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Abstract. The classical Milnor–Wood inequalities for the Euler num-
ber of flat oriented vector bundles over surfaces are generalized for higher
dimensional closed manifolds that admit a local structure of products
of planes. These include products of surfaces as well as closed Hilbert–
Blumenthal modular varieties. As a consequence, the Chern Conjecture
is confirmed for such manifolds. For manifolds admitting a rigid locally
symmetric structure, a complete classification is given for the flat vec-
tor bundles with nonzero Euler number. Some of the main results were
announced in C.R. Acad. Sci. Paris, Ser. I 346 (2008) 661-666.

1. Introduction

Let ξ be a principal GL+(m,R)–bundle, or equivalently, an oriented vector
bundle with fiber Rm over a closed m-dimensional oriented manifold M . The
(real) Euler class εm(ξ) ∈ Hm(M,R) of ξ is the image under the inclusion of
coefficients Z ↪→ R of the Poincaré dual of the zero locus of a generic section
in the associated vector bundle (the first obstruction to the existence of a
nowhere vanishing section). The Euler number of ξ is the natural pairing of
the Euler class with the (real) fundamental class [M ] ∈ Hm(M,R) of M :

χ(ξ) = 〈εm(ξ), [M ]〉.

A principal GL+(m,R)–bundle ξ over a smooth manifold M is called flat if
it admits a flat structure, i.e. a connection on ξ with zero curvature. Equiv-
alently, a GL+(m,R)–bundle is flat if it is induced by a representation of
the fundamental group π1(M). The latter characterization could be used
as a definition of flat bundles (and flat structures) in the general setup of
topological spaces (rather than differentiable manifolds).
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Lusztig and Sullivan [Su76] observed that there are only finitely many
isomorphy classes of GL+(m,R)–bundles admitting a flat structure, and
hence a bound depending only on M for the possible Euler numbers of flat
GL+(m,R)–bundles over M . Indeed, two representations in the same con-
nected component of the space of representations Rep(π1(M),GL+(m,R))
induce isomorphic bundles, and the space of representations is a real alge-
braic variety, hence it has finitely many connected components.∗

In his celebrated paper [Mi58], Milnor proved that a GL+(2,R)–bundle ξ
over a surface Σg of genus g ≥ 1 admits a flat structure if and only if its
Euler number χ(ξ) satisfies the inequality |χ(ξ)| = | 〈ε2(ξ), [Σg]〉 | ≤ g − 1.
In particular this shows that contrary to the Chern and Pontrjagin classes,
the Euler class is a nontrivial characteristic class for flat bundles. Indeed,
every integer can be realized as an Euler number of some GL+(2,R)–bundle
over a surface. Milnor’s inequality was later generalized to circle bundles by
Wood [Wo75].

In dimension greater than 2, up to now there were few examples where
explicit bounds were given for χ(ξ), or more generally for any primary char-
acteristic number. In an unpublished work, Smillie gave some explicit bounds
for the Euler number of flat bundles over hyperbolic manifolds of even dimen-
sion > 2. However, it is not known whether nontrivial flat bundles over such
manifolds exist at all. In a more geometric direction, Besson, Courtois and
Gallot [BCG07] proved sharp Milnor–Wood type inequalities for the pull-
back of the volume form under representations Γ→ Isom+(X) of cocompact
lattices Γ in Isom+(X), where X is a product of symmetric spaces of strictly
negative curvature. Note however that in dimension > 2, the volume form
is in general not a primary characteristic class. One purpose of the current
paper is to prove sharp generalizations of Milnor’s inequality for a family
of higher dimensional manifolds and use these inequalities to analyze the
possible flat bundles, and in particular to prove the Chern Conjecture.

Bounded cohomology. In his groundbreaking essay [Gr82], Gromov natu-
rally puts Milnor’s inequality in the context of bounded cohomology. Canon-
ical L1 and L∞ norms can be defined on the spaces of singular chains and
cochains of a closed oriented n-dimensional manifold M . These in turn in-
duce seminorms on the respective real valued homologies and cohomologies.
It follows from the Hahn–Banach theorem (see [Gr82, Corollary, page 7] or
[BePe92, Proposition F.2.2]) that

(1) | 〈β, [M ]〉 | = ‖β‖∞ · ‖M‖ , ∀β ∈ H
n(M) with ‖β‖∞ <∞,

∗Note that for a given bundle there could still be uncountably many flat structures –
corresponding to nonconjugate representations lying in the same component.
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where ‖M‖ denotes the L1 seminorm of the fundamental class of M , the
simplicial volume of M . Thus, if β is a characteristic class, a bound on the
characteristic number | 〈β, [M ]〉 | can be obtained by bounding both ‖β‖∞
and ‖M‖. Unfortunately, estimating each of these terms is usually very
difficult.

Nonzero exact simplicial volume computations are rare. For oriented sur-
faces Σg of genus g ≥ 1, it is not difficult to show that ‖Σg‖ = 2 |χ(Σg)| =
4(g − 1). In particular, if g ≥ 2 and Σg is endowed with a hyperbolic struc-
ture, then ‖Σg‖ = Vol(Σg)/π. More generally, if M is an m–dimensional
closed hyperbolic manifold, then ‖M‖ = Vol(M)/vm [Gr82, Th78], where vm
denotes the supremum of the volumes of geodesic simplices in m-dimensional
hyperbolic space, and is known explicitly in low dimensions only. The only
further computation of a nonzero simplicial volume is given in [Bu08] for
manifolds locally isomorphic to the product of two copies of the hyperbolic
plane. In this case, one has ‖M‖ = 6 · χ(M) = 3/(2π2) · Vol(M).

Gromov proved [Gr82] (see also [Bu07]) that characteristic classes of flat
G-bundles have finite L∞ seminorm when G is a real algebraic subgroup of
GL(m,R), but actual upper bounds for their norms are only known in spe-
cial cases. For the Euler class εm, Gromov [Gr82] obtained from Sullivan–
Smillie’s [Su76] corresponding simplicial results that ‖εm(ξ)‖∞ ≤ 1/2m,
whenever ξ is a GL+(m,R)-bundle admitting a flat structure. Indepen-
dently, Ivanov and Turaev [IvTu82] exhibited an explicit bounded cocycle
representing the Euler class of flat bundles, producing the same bound. In
degree 2, sharp upper bounds for the Kähler class were computed by Domic
and Toledo [DoTo87] in terms of the rank of the associated symmetric space.
Clerc and Ørsted [ClOr03] later generalized this to include all Hermitian
symmetric spaces.

