and designed both LQ and PID controllers that stabilized
the pendulum, but eventually settled for the LQ version. We also made a controller that can
swing the pendulum up, using energy control.

 Doctype: Page:
 Final Review 3 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

Table of contents
Abstract .. 2
Table of contents .. 3
1 Introduction ... 5
2 The project .. 5

2.1 Resources ... 5
2.2 Time plan ... 5

3 Hardware ... 6
3.1 Description of the hardware ... 6
3.2 Getting to know the system.. 7

4 The model.. 7
4.1 Physical effects... 7

4.1.1 Gravity... 7
4.1.2 Inertia wheel.. 8
4.1.3 Mass moment of inertia... 8
4.1.4 Electric characteristics of the motor .. 8
4.1.5 Friction .. 8

4.2 A non-linear state-space model .. 9
4.3 Linearization of the model .. 9
4.4 Validation of the model.. 10

4.4.1 Validation of the motor dynamics ... 10
4.4.2 Validation of coupling between motor torque and pendulum swinging 10

5 Controller design... 11
5.1 Balance controller .. 11

5.1.1 LQ controller ... 12
5.1.2 PID controller .. 12

5.2 Swing controller ... 13
5.3 Stop controller .. 15
5.4 Integrating controllers and adding safety features ... 16

6 Implementation of controllers in the DSP... 16
6.1 Continuous vs discrete representation.. 16
6.2 Differentiation .. 17
6.3 LQ controller implementation.. 18

 Doctype: Page:
 Final Review 4 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

6.4 PID controller implementation... 18
7 Possible improvements.. 19
8 Conclusions ... 19
9 References ... 20

 Doctype: Page:
 Final Review 5 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

1 Introduction
The project is part of the automatic control project course 2E1242 at KTH, and we are assigned
the task of developing a control system for an inverted pendulum. This is a non-linear problem
that we chose to linearize. The control law is implemented in a stand-alone digital signal
processor, so that the system can function autonomously without being connected to a computer.
Our task is to design a controller that can swing the pendulum up from the hanging down
position to the inverted position, and then balance it there. The actuator is a motor, mounted at
the end of the pendulum, that drives an inertia wheel. This report is a documentation of the
whole project.

We decided to design three controllers; one for balancing the pendulum in the inverted position,
one for swinging it up and one for stopping it in case of unsafe operating conditions or if the user
wishes to end the demonstration. All these controllers had to be integrated to C-code that could
be compiled and downloaded to the DSP.

2 The project

2.1 Resources
The project group consists of four people:

- Mikael Ek, project leader and responsible for documentation and web pages
- Michael Redmond, responsible for implementation in the DSP
- Magnus Lindhé, responsible for modelling
- Niklas Mattsson, responsible for automatic control design

The project also has an external resource, Ph.D. student Alberto Speranzon, a consultant
available one hour per week in five weeks.

2.2 Time plan
The project started on the 17th of March 2003 and the final report had to be handed in before the
23rd of May 2003. We planned the work for seven weeks plus a three week break for Easter,
when we wanted some time off and also needed to do some exams. The initial plan was to work
sequentially, i.e. to first design a model, then a balance controller and finally an integrated
version that also has the capability to swing the pendulum. Each design would then be handed to
the implementation group, who implemented it. We decided on the following plan:

Milestone Date
System modelled 2003-03-21
Balancing controller designed 2003-03-28
Swing controller designed 2003-04-02
Balancing controller in DSP 2003-04-08
Controller design ready 2003-04-08
Swing controller in DSP 2003-04-11
Safety features designed 2003-05-06
Swing and balance integrated in DSP 2003-05-06
Final controller design ready 2003-05-14
Everything implemented 2003-05-16

 Table 2.1. Milestones for the project.

 Doctype: Page:
 Final Review 6 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 3.1. System description.

This plan was based on the assumption that it would be difficult to get to know the DSP and to
implement the controller in it. Since this was easier than we thought, we got far ahead of the plan
during the first two weeks. So we ended up working more in parallel, testing things right away
on the real system instead of doing lengthy simulations.