In view of the (im)possible seminorm computations, sharp generalizations
of Milnor’s inequality were essentially carried out in degree 2 only. Note
however that in dimension 2, bounded cohomology not only naturally leads
to Milnor–Wood type inequalities, but can further be used to study rigidity
properties of representations of surface groups. We refer the reader to the
work of Burger, Iozzi and coauthors for more details [BIW08], [BuIo07],
[BILW05]. In higher dimensions, Smillie’s (unpublished) inequalities for the
Euler number of flat bundles over hyperbolic manifolds of even dimension
m = 2n are obtained by using the upper bound ‖ε2n(TM)‖∞ ≤ 1/22n for
the Euler class and the value ‖M‖ = Vol(M)/v2n = ((2π)n/(1 · 3 · 5 · . . . ·
(2n−1)v2n))|χ(M)| for the simplicial volume. Combined with Equation (1),
this leads to

|χ(ξ)| ≤ πn

2n · 1 · 3 · 5 · . . . · (2n− 1)v2n

|χ(M)|.
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Observe that the constant is strictly greater than 1 when n > 1, so that this
inequality does not imply the nonexistence of flat or affine structures on M .

In this paper, we prove sharp upper bounds for the Euler number in degree
2n of every flat GL+(2n,R)-bundle ξ over a closed manifold M admitting a
Riemannian structure locally isometric to a product of n hyperbolic planes.
However our approach avoids estimating the simplicial volume ‖M‖ as well
as the norm of the Euler class. Instead, since by (1), we have ‖M‖ =
|χ(M)|/ ‖ε2n(TM)‖∞, we prove Theorem 1.1 by showing that ‖ε2n(ξ)‖∞ ≤
(1/2n) ‖ε2n(TM)‖∞ when ξ is flat.

Statement of the results. Denote byH the real hyperbolic plane. We con-
sider closed manifolds M admitting a complete Riemannian structure locally
isometric to Hn for some n ≥ 1. It is well known that the universal cover
of M is isometric to the symmetric space Hn and the fundamental group
π1(M) acts on Hn by deck transformations. This produces an embedding
of π1(M) as a torsion free uniform lattice in Isom(Hn). We call such M an
Hn–manifold. We prove Milnor–Wood type inequalities for Hn–manifolds:

Theorem 1.1. Let M be a closed Hn–manifold and ξ a GL+(2n,R)–bundle
over M . If ξ admits a flat structure, then

|χ(ξ)| = | 〈ε(ξ), [M ]〉 | ≤ 1

(−2)n
χ(M).†

The case n = 1 is Milnor’s celebrated inequality. For n = 2, a weaker
upper bound is obtained in [Bu07] by combining the explicit computation of
the simplicial volume for such manifolds and Ivanov–Turaev’s upper bound
[IvTu82] for the Euler class of flat oriented vector bundles.

It is an old conjecture of Chern, formulated independently by Milnor
[Mi58] who proved it in dimension 2, that a closed manifold of even dimen-
sion with nonzero Euler characteristic cannot admit an affine structure. As a
consequence of Theorem 1.1, the conjecture is confirmed for Hn–manifolds:

Corollary 1.2. A closed Hn–manifold does not admit an affine structure.

Proof of Corollary 1.2. If M admitted an affine structure, the GL+(2n,R)-
bundle associated to its tangent bundle TM would admit a flat structure.
So by Theorem 1.1,

|χ(M)| = |χ(TM)| = | 〈ε(ξ), [M ]〉 | ≤ 1

2n
|χ(M)|,

which is impossible since χ(M) 6= 0. �

†Note that the right hand side of the inequality is always strictly positive, since the
Euler characteristic χ(M) is nonzero, and its sign is (−1)n. This can for example be seen
from Hirzebruch’s Proportionality Principle [Hi58] recalled below.
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This result is new for n ≥ 3. For n = 1 and n = 2 it follows from the cor-
responding inequalities of [Mi58] and [Bu07] respectively. The nonexistence
of a complete affine structure was proved by Kostant and Sullivan [KoSu75].
However, proving the nonexistence of a non-complete affine structure is usu-
ally much harder. Note that even in the case of products of hyperbolic
surfaces, the nonexistence of affine structures on the product cannot be di-
rectly deduced from the nonexistence of affine structure on the factors (cf.
Example 3.6 below).

We really prove the stronger statement that the tangent bundle of mani-
folds as in Theorem 1.1 do not admit a flat structure. In general, manifolds
with nonzero Euler characteristic may admit a flat structure (see Smillie
[Sm77b]).

It is a famous question whether a closed manifold can admit both an affine
and a hyperbolic structure. Our result shows that it can never admit simul-
taneously an affine and an Hn–structure. It is natural to ask whether a
closed manifold can admit simultaneously an affine and some nonpositively
curved locally symmetric Riemannian structure with no local Euclidean de-
Rahm factors. If one allows local Euclidean factors, simple examples can be
constructed: for instance Σg×S1 admits both an affine and an H×R1 struc-
tures where Σg is a closed surface of genus g ≥ 2. Similarly, when dropping
the closed assumption one may give simple examples: the punctured torus
admits both an affine structure and a complete hyperbolic structure of finite
volume.

The Hn–manifolds are of particular interest among all locally symmetric
manifolds of even dimension. Indeed, while one can deduce from superrigid-
ity theorems that some rigid locally symmetric manifolds M admit no non-
trivial flat bundle of dimension dim(M), Hn–manifolds do admit (in many
cases a unique) flat bundle with nonzero Euler number (see Theorems 1.7 and
1.10 and Corollaries 1.9 and 1.12). By Corollary 1.2 these bundles cannot
be isomorphic to the tangent bundle TM .

In general, a product of closed surfaces may admit an affine structure,
for instance Σg × S2 × T 2, where T 2 is the two dimensional torus, admits
such a structure. On the other hand this forces the Euler characteristic to
vanish. More generally, suppose M is a compact Riemannian manifold whose
universal cover is a product of symmetric planes, i.e. M̃ ∼= Hn1 × (S2)n2 ×
(R2)n3 . If n3 6= 0 we have χ(M) = 0 while if n2 6= 0 we have that M is an S2

bundle over a smaller dimensional closed manifold, in which case the Euler
class of any flat oriented Rdim(M)–bundle over M vanishes. Thus the general
case reduces to the case n2 = n3 = 0 and we derive:
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Corollary 1.3. Let M be a closed manifold admitting a Riemannian struc-
ture with respect to which the universal cover is a direct product of symmetric
planes. If χ(M) 6= 0 then the tangent bundle TM admits no flat structure.

Note that Isom(Hn) ∼= Sn n PGL(2,R)n where Sn denotes the full n–th
symmetric group. The orientation-preserving isometries form a subgroup of
index 2 denoted Isom+(Hn). Set Gn = Snn

∏n
i=1 GL1(2,R), where GL1(2,R)

denotes the group of 2×2 real matrices with determinant ±1. Then Gn is an
order 2n sheeted cover of Isom(Hn). Let G+

n be the preimage of Isom+(Hn)
in Gn. Note that Gn admits a natural faithful 2n–dimensional real represen-
tation, where the image of G+

n is the intersection of Gn with SL(2n,R). We
denote by s : Isom+(Hn) → Sn the canonical (surjective) homomorphism,
and by f : G+

n → Isom+(Hn) the covering map.

Definition 1.4. A discrete subgroup Γ ≤ Isom+(Hn) will be called cofaithful
if it admits a faithful lift to G+

n , i.e. if there exists a subgroup Γ̃ ≤ G+
n

which intersects ker(f) trivially and such that Γ = f(Γ̃). In that case,
the isomorphism Γ → Γ̃ inverse to the restriction of f to Γ̃ will be called
a cofaithful lift (or a cofaithful map). An Hn–manifold M will be called
cofaithful if its fundamental group is cofaithful.

Remark 1.5. Milnor proved [Mi58] that every compact hyperbolic surface is
cofaithful. Therefore a direct product of surfaces is also cofaithful. However,
we do not know if for n > 1 every compact Hn–manifold is cofaithful.

If Γ̃ ≤ G+
n has no elements of order two, then Γ = f(Γ̃) is cofaithful. Since

every finitely generated subgroup of G+
n admits a subgroup of finite index

with this property (for instance by [R72, 6.11]), it follows that any complete
Hn–manifold admits a cofaithful finite cover.

The next result gives the precise value of the Euler number of flat vector
bundles induced by a cofaithful map.

Theorem 1.6. The flat GL+(2n,R)-bundle ξ on a closed cofaithful ori-
entable manifold M = Γ\Hn induced by a cofaithful map Γ→ G+

n composed
with the natural embedding of G+

n in GL+
2n(R) satisfies

|χ(ξ)| = 1

2n
|χ(M)|.

Since every closed Hn–manifold admits a cofaithful finite cover, one de-
duces that, up to finite cover, the inequality of Theorem 1.1 is sharp for every

such manifold. However, not every integer in the interval [−|χ(M)|
2n , |χ(M)|

2n ] is
in general an Euler number of a flat bundle, and Theorem 1.1 can be refined
as in Theorem 1.7 below.
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We will say that an Hn–manifold is rigid if it has no finite cover which
decomposes as a product manifold with a 2–dimensional factor. This termi-
nology is motivated by the (local, Mostow and Margulis) rigidity theorems
which apply for such manifolds. For instance, Hilbert–Blumental modular
varieties are rigid. By a closed Hilbert–Blumental‡ manifold we mean a man-
ifold of the form Γ\Hn where Γ is an anisotropic Hilbert–Blumental group,
i.e. a subgroup of finite index of G(OK) where K is a totally real number
field of degree m ≥ n > 1, OK its ring of integers and G an anisotropic K al-
most simple algebraic group such that

∏
γ∈Gal(K/Q) Gγ(R) ∼= SL2(R)n×K for

some compact group K. The induced embedding of Γ in SL2(R)n is discrete
cocompact and irreducible. By Margulis’ arithmeticity theorems, every rigid
Hn–manifold admits a finite cover which is a product of Hilbert–Blumental
modular manifolds.

Recall (see [R72, Theorem 5.22]) that every closed Hn–manifold M admits
a finite cover N of the form

N = Σg1 × . . .× Σgk
×N ′,

where N ′ is rigid, k ≥ 0, and the Σgi
’s are surfaces of genus gi ≥ 2. The

pullback of a flat GL+(2n,R)-bundle ξM over M is a flat GL+(2n,R)-bundle
over N .

Theorem 1.7. Let N be as above, and let ξN be a flat GL+(2n,R)-bundle
over N . Then

χ(ξN) ∈
{
± χ(N ′)

2dim(N ′)/2

k∏
i=1

`i : |`i| ≤ gi − 1

}
∪ {0}.

Moreover, if N is cofaithful, all the integers are actually attained as Euler
numbers of flat bundles.

Rewriting Theorem 1.7 in two special interesting cases, namely when M
is a product of surfaces, or when M is rigid, we obtain:

Corollary 1.8. Let ξ be a GL+(2n,R)-bundle over the product of closed
oriented surfaces M1, . . . ,Mn of respective genus gi ≥ 2, for i = 1, . . . , n. If
ξ is flat, then

χ(ξ) ∈
{ n∏

i=1

`i : |`i| ≤ gi − 1

}
.

‡Note that the varieties considered in the original work of Blumental and Hilbert
were isotropic, i.e. noncompact while here the unisotropic (or closed) ones are consid-
ered. These are sometimes referred as quaternionic Shimura varieties or Picard modular
manifolds.
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Corollary 1.9. Let M be a compact rigid Hn–manifold, and let ξ be a
GL+(2n,R)–bundle over M . If ξ is flat and χ(ξ) 6= 0, then

|χ(ξ)| =
∣∣∣∣ 1

2n
χ(M)

∣∣∣∣.
For rigid manifolds we show that the flat dim(M)–dimensional vector bun-

dles with positive Euler number are parameterized by the (finite) first co-
homology group in the n–dimensional vector space over the field F2 of two
elements. More precisely, let M be a closed oriented Hn–manifold with
fundamental group Γ ≤ Isom(Hn) ∼= Sn n (Isom(H))n. We denote by
H1

Sym(M,Fn2 ) = H1
Sym(Γ,Fn2 ) the first cohomology group of Γ in Fn2 with

respect to the action of Γ on Fn2 that permutes the coordinates according to
the map s : Σ→ Sn.

Theorem 1.10. Let M be a compact rigid Hn-manifold. Then there exists
a flat vector bundle over M with nonzero Euler number if and only if M is
cofaithful. In that case, there is a one-to-one correspondence between the set
of flat vector bundles over M with positive Euler number and the elements of
the finite group H1

Sym(M,Fn2 ). Moreover M admits a canonical normal finite
cover N such that all these bundles induce the same vector bundle with the
same flat structure over N .

The reader is referred to the proof of 1.10 below for a description of the
representations corresponding to these bundles and the correspondence with
the first Fn2 cohomology classes.

When M is a Hilbert–Blumenthal modular manifold or a direct prod-
uct of such, the fundamental group Γ is imbedded in the direct product∏n

i=1 PSL(2,R) and in particular the map s : Γ→ Sn is trivial. In that case
H1

Sym(M,Fn2 ) ∼= Hom(Γ,Z/(2))n. Hence we have:

Corollary 1.11. Let M be a closed cofaithful Hilbert–Blumenthal modular
manifold. Then M admits exactly 2nk+1 flat 2n–dimensional vector bun-
dles with nonzero Euler number, where k = dimH1(M,Z/(2)) and n =
dim(M)/2. The Euler number for each of these vector bundles is either
±χ(M)/2n, where the sign is determined according to the choice of orienta-
tion.

Note that dimH1(M,Z/(2)) is always finite since π1(M) is finitely gen-
erated. On the other hand, there are many examples of closed Hilbert–
Blumenthal modular manifolds with nontrivial first Z/(2)–cohomology. In
fact if Γ ≤

∏n
i=1 SL2(R) is an arithmetic lattice, one can map it to SL2(Fq) for

some finite field Fq, and take Γ′ to be the preimage of the 2–Sylow subgroup.
Then H1(Γ′,Z/(2)) 6= 〈0〉. More generally, Lubotzky [Lu87] showed that
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every finitely generated linear group admits a finite index subgroup which is
mapped onto Z/(2). When k = 0 we have:§

Corollary 1.12. Let M be a compact cofaithful Hilbert–Blumenthal modular
Hn–manifold with trivial first F2–cohomology. Then there exists a unique flat
GL+(2n,R)–bundle over M with positive Euler number.