3 Hardware

3.1 Description of the hardware
The embedded system we use is a control kit from Mechatronic Systems Inc. It is based on a
DSP development system from Texas Instruments and, as described in figure 3.1, consists of the
following parts:

• TMS320C6711 DSK board (a DSP board with parallel interface port)
• PWM/Optical Encoder data Acquisition board (a typical digital I/O board)
• PWM amplifier board
• 5V and 25V power supplies.
• 25V DC motor with 1000 counts/rev optical encoder
• Pendulum arm attached to a 1000 counts/rev optical encoder
• Inertia wheel
• A Matrix Digital LK202-25 LCD screen

There are two ways of controlling the system and those are either programming the DSP board
flash memory or using the parallel port and a computer IDE, in our case Code Composer Studio.
The controlling program in the DSP then uses predefined functions for the digital I/O daughter
board to send a control signal to the PWM and receive data from the two optical encoders. Both
the input and output are handled and translated on the daughter board. The PWM control signal
goes from the daughter board to the PWM amplifier board and it is a translator between the 25V
power supply and the 24V motor. The output voltage to the motor is based on the control signal
from the daughter board.

 Doctype: Page:
 Final Review 7 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

Figure 4.1.a. The pendulum notation. Figure 4.1.b. The actuator principle.

3.2 Getting to know the system
Our first goal was to be able to get data out of the system to create and verify our models of the
system. However we had neither of the recommended software for this venture and had to come
up with our own method. We decided to use the serial port of the daughter board, used by the
LCD screen, and connect it directly to the computer’s serial port. For this we created our own
serial cable and conveniently used the daughter board’s predefined function for writing to the
LCD screen. The data was received and saved by a program named CodeVisionAVR, by HP
InfoTech. The data was then imported to Matlab. The second step was to collect the required
data for model verification and we started to examine the daughter board’s encoder and PWM
functions closer. We tested the inertia torque reaction when starting the motor when standing
still, and the step response for the angular velocity of the motor.

4 The model

The notation for the mechanics of the pendulum is described in figure 4.1.a. We denoted the
length by l, the angle of the whole pendulum by θ and the rotational velocity of the inertia wheel
by ωr. The mass m in figure 4.1.a. denotes the equivalent mass of the whole pendulum, as if it
were placed at the end of the pendulum arm.

4.1 Physical effects
There are a number of physical effects that affect the movement of the pendulum. We have tried
to identify the most important of these and quantify them.

4.1.1 Gravity
The mass of the pendulum arm, the motor and the inertia wheel combine to one single centre of
mass, situated somewhere on the pendulum arm. It gives a gravitational torque (defined as
positive in the positive θ-direction as seen in figure 4.1.a.):

 θsinmglM g −= ,

where m, g and l are defined in figure 4.1.a.

θ

ωr

l

Fg=mg

 Doctype: Page:
 Final Review 8 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 4.2. Equivalent circuit for the motor.

4.1.2 Inertia wheel
The principle of how the inertia wheel works is shown in figure 4.1.b. If the inertia wheel is to
be accelerated in the direction of arrow 1, this requires a torque. An equal but opposite torque
then affects the motor, as shown by arrow 2. The same torque affects the pendulum arm at the
pivot, arrow 3. [1] The wheel has a mass moment of inertia, Jr:

 rrrmotorpend JMMM ω&−=−==

4.1.3 Mass moment of inertia
When torques are applied to the pendulum or inertia wheel, they change their angle and
rotational velocity according to the torque equation.

 ωθ &&& JJM ==

This general equation holds for both Jr and Jp, Jp being the mass moment of inertia of the
pendulum arm.

4.1.4 Electric characteristics of the motor
The motor can be modelled as the equivalent circuit in figure 4.2. The voltage E is the
electromotorical force (EMF) that is proportional to the angular velocity of the motor. L is the
inductance in the motor windings and R is a resistor that models the active power converted into
heat and mechanical power. According to the data sheet of the motor, the inductance is 6.27 mH
[2]. Since we have a voltage of 24 V, it would take only 0.5 ms to change the current from 0 to
the maximum rated current of 2 A. This time constant is so small in comparison to the rest of the
system that we can omit the inductance. There is a controller in the amplifier that controls the
voltage to make the current follow the control signal u(t). The torque produced by the motor can
be modelled as proportional to the motor current (the reversed sign is caused by the sign
convention of the ready-made software function to control the motor).