In contrast to Milnor’s characterization of flat bundles over surfaces [Mi58]
which states that a GL+(2,R)-bundle ξ over a surface of genus g is flat if
and only if |χ(ξ)| ≤ g− 1, the converse of Theorems 1.1 and 1.7 do not hold
in general; there exist nonflat bundles whose Euler numbers are allowed as
a possible Euler numbers of flat bundles. Examples are given in Section 3.

Remark 1.13. Our results also hold for unoriented manifolds. Indeed, the
Euler number of an oriented vector bundle can also be defined over an un-
oriented manifold M , for example as one half of the Euler number of the
pullback of the bundle to an oriented double cover of M . Similarly, the sim-
plicial volume of an unoriented manifold is simply one half of the simplicial
volume of an oriented double cover. All our proofs apply with minor changes
to this wider setting.

Acknowledgments: We thank Bill Goldman for pointing out some essential
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especially for showing us Example 3.6. We thank Uri Bader for several
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2. Background

2.1. Simplicial volume and bounded cohomology. Let M be an n-
dimensional closed oriented manifold. The L1–norm on the space C∗(M)
of real-valued chains on M , associated to the canonical basis of singular
simplices, ∥∥∥∥∥

r∑
i=1

aiσi

∥∥∥∥∥
1

=
r∑
i=1

|ai| ,

for
∑r

i=1 aiσi in Cq(M), induces a seminorm, which we still denote by ‖−‖1,
on the real valued homology H∗(M) of M . The seminorm of a homology
class is defined as the infimum of the norms of its representatives. The
simplicial volume of M , denoted by ‖M‖, is the seminorm of the real valued
fundamental class [M ] ∈ Hn(M) of M .

The dual L∞-norm (or Gromov norm) on the space C∗(M) of real valued
cochains on M is given, for every cochain c in Cq(M), by

‖c‖∞ = sup{|c(z)| : z ∈ Cq(M) with ‖z‖1 = 1}
= sup{|c(σ)| : σ : ∆q →M continuous}.

The subspace of bounded cochains C∗b (M) ⊂ C∗(M) consists of those cochains
for which the Gromov norm is finite. Since the boundary operators on
C∗(M) are bounded with respect to the L1–norm, the coboundary operators
of C∗(M) restrict to C∗b (M). The bounded cohomology H∗b (M) of M is, by
definition, the cohomology of the cocomplex C∗b (M). The inclusion of cocom-
plexes C∗b (M) ⊂ C∗(M) induces a comparison map c : H∗b (M) → H∗(M).
The Gromov norm on the space of (bounded) cochains induces a seminorm
on H∗b (M) and on H∗(M), which we still denote by ‖−‖∞ (allowing the value
+∞ on H∗(M)). For α in Hq(M), we have

‖α‖∞ = inf{‖αb‖∞ : αb ∈ Hq
b (M), c(αb) = α},

where, over the empty set, the infimum is considered to be infinity.
For β 6= 0 ∈ Hn(M), it follows from the Hahn-Banach theorem that

|〈β, [M ]〉|
‖β‖∞

= ‖M‖ .

The continuous bounded cohomology of a topological group G is defined
similarly. Recall first that the continuous cohomology H∗c (G) of G is the
cohomology of the cocomplex C∗c (G)G endowed with its natural homogeneous
coboundary operator δ: The space of continuous cochains is given as

Cq
c (G) = {c : Gq+1 −→ R : c is continuous},

and Cq
c (G)G is the subspace of left G-invariant cochains, where G acts diago-

nally on Gq+1. The coboundary operator δ : Cq
c (G)G → Cq+1

c (G)G is defined
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as

δf(g0, . . . , gq) =

q∑
i=0

(−1)qf(g0, . . . , ĝi, . . . , gq),

for f ∈ Cq
c (G)G and (g0, . . . , gq) ∈ Gq+1. For c in Cq

c (G), let

‖c‖∞ = sup{|c(g0, . . . , gq)| : (g0, . . . , gq) ∈ Gq+1}.
Set

Cq
c,b(G) = {c ∈ Cq

c (G) : ‖c‖∞ < +∞},
and let C∗c,b(G)G be the cocomplex of continuous boundedG–invariant cochains.

Clearly, the coboundary operator restricts to C∗c,b(G)G, and the continuous
bounded cohomology H∗c,b(G) of G is defined as the cohomology of this co-
complex.

The inclusion of cocomplexes C∗c,b(G)G ⊂ C∗c (G)G induces a comparison
map c : H∗c,b(G) → H∗c (G). As in the singular case, the sup norm induces
seminorms both on H∗c,b(G) and on H∗c (G) (again allowing the value +∞ in
the latter case) and we have, for any α in Hq

c (G), that

‖α‖∞ = inf{‖αb‖∞ : αb ∈ Hq
b (M), c(αb) = α}.

If Γ is a discrete group, then the continuity condition is void and we omit
the term “continuous” and the subscript “c” in the corresponding terminol-
ogy and notations. Note that the group cohomology H∗(Γ) is then nothing
but the Eilenberg-MacLane cohomology of Γ [McL63, Chapter 4, paragraph
5].

Let f : H → G be a continuous homomorphism between topological
groups. The induced maps f ∗ : H∗c (G) → H∗c (H) and f ∗ : H∗c,b(G) →
H∗c,b(H) on cohomology are defined at the cochain level by precomposing

any cochain c : Gq+1 → R with (f, . . . , f) : Hq+1 → Gq+1. The sup norm is
not increased at the cochain level, hence for any α in Hq

c (G) or in Hq
c,b(G),

we have ‖f ∗(α)‖∞ ≤ ‖α‖∞.
Let Γ now be the fundamental group of a closed manifold M . As for

standard singular cohomology, the natural map M → BΓ, where BΓ de-
notes the classifying space of Γ-bundles, induces a natural map in bounded
cohomology

H∗b (Γ) ∼= H∗b (BΓ)→ H∗b (M).

In contrast to the standard case, Gromov [Gr82, Section 3.1] (see also [Iv85])
proved the remarkable theorem that this map is an isometric isomorphism.
For aspherical manifolds (which we will exclusively be dealing with) this
theorem is easy to prove. Indeed, in that case it is classical that there is
an isomorphism H∗(Γ) ∼= H∗(M) between the standard cohomology groups.
Furthermore, it is easy to exhibit explicit cochain maps C∗(Γ)Γ → C∗(M)
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and C∗(M)→ C∗(Γ)Γ realising the isometric isomorphisms H∗(Γ) ∼= H∗(M)
and H∗b (Γ) ∼= H∗b (M).

2.2. The Euler class. The classical theorem of Hopf stating that the index
of a nondegenerate vector field over a manifold M is equal to the Euler
characteristic χ(M) can be reformulated by saying that the Euler number
of the tangent bundle is equal to the Euler characteristic of M [MiSt79,
Corollary 11.12]:

χ(TM) = χ(M).

(In fact, this is the origin of the name “Euler class”.) By Poincaré duality,
χ(M) = 0 when the dimension of M is odd. More generally, the real Euler
class of an odd dimensional vector bundle always vanishes [MiSt79, Property
9.4].

The universal Euler class εm lives in the m-th cohomology group of the
classifying spaceBGL+(m,R). Denoting by GL+(m,R)δ the group GL+(m,R)
endowed with the discrete topology, recall that the classifying spaceBGL+(m,R)δ

classifies flat GL+(m,R)–bundles and that its cohomology is by definition
isomorphic to the Eilenberg–Maclane cohomology of its fundamental group
GL+(m,R) [McL63, Chapter 4, paragraph 5].

We shall further see that it is natural to consider the Euler class as a
continuous cohomology class in Hm

c (GL+(m,R)). More generally, let G be
a reductive Lie group and K a maximal compact subgroup in G. We have a
commutative diagram

H∗(BG) //

��

H∗(BGδ)

∼=
��

H∗c (G) � � // H∗(G).

The left vertical arrow can be described as follows: On the one hand, the em-
bedding K ↪→ G is a homotopy equivalence and hence H∗(BG) ∼= H∗(BK).
Since the Chern–Weil homomorphism is an isomorphism for compact groups
[Bott73], H∗(BK) is isomorphic to the ring of Ad(K)–invariant polynomials
on the Lie algebra of K. On the other hand, by the Van Est isomorphism
[Ve55] (see also [Gui80, Corollary 7.2]), the continuous cohomology H∗c (G)
is isomorphic to the G–invariant differential forms on G/K. The quotient
map G → G/K is a K–bundle. This bundle is endowed with the Maurer–
Cartan connection. Chern–Weil theory now naturally assigns to any Ad(K)–
invariant polynomial a differential form on G/K, which is G–invariant by the
G–equivariance of the Maurer–Cartan connection. For more details and ex-
plicit formulas for primary characteristic classes of flat bundles viewed as
continuous cohomology classes, see [Du76].
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To see that the lower horizontal arrow is injective one can argue as follows:
Since G is reductive, by Borel’s Theorem [Bor63] it admits a cocompact
lattice Γ, and the map H∗c (G) → H∗(G) is factorized by the restriction
H∗c (G) ↪→ H∗(Γ), which is injective, having as left inverse the transfer map
(given by integration over a fundamental domain for Γ \G).

For G = GL+(m,R) and m even, the image of the Euler class in any of
the above cohomology groups, which we still denote by εm, is nontrivial.
Since a GL+(m,R)-bundle ξ over M admitting a flat structure is induced
from a representation ρ : π1(M)→ GL+(m,R) of the fundamental group of
M , the Euler class εm(ξ) is just the image under the natural homomorphism
Hm(π1(M)) → Hm(M) of ρ∗(εm), where ρ∗ : Hm

c (G) → Hm(π1(M)) is the
homomorphism induced by ρ. The fact that the Euler class εm(ξ) is the pull-
back of the continuous (bounded) cohomology class εm ∈ Hm

c (GL+(m,R))
is fundamental in our approach.

Remark. The Euler class is the only characteristic class (for GL+(m,R))
surviving the passage to the classifying space of flat bundles. All other gen-
erators of H∗(BGL+(m,R)) are Pontrjagin classes and vanish on flat bun-
dles since they are in the image of the Chern-Weil homomorphism [KoNo69,
Chapter XII]. For a topological proof of this classical consequence of Chern-
Weil theory in the differential context see [KaTo68, Section 6].

Recall [IvTu82] that the Euler class can be represented by a bounded
cocycle, i.e. it lies in the image of the comparison map Hm

c,b(GL+(m,R))→
Hm
c (GL+(m,R)).
Define Bl+2,n to be the subgroup of GL+(2n,R) consisting of the diagonal

embedding of the product of n copies of GL+(2,R), i.e. the image of the
injective homomorphism

ρ∆ :
∏n

i=1 GL+(2,R) −→ Bl+2,n < GL+(2n,R)

(A1, . . . , An) 7−→

 A1

. . .
An

 .

It follows from the Whitney product formula for the Euler class that the
induced cohomology map

ρ∗∆ : H2n
c (GL+(2n,R))→ H2n

c (Bl+2,n) ∼= H2n
c (

n∏
i=1

GL+(2,R))

sends ε2n to the cup product ε2 ∪ . . . ∪ ε2 of n copies of ε2.
Let us end this preliminary section with two basic facts regarding εm:
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Conjugation by an element g ∈ GL(m,R) induces an isomorphism on the
underlying (universal) unoriented vector bundles, which preserves orientation
if det(g) > 0 and reverses orientation if det(g) < 0. This yields:

Lemma 2.1. For g ∈ GL(m,R) let ρg : GL+(m,R) → GL+(m,R) be the
corresponding conjugation ρg(A) = gAg−1, A ∈ GL+(m,R). Then

ρ∗g(εm) =

{
εm if det(g) > 0,
−εm if det(g) < 0.

Since the Euler class εm ∈ Hm
c (GL+(m,R)) lies in the image of the com-

position

Hm
c (PSL(m,R)) −→ Hm

c (SL(m,R)) −→ Hm
c (GL+(m,R))

induced by the natural projections, for ρ : Γ → GL+(m,R), the Euler class
ρ∗(εm) is determined by the projection of ρ to PSL(m,R). Similarly, we
have:

Lemma 2.2. Let ρ1, ρ2 : Γ→
∏n

i=1 GL+(2,R) be two representations whose
projections to

∏n
i=1 PSL(2,R) coincide. Then

ρ∗1(ε2 ∪ . . . ∪ ε2) = ρ∗2(ε2 ∪ . . . ∪ ε2).

3. Some simple examples

The purpose of this section is to answer several questions which naturally
arise and to give examples illustrating some issues regarding the main results.

3.1. Nonflat bundles with even Euler number.

Claim 3.1. Let M be a closed oriented manifold of even dimension 2n,
and let k ∈ 2Z be an arbitrary even integer. Then there exists an oriented
R2n–vector bundle ξ over M with χ(ξ) = k.

Since any manifold admits a degree 1 mapping onto the sphere of the same
dimension, obtained by sending an open disk U in M diffeomorphically onto
S2n \ {x0} and its complement M \ U to some fixed point x0 ∈ S2n, Claim
3.1 follows from its validity for S2n. The tangent bundle TS2n over S2n has
Euler number χ(TS2n) = 2, and an oriented vector bundle over S2n with
Euler number equal to 2d is obtained by taking the pullback of TS2n by a
self-map of degree d.

Moreover for n = 1, 2, 4 the assertion holds for odd k ∈ Z as well: Letting
F be the complex numbers, the quaternions or the octonions, the projective
space P(F 2) (which is a sphere of dimension 2, 4 or 8) carries a canonical F -
bundle (the total space consists of pairs ([V ], v) where [V ] ∈ P(F 2) and v ∈
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V ) with Euler number equal to 1. For more details about the 4–dimensional
case, see [MiSt79, Lemma 20.9].