)()(tuktikM iielectric −==

4.1.5 Friction
The pendulum is affected by both friction in the bearings and air resistance when it swings. We
made a simple experiment, just letting the pendulum swing back and forth with the motor turned
off. The amplitude of the swinging decreased slowly over more than a minute, so we decided
that the friction there could be omitted.

The motor shaft also has some friction that has a stronger influence on the system. We modelled
this friction as a reverse torque proportional to the angular velocity of the motor and inertia
wheel.

 rffriction kM ω−=

U

+ +

U
R L

E

i(t)

 Doctype: Page:
 Final Review 9 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

This looks very much like the effect of the EMF, and in the modelling we decided to treat it as
one single breaking torque, proportional to the angular velocity.

4.2 A non-linear state-space model
We then write the sum of all the torques acting on the inertia wheel and the pendulum as

)()(tktukJM rfirrr ωω −−== &

 rp MmglJM −−== θθ sin&&

Using three states, []Trωθθ&=x , this can be converted to a state-space model.

[]

[]
T

T
rp

rrrp

bbxg
cbcbaxf

whereuxgxf

−=
−+−=

+=
0)(

sin)(
,)()(

ωθωθ &
&x

The values for these parameters can be found in [3] and are also collected in the following table.

Parameter Formula Value

a
pJ

mgl
 78.4 s-2

bp
p

i

J
k

 1.08 V-1s-2

br
r

i

J
k

 198 V-1s-2

c
i

f

k
k

 0.012 Vs

 Table 4.1. Parameter values for the model.

4.3 Linearization of the model
To be able to use linear control design methods, we linearized the model around the instable
equilibrium (pendulum pointing upwards). This is done by replacing the sinus term with its
linear Taylor expansion at θ=π.

 () ()2cos0sin θπθπθ O+−+=

The linear model then becomes

 []
[]

=

=
+= =

)00(
, 00

π
δ
δ

π

gB
x
fA

BAxx xwhereu&

 Figure 4.3. Validation of motor dynamics.

 Doctype: Page:
 Final Review 10 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 4.3. Validation of motor dynamics.

4.4 Validation of the model
As described in the section about the DSP, we managed to get data from both encoders in the
Mechkit. We tried two different experiments.

4.4.1 Validation of the motor dynamics
For three seconds the motor is accelerated to full forward speed and then instantaneously
switched to full reverse speed, for three more seconds. We held the motor still all the time to
minimise vibrations. The result is shown in figure 4.3.

The motor dynamics agree very well with the model, except at high velocities when the velocity
saturates earlier than predicted. It even decreases some, at constant current. Judging from the
sound of the motor we believe that this is caused by high-frequency vibrations, possibly taking
energy from the rotational movement. We have decided not to incorporate this in the model, as
this would make it unnecessarily complex.

4.4.2 Validation of coupling between motor torque and pendulum swinging
This test showed the pendulum response to a step in the control signal. We started with the
pendulum hanging down and the motor turned off, then at t=0.1 s we made a step to u=10. At
t=5.8 s we stopped the motor again. The results are plotted in figure 4.4.

 Doctype: Page:
 Final Review 11 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 4.4. The pendulum angle response to a step in the control signal

This too agrees very well with simulations. The step response also shows that the friction in the
bearings of the pendulum are negligible as the amplitude decays very slowly.

5 Controller design
To make the control design simpler we decided to divide the controller action into three different
parts:

1. Balance, responsible of balancing the pendulum at the inverted equilibrium.

2. Swing, whose task is to swing the pendulum until it reaches the inverted position.

3. Stop, intended to bring the pendulum to the down position when shutting the system down. It

also steps in as a safety feature if the angular velocity of the pendulum becomes too high or it
has rotated more than two revolutions from the starting position. This is to avoid tearing off
the cables connecting the motor and the motor encoder to the DSP.

5.1 Balance controller
We had two requirements on our controllers; we wanted them to stabilise the pendulum at the
inverted equilibrium while keeping the motor velocity as low as possible. A low motor velocity
gives the controller a maximal ability to react to disturbances, from any direction. If the motor
has a high velocity in any direction, it will not be able to accelerate much more in that direction
if needed to produce torque. When judging how good the controllers were, we tested how
resistant the system was to external disturbances (poking it with a finger) and how steadily it
balanced around the equilibrium when undisturbed.