Since only finitely many isomorphy classes of bundles of a fixed dimension
over a given manifold M can admit a flat structure, most of the bundles
constructed above will not be flat. We will now show that in certain cases,
and in particular when the base is an Hn–manifold, a nonflat vector bundle
can attain every (or every even) integer as an Euler number.

Proposition 3.2. Let M be a closed oriented 4–dimensional manifold, and
let k ∈ Z be an arbitrary integer. Then there exists an oriented R4–vector
bundle ξ over M not admitting a flat structure and such that χ(ξ) = k.

Proof. Suppose first that k 6= 0. Let ξ1 be the oriented R4–vector bundle over
S4 underlying the canonical F–bundle over the projective space P(F 2) ' S4

considered earlier, for F the quaternions. It is proven in [MiSt79, Lemma
20.9] that χ(ξ1) = 1 and the first real Pontrjagin class of ξ1 is nonzero. As
above, one constructs the bundle ξ over M by taking the pullback of ξ1 by
a map f : M → S4 of degree k. It follows that χ(ξ) = k and the first real
Pontrjagin class of ξ is nonzero, which implies that the bundle cannot admit
a flat structure. The case k = 0 is treated similarly based on the existence
of bundles over S4 with vanishing Euler number and nonvanishing first real
Pontrjagin class shown in [MiSt79, Lemma 20.10]. �

Lemma 3.3. Let k, n ∈ Z be integers and suppose that n ≥ 2. Then there
exists an oriented R2n–vector bundle ξ over the product

∏n
i=1 S

2 of n copies
of the sphere S2 such that ξ does not admit a flat structure and χ(ξ) = k.

Proof. Let η1 be the oriented R2–vector bundle over S2 underlying the canon-
ical C–bundle over the projective space P(C2) ' S2. It is easy to check that
χ(η1) = 1. As explained in the proof of Proposition 3.2, there exists an
oriented R4–vector bundle ξk over S2 × S2 such that χ(ξk) = k and the first
real Pontrjagin class of ξk does not vanish: p1(ξk) 6= 0 ∈ H4(S2×S2,R). For
ξ = ξk × Πn

i=3η1, we have

χ(ξ) = χ(ξk) = k.

Furthermore, since, for dimension reasons, all the Pontrjagin classes of Πn
i=3η1

vanish,

p1(ξ) = p1(ξk × Πn
i=3η1) = p1(ξk) 6= 0 ∈ H4(Πn

i=1S
2,R),

so that ξ does not admit a flat structure. �

Proposition 3.4. Let M be a closed oriented Hn–manifold with n ≥ 2.
There exists a finite cover N of M such that for every even integer k ∈ 2Z
there exists an oriented R2n–vector bundle ξ over N such that ξ does not
admit a flat structure and χ(ξ) = k.
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This implies in particular that upon passing to a finite cover, the converses
of Theorems 1.1 and 1.7 are wrong in dimension greater or equal to 4. That
is, in contrast to the case n = 1, the Euler number not only does not deter-
mine the isomorphy class of an oriented R2n–vector bundle, it does not even
determine whether a bundle admits a flat structure or not.

Proof. For n = 2, this is a consequence of Proposition 3.2 even without
assuming that k is even and without passing to a finite cover. Let us thus
suppose that n ≥ 3.

It is shown in [Ok01] that there exists a finite coverN of any closed oriented
Hn–manifold which admits a tangential map of nonzero degree to the dual
compact symmetric space. That is, there exists a map f : N →

∏n
i=1 S

2

which furthermore induces Matsushima’s map on the corresponding singular
real cohomology groups, and consequently has degree χ(N)/2n. Thus for
k ∈ (χ(N)/2n)Z the result follows immediately from Lemma 3.3.

In order to treat general k ∈ 2Z, start with ξ0, the pullback by f : N →∏n
i=1 S

2 of an oriented R2n–vector bundle over
∏n

i=1 S
2 with χ(ξ0) = 0 and

nonvanishing first Pontrjagin class, established in (the proof of) Lemma 3.3.
Then modify ξ0 inside a closed disk U of N as follows, in order to obtain
a bundle with any given even Euler number: Let V ⊂ U be a smaller disk
contained in the interior of U . Let x0 be an interior point in V and y0

be a point in S2n, and consider the wedge N ∨ S2n obtained by identifying
x0 and y0. Let φ : N → N ∨ S2n be defined as the identity on N \ U , a
diffeomorphism U \ V → U \ {x0} restricting to the identity on ∂U and
extending to the constant map ∂V → y0, and a map V → S2n wrapping V
around the sphere and sending ∂V to y0. Let ξk be the pullback through φ
of the bundle over N ∨S2n obtained by gluing the bundle ξ0 to some bundle
with Euler number k over the sphere. Clearly, χ(ξk) = k.

To see that the bundle ξk cannot admit a flat structure, note that there
exists a 4–dimensional CW–complex X in N which has nonzero first Pon-
trjagin class ξ0. Since X has codimension at least 2 in N , the closed disk
U can be chosen disjoint from X, so that the restrictions of ξ0 and ξk to X
will agree, and the first Pontrjagin class of ξk being nontrivial on X will be
nonzero on N (and in fact equal to p1(ξ0) as a cohomology class on N , not
only on X). In particular, p1(ξk) 6= 0 ∈ H4(N,R), and the bundle ξk cannot
admit a flat structure. �

Remark 3.5. In the case of a product of surfaces, examples of nonflat bun-
dles with any given Euler number are easily constructed using the fact that
there exists a degree 1 map from any surface onto S2.

3.2. Flat bundles with zero Euler number. Let M be an Hn–manifold.
For simplicity we will assume that its fundamental group is contained in the
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identity connected component Isom(Hn)◦ ∼=
∏n

i=1 PSL(2,R) and admits a
cofaithful representation ρ : π1(M)→

∏n
i=1 SL(2,R). Let I be any subset of

{1, 2, . . . , n} and denote by projI :
∏n

i=1 SL(2,R)→ Πi∈ISL(2,R) the canon-
ical projection. Denote by ρI : π1(M) → SL(2n,R) the composition of ρ
with projI followed by the natural inclusion

∏
i∈I SL(2,R) ↪→

∏n
i=1 SL(2,R)

and the diagonal embedding
∏n

i=1 SL(2,R) ↪→ SL(2n,R). Let ξI be the
corresponding flat bundle over M . For I = {1, 2, . . . , n}, we have χ(ξI) =
2−n|χ(M)|, while for I 6= {1, 2, . . . , n}, we have χ(ξI) = 0 since the represen-
tation ρI commutes through a Lie group whose associated symmetric space
has dimension strictly smaller than 2n.

For I 6= J the representations ρI and ρJ cannot be conjugated since we
can chose a sequence γm ∈ π1(M) such that ρI(γm)→ 1 while ρJ(γm)→∞.

For noncofaithful manifolds, examples can be constructed by taking linear
representations of some finite quotient or, if π1(M) lies in Isom(Hn)◦, consid-
ering its embedding in

∏n
i=1 PSL(2,R) as a cocompact lattice composed with

the projections on factors followed with some linear (oriented) representation
of PSL(2,R).