 Doctype: Page:
 Final Review 12 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

5.1.1 LQ controller
Our first approach was to use an LQ controller. This approach felt appropriate to use for this
kind of problem, as we wanted to minimise all the states and the control signal and make the
system non-sensitive and robust. It also guarantees a phase margin of at least 60° and an infinite
amplitude margin. The LQ-method minimises the integral:

 ()

=+∫
∞

r

T dtu
ω
θ
θ&

xRQxx ,
0

2

Here Q and R are constant penalty matrices. We chose R=100 and Q=I, meaning that all states
are equally important to minimise. When simulating the system with the state feedback from the
LQ it worked fine, the system stabilised at the inverted equilibrium even if the pendulum was
perturbed at the start. The control law is

 []x1127.02.47232.53−=u

When we tried to calculate the sensitivity and the complementary sensitivity, the results were
strange and indicated that the controller amplified disturbancies rather than attenuated them.
Despite the bad sensitivity and the strange complementary sensitivity function we decided to
make a test implementation of the controller. Just like in the simulation the implemented
controller was able to stabilise the pendulum at the inverted position. The controller was even
able to swing the pendulum to the inverted position and stabilise it. This was an unexpected
consequence of the fact that we used a modulo operator to keep the angle (θ-π) in the interval
[-π,π]. The angle thus made an abrupt change at the down position, resulting in the controller
giving the pendulum impulses that made it swing. However, the controller was not able to
stabilise the pendulum when the velocity was too high.

5.1.2 PID controller
After our first consultant meeting we decided to try a simpler approach than the LQG, a PID
controller. We decided to use the angle θ as the input to the controller. To make sure that the
motor velocity did not become too large, we also added a small proportional term, keeping it
down. The first approach was to use lead-lag design directly on the instable system, but this gave
strange results and a system that was theoretically stable but did not work when implemented in
practice. When simulated, this controller behaved well, even when we inserted noise at the
output of the process. We do not know why it did not reveal the true instability of the system.

Our second approach was to first design a PI controller, using pole placement, that theoretically
stabilised the system but gave very poor performance. We then treated that closed-loop system
as a new process and used the lead-lag algorithm on that. To implement this, we then integrated
both the inner and outer loop into one control law. This gave reasonable results, both
theoretically and practically, but still a little worse than the LQ controller.

 Doctype: Page:
 Final Review 13 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 5.1. The inner and outer controllers.

The transfer functions of the inner and outer controller were

s1386+s74.64+s

2755 + s 1891 + s 280.9 + s 11.93,
s

180100 23

23

=+= oi FF

When implementing the PID controller, we had some problems with integral windup. We first
countered this by just resetting the integral state whenever the control signal saturated, but then
we refined the approach some and just did not update the integral state when the control signal
saturated. Both approaches gave good results, but the controller had some problems taking
control of the system again once it had fallen out of the balancing state.

We tried using tracking, i.e. detecting when the control signal saturates, and then reducing the
growth of the integral state. This requires placing the poles of both the ordinary and the saturated
controller, something we never managed to to properly. So we decided that the best acheivable
PID controller was with the crude form of anti-windup, and it still was not as good as the LQ.

5.2 Swing controller
There are two requirements for the swing controller: it has to swing the pendulum to the inverted
position as fast as possible and it has to make sure that the pendulum enters the inverted position
with sufficiently low velocity for the balance controller to be able to stabilise it. If the velocity is
to low, this means that the swing controller must accelerate the pendulum and if the velocity is to
high it must slow it down, e.g. if the pendulum is forcefully pushed out of the inverted
equilibrium.

We first tried using a P-controller, tuned to make the downwards position unstable and thus
make the pendulum swing. This gave fast swinging, but lacked control of how fast the pendulum
was moving when it arrived at the inverted position.

So we instead decided on controlling the total energy of the pendulum, neglecting the energy
stored in the inertia wheel. A formula for the total energy, consisting of kinetic energy, Wk, and
potential energy, Wp, is given in equation 5.1.

 2

21)cos1(θθ &⋅+−=+= kkWWW kptot (5.1)

The constants k1 and k2 have a physical background, but the important thing for the controller is
that their ratio is correct. We tuned this by setting k1=1 and simulating the pendulum swinging
with no control input. The total energy should then be constant, so we tuned k2 to cancel out the
oscillations in Wtot. A good value for k2 is 6.35·10-3.

PI
Fi

G +PID
F0

+
- -

 Doctype: Page:
 Final Review 14 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 5.2. Bode diagram for the open-loop system designed with an inner PI-
 controller and an outer controller designed with lead-lag.

Regardless of why the pendulum enters swing mode, the goal is always to make the total energy
equal to 2, i.e. the energy needed to just about reach the inverted position. The way to increase or
decrease the energy of the pendulum is to accelerate the inertia wheel in the correct direction,
compared to the current direction of the pendulum. This is described in table 5.1.

Increase
energy

Decrease
energy

negativeθ& u = 10 u = -10

positiveθ& u = -10 u = 10

 Table 5.1. Control law for the swing controller.

In simulations, the controller gave high-frequency oscillations in the control signal when the
pendulum reached the inverted position and this could potentially overheat the motor. But since
the balance controller has taken over by then, this is not a problem.

 Doctype: Page:
 Final Review 15 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 5.3. Simulation of the swing controller. Part a shows the angle of the pendulum
 and part b shows high-frequency oscillations in the control signal as the pendulum
 reaches the equilibrium.

When implemented, the swing controller made forceful swings to begin with, but the last swing
was a little to weak to reach all the way. After a few weak swings, it usually reached the top. We
decided that this was probably some small energy loss due to the cables, air resistance and the
friction in the bearings. To compensate for this, we set the desired energy to 2.01, and the swing
controller then reached the inverted position in the first trial every time! This way the pendulum
always entered the inverted position with a little excess speed and, more importantly, with the
inertia wheel spinning in the other direction than needed for braking the wheel. That way the
controller could develop a lot of braking torque.

5.3 Stop controller
The stop controller is to be used if the velocity of the pendulum is getting to high to recover
from. It will also be used when the user would like to end the balancing. We are using an
LQ-controller:
 []x0011.025277 −−=u

 Doctype: Page:
 Final Review 16 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 5.4. State diagram describing how the controllers are integrated.

5.4 Integrating controllers and adding safety features
When the system starts, it waits for input from the user and then starts the swing controller. The
balance controller then takes over when the pendulum is 15° from the inverted position. If the
pendulum falls (or is pushed) down, the swing controller takes control again. The user can stop
the system by pushing a switch, making the stop controller take over. The connection between
different controllers is described in figure 5.4.

The order also specified that we should add safety features that could handle situations when the
speed of the pendulum becomes to high or if it has done more than two revolutions, risking to
tear the cables off. If this happens, the stop controller takes over.

When we did the final testing of the system, we discovered a special situation that needed
attention. If the pendulum is slowly pushed from its equilibrium, the controller tries to develop a
counter-torque by increasing the speed of the inertia wheel. Eventually the speed of the wheel
saturates and the pendulum falls over. The problem is then that the swing controller would need
to accelerate the wheel even more in the same direction to get the required braking torque, which
is impossible. We solved this by detecting the saturated condition and when it happens first set
the control signal to zero for one second to slow the wheel down and then run the stop controller
for another second to regain control of the pendulum and then swing it up again.

6 Implementation of controllers in the DSP

6.1 Continuous vs discrete representation
To make our calculations simpler, we decided to start by doing the controller design for
continuous systems and also use a sampling frequency high enough to be able to approximate the
controller with a time-continuous version. We chose a sampling time of 1 ms.

The continuous approach worked well down to a sampling frequency of 100 Hz, then the swing
controller loses its ability to deliver the pendulum to the upright position with the correct energy.
At about 10 Hz, the balance controller stops working as well. We therefore tried calculating a
discrete version of the system and then design a discrete controller for it.

Balance

Swing

Stop

Begin

End

 Doctype: Page:
 Final Review 17 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 6.1. The quantisation effect when taking the difference
 between two consecutive angle values.