3.3. The variety of flat structures. For a given oriented closed manifold
M , the space of flat m (= dimM) oriented vector bundles over M coin-
cides with the character variety Hom(π1(M),GL+(m,R))/G since two flat
bundles are isomorphic as flat bundles if and only if the corresponding repre-
sentations of π1(M) are conjugated. On the other hand two representations
ρ1, ρ2 : π1(M) → GL+(m,R) that lie in the same connected component of
Hom(π1(M),GL+(m,R)) induce abstractly isomorphic bundles.

If M is a rigid Hn–manifold, it can be deduced from Margulis’ super-
rigidity theorem that two representations that lie in the same connected
component are conjugate, and moreover that the character variety is finite.
However, if M is a nonrigid closed Hn–manifold, connected components of
Hom(π1(M),GL+(2n,R)) in general have dimension larger than the corre-
sponding conjugacy classes, and one deduces that there are continuously
many nonequivalent flat structures over some fixed given vector bundle.

3.4. Affine product of nonaffine manifolds.

Example 3.6 (E. Ghys). There exist two closed manifolds M1,M2 whose
product M1 ×M2 admits an affine structure while neither M1 nor M2 do.

Let M be a compact quaternionic hyperbolic surface, i.e. an 8–dimensional
manifold of the form Γ\X where Γ is a torsion free cocompact lattice of
Sp(2, 1) and X is the associated symmetric space. Take

M1 = (M × S1) and M2 = S3.
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To give an affine structure on (M × S1) × S3 one can argue as follows:
Let Q denote the quaternions. Let V be the open ”light cone” in Q2,1 (i.e.
Q3 equipped with the standard (2, 1) form). Sp(n, 1) acts on Q3 preserving
this form and Γ\V is homeomorphic to M ×Q∗, where Q∗ denotes the space
of nonzero quaternions and is homeomorphic to R+ × S3. Denote by t the
affine homothety of multiplying by 2. Then (Γ×〈t〉)\V is homeomorphic to
M ×S1×S3 and it inherits the affine structure from V , as the Γ×〈t〉 action
is affine.

Now S3 is compact simply connected and hence cannot admit an affine
structure. Consider M × S1. Suppose it admits an affine structure, and
let ρ : Γ × Z → GL+

9 (R) be the associated representation. Since Sp(2, 1)
has no nontrivial 9-dimensional representations, it follows from the Corlette
and Gromov–Schoen superrigidity theorems that ρ(Γ) is finite. Hence up to
replacing M by a finite cover, we may assume that ρ(Γ) is trivial, and so up to
replacing S1 by a finite cover, we have that either ρ has trivial image, which
is impossible since M × S1 has no flat Riemannian structure (for instance
by Bieberbach’s theorem), or that the image of ρ is infinite cyclic. The last
possibility cannot hold as well; in fact the closed affine manifolds with cyclic
holonomy were classified by Smillie (in his unpublished thesis [Sm77a]) who
showed that they are all Hopf manifolds.

4. Vanishing results for the Euler class

In this section we assemble several statements indicating the vanishing of
the Euler class for certain representations to be considered later.

4.1. Vanishing of the Euler class for tensor representations. Identify-
ing R2⊗R2 with R4 we obtain a representation of GL(2,R)×GL(2,R) which
we call the tensor representation and denote by ρ⊗ (we will also use this sym-
bol to denote the restriction of this representation to subgroups of GL(2,R)×
GL(2,R)). Note that with respect to the basis {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}
of R2⊗R2 induced by the tensor of standard basis vectors {e1, e2} of R2, ρ⊗
takes the form

ρ⊗(A,B) = A⊗B =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 ,

where

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
.
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Lemma 4.1. The pullback of the Euler class vanishes under the tensor rep-
resentation ρ⊗ : SL(2,R)× SL(2,R)→ SL(4,R):

ρ∗⊗(ε4) = 0.

Proof. The proof relies on the simple fact that switching the two factors
changes the sign of the orientation of the tensor product, and hence of the Eu-
ler class, while it does not change the sign of the generator of H4

c (SL(2,R)×
SL(2,R)) ∼= R. We give the detailed proof for the convenience of the reader.

Let τ : SL(2,R) × SL(2,R) → SL(2,R) × SL(2,R) denote the homomor-
phism permuting the two factors: τ(A,B) = (B,A), for (A,B) ∈ SL(2,R)×
SL(2,R). Let E23 denote the odd permutation

E23 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

and let ρE23 : SL(4,R)→ SL(4,R) denote the corresponding conjugation by
E23,

ρE23(A) = E23AE
−1
23 ,

for A ∈ SL(4,R). We have a commutative diagram

SL(2,R)× SL(2,R)

ρ⊗
��

τ // SL(2,R)× SL(2,R)

ρ⊗
��

SL(4,R)
ρE23 // SL(4,R),

so that in particular

τ ∗(ρ∗⊗(ε4)) = ρ∗⊗(ρ∗E23
(ε4)).

But since E23 has negative determinant, by Lemma 2.1, ρ∗E23
(ε4) = −ε4.

Thus we get, on the one hand, that

(2) τ ∗(ρ∗⊗(ε4)) = −ρ∗⊗(ε4).

On the other hand, letting E(13)(24) denote the even permutation

E(13)(24) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
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and ρE(13)(24)
the corresponding conjugation by E(13)(24), we also have a com-

mutative diagram

SL(2,R)× SL(2,R)

ρ∆

��

τ // SL(2,R)× SL(2,R)

ρ∆

��
SL(4,R)

ρE(13)(24) // SL(4,R),

where ρ∆ : SL(2,R) × SL(2,R) → SL(4,R) is the diagonal embedding. By
Lemma 2.1, we have

(3) τ ∗(ρ∗∆(ε4)) = ρ∗∆(ρ∗E(13)(24)
(ε4)) = ρ∗∆(ε4),

since E(13)(24) has positive determinant. The Whitney product formula for
the Euler class implies ρ∗∆(ε4) = ε2 ∪ ε2, so we can rewrite Equation (3) as

(4) τ ∗(ε2 ∪ ε2) = ε2 ∪ ε2.

Finally, since H4(SL(2,R)× SL(2,R)) is one dimensional, generated by the
cup product of Euler classes ε2 ∪ ε2, there must exist λ ∈ R with ρ∗⊗(ε4) =
λ · ε2 ∪ ε2. It then follows from Equations (2) and (4) that

λ · ε2 ∪ ε2 = ρ∗⊗(ε4) = −τ ∗(ρ∗⊗(ε4)) = −τ ∗(λ · ε2 ∪ ε2) = −λ · ε2 ∪ ε2.