At 10 Hz the discrete model becomes (with I as the 3×3 identity matrix)

)()(

)(
208.12

002.0
071.0

)(
854.000
0179.1071.0
001.0536.5179.1

)1(

nxny

nunxnx

I=

−
+

=+

We used LQ optimisation to find the corresponding discrete controller

 [])(031.0100.179228.20)(nxnu −=

6.2 Differentiation
When implementing the controllers, we needed to be able to measure the derivatives of both θ
and θr. (The encoder at the motor actually gives us values of the angle θr, that we then have to
differentiate to get ωr). We started by just taking the differences between two consecutive
readings, but this gave a very strongly quantized derivative, due to the limited resolution of the
encoders. This is shown in figure 6.1. To improve the derivative we tried a more advanced
approximation [1, p. 393] that uses three old values:

Tdt

d tttt

6
291811 321 −−− −+−

≈
θθθθθ

This approximation has an absolute error that is proportional to T3, which can be compared to
the absolute error of the simplier one that is proportional to T. But as shown in figure 6.2 the
result of this approximation is worse.

 Doctype: Page:
 Final Review 18 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 6.2. A more advanced approximation of the derivative.

The explanation to this unexpected behavior, is that the approximation is very sensitive to noise.
The large coefficients in the formula amplify the already large error from the encoder and the
result gets really noisy. After some simulations of the deriviative approximation in MATLAB
we instead decided to use the simple approximation combined with a low pass filter, which gave
a smooth derivative as in figure 6.3.

The effect of the low pass is primarily needed when the sample rate is high. When the rate is
very low the filter does more harm than good because of the introduced delay. The effect of the
filter is therefore decreased as the sample rate decreases and at really low rates the filter has no
effect at all.

6.3 LQ controller implementation
When implementing the LQ controller we chose not to have an observer, but to differentiate the
angles and treat all three states as measurable. The control law then became a simple vector
scalar product.

6.4 PID controller implementation
At first we calculated the P, I and D parts respectively and then added them to get the control
signal. This gave bad results, probably due to the imperfections of our derivative and integral
approximations. We then converted the transfer function of the controller to state-space form,
which seems more appropriate for computer implementation. This, combined with anti-windup
as described in section 5.1.2, gave reasonable results.

 Doctype: Page:
 Final Review 19 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

 Figure 6.3. A simple difference approximation combined with a low pass filter.

7 Possible improvements
The most beneficial improvement would be a higher resolution in the encoders. This would
drastically improve the differentation leading to a better prediction and determination of the
concurrent speeds of both the pendulum and the inertia wheel. The more accurate measurements,
i.e. inputs, to the controllers will then improve their behaviour. This will of course add to the
cost of the project, so it would have to be motivated by a need of higher accuracy.

A better motor, with higher output, should also be considered as an improvement. Not so much
for balancing at the inverted equillibrium but rather for the time of swinging to the upright
position. A higher output from the motor gives the system more torque to utilise. A final
improvement, though it might also be the hardest one to accomplish, would be to create a
wireless system. The only major problem would be the motor power supply, but that could be
solved by using a slip ring power connector in the axis. This would be an improvement because
the wires to the encoder and motor act like an unpredictable external disturbance to the system.
The rigidness of the wires has proved to be a considerable annoyance.

8 Conclusions
The work progressed faster than expected, mainly because it was easier than we thought to
transfer programs into the DSP and run them. Implementing controllers has proven to be easier if
they are expressed in state-space form, probably since this better matches the way a computer
works. There were problems when implementing both integration (integral windup) and
differentiation (quantisation noise due to limited resolution) that needed to be addressed.

LQ controllers are a user-friendly way of computing controllers for multi-variable systems, since
the approach is so systematic and there are Matlab routines for most of the calculations. We tried
to tune the controllers by changing the penalty matrices, but even large changes did not do much
to change the performance of the system. It was also interesting to see how well a simple energy-
based relay controller handled the non-linear problem of swinging the pendulum up.

 Doctype: Page:
 Final Review 20 (20)
Editor: Date: Ver:
Magnus Lindhé 03-05-22 1.0

9 References
1. A J Thor, A Höglund. Partikeldynamik och statik. Studentlitteratur, Lund, 2001.
2. Pittman motors (1999). Datasheet: LO-COG DC servo motors. Mechatronics Control Kit,

[cd-rom], Mechatronics Systems, Inc. 2001.
3. K J Åström, D J Block, M W Spong. The reaction wheel pendulum. Mechatronics Control

Kit, [cd-rom], Mechatronics Systems, Inc. 2001.
4. L Råde, B Westergren. Beta Mathematics Handbook. Studentlitteratur, Lund, 2001.