Hence λ = 0, and consequently ρ∗⊗(ε4) = 0. �

4.2. Triviality of top cohomology of one factor, implies vanishing
of the Euler class.

Lemma 4.2. Let M1,M2 be closed aspherical oriented manifolds of respective
dimensions m1,m2 and fundamental groups Γ1,Γ2. Set m = m1 + m2 and
let

ρ : Γ1 × Γ2 −→ GL+(m,R)

be a representation. Let G1 be the Zariski closure of ρ(Γ1). If Hm1
c (G1) = 0

then ρ∗(εm) = 0 ∈ Hm(Γ1 × Γ2).

Proof. Let G2 be the Zariski closure of ρ(Γ2). Denote by ϕ : G1 × G2 →
GL+(m,R) the homomorphism induced by the inclusions Gi < GL+(m,R),
for i = 1, 2. Note that ϕ is well defined since G1 and G2 are by construction
commuting subgroups of GL+(m,R), but it is not necessarily injective since
G1 and G2 may have a nontrivial central intersection. The representation ρ
naturally induces a homomorphism

ρ : Γ1 × Γ2 −→ G1 ×G2,
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defined on the factors Γi, for i = 1, 2, as the restriction of ρ to Γi. The
original representation ρ is now nothing else but the composition

Γ1 × Γ2

ρ

**
ρ // G1 ×G2

ϕ // GL+(m,R).

The induced map ρ∗ : Hm
c (GL+(m,R))→ Hm(Γ1×Γ2) thus factors through

Hm
c (G1 ×G2), and the lemma will follow from:

Claim. The induced map ρ∗ : Hm
c (G1 × G2) → Hm(Γ1 × Γ2) is zero (in

degree m).

To prove the claim, note that the two latter cohomology groups satisfy
a Künneth product formula: For Hm

c (G1 × G2), it follows from the Van
Est isomorphism [Ve55] and the validity of the Künneth formula for relative
Lie algebra cohomology [BoWa00, 1.3]. For Hm(Γ1 × Γ2), it holds since by
asphericality, the cohomology groups of Γ1×Γ2, Γ1 and Γ2 are isomorphic to
the cohomology groups of M1 ×M2, M1 and M2 respectively, and the latter
cohomology groups satisfy the Künneth formula (see for example [MiSt79,
Theorem A.6]). Furthermore, since all isomorphisms are natural, the map
ρ∗ now becomes

ρ∗ = ρ∗1 ⊗ ρ∗2 :
⊕
p+q=m

Hp
c (G1)⊗Hq

c (G2) −→
⊕
p+q=m

Hp(Γ1)⊗Hq(Γ2),

where ρi : Γi → Gi, for i = 1, 2, denotes the restriction of ρ to Γi. Since
m = m1 + m2, the only nonzero summand in the latter direct sum is the
one corresponding to p = m1, q = m2. Thus, the restriction of ρ∗ to all the
summands other then Hm1

c (G1)⊗Hm2
c (G2) is trivial. Hence, the assumption

Hm1
c (G1) = 0 gives ρ∗ = 0 as claimed. �

4.3. Euler class and amenable factors. One advantage of continuous
bounded cohomology is its blindness to amenable factors:

Lemma 4.3. Let M1,M2 be closed aspherical oriented manifolds of respective
dimension dim(M1), dim(M2) ≥ 1 and fundamental groups Γ1,Γ2. Set m =
dim(M1) + dim(M2) and let

ρ : Γ1 × Γ2 −→ GL+(m,R)

be a representation. If either ρ(Γ1) or ρ(Γ2) is amenable, then

ρ∗(εm) = 0 ∈ Hm(Γ1 × Γ2).

Proof. Suppose that ρ(Γ1) is amenable. Denote by Gi, for i = 1, 2, the
Zariski closure of ρ(Γi). By the Tits alternative, ρ(Γ1) being amenable, is
virtually solvable, thus its Zariski closure G1 is also virtually solvable hence
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amenable. Therefore the projection G1 × G2 → G2 induces, in virtue of
[Mo01, Lemma 7.5.10], an isometric isomorphism H∗c,b(G2) ∼= H∗c,b(G1 ×G2)
on the respective continuous bounded cohomology groups.

As in the proof of Lemma 4.2, let ϕ : G1 × G2 → GL+(m,R) be the
homomorphism induced by the inclusion of the factors. Again, observe that
ρ = ϕ ◦ ρ, where ρ : Γ1 × Γ2 → G1 × G2 is as in the proof of Lemma 4.2.
Consider the commutative diagram

H∗c (GL+(m,R))

ρ∗

++
ϕ∗ // H∗c (G1 ×G2)

ρ∗ // H∗(Γ1 × Γ2)

H∗c (G2) //
5 U

ggPPPPPPPPPPPP

H∗(Γ2)
4 T

ffNNNNNNNNNNN

H∗c,b(GL+(m,R))

c

OO

ϕ∗ // H∗c,b(G1 ×G2)

c

OO

H∗c,b(G2).
4 T

∼=
ggOOOOOOOOOOO

c

OO

Here, all vertical arrows are the natural comparison maps between continu-
ous bounded and continuous cohomology groups. The horizontal maps are
induced from ϕ, ρ, ρ and the restriction of ρ to Γ2. The upwards diagonal
maps are induced by the canonical projection on the second factor.

Since the Euler class εm ∈ Hm
c (GL+(m,R)) is bounded [IvTu82], it fol-

lows from the commutativity of the above diagram and the isomorphism
Hm
c,b(G1 ×G2) ∼= Hm

c,b(G2) that its image in Hm
c (G1 ×G2) is in the image of

the map Hm
c (G2) ↪→ Hm

c (G1 ×G2), and furthermore ρ∗(εm) is in the image
of Hm(Γ2) ↪→ Hm(Γ1 × Γ2). But since M2 is aspherical and m > dim(M2),
we have Hm(Γ2) ∼= Hm(M2) = 0, and hence also ρ∗(εm) = 0. �

We will also make use of the following:

Lemma 4.4. Let G be a closed subgroup of GL+(m,R), and suppose that
G = S n A is a decomposition of G into a semidirect product where A is a
closed amenable normal subgroup. Denote by p the projection p : SnA→ S.
Let Γ be a discrete group and

ρ : Γ −→ S n A < GL+(m,R)

a representation. Then

ρ∗(εm) = (p ◦ ρ)∗(εm) ∈ Hm(Γ,R).
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Proof. Let i : S ↪→ S n A denote the embedding of S in the semidirect
product of S and A. Since p ◦ i is the identity on S, the induced map
(p ◦ i)∗ = i∗ ◦ p∗ is the identity both on H∗c (S) and on H∗c,b(S).

On the bounded continuous cohomology groups, it follows from [Mo01,
Lemma 7.5.10] that the projection p furthermore induces an isometric iso-
morphism

p∗ : Hm
c,b(S)

∼= // Hm
c,b(S n A).

Consider the following commutative diagram:

Hm(Γ)

Hm
c (GL+(m,R)) // Hm

c (S n A)

ρ∗
88ppppppppppp
Hm
c (S)? _

p∗oo

ρ∗◦p∗
OO

Hm
c,b(GL+(m,R))

c

OO

// Hm
c,b(S n A)

c

OO

Hm
c,b(S).

c

OO

? _
∼=oo

On the continuous cohomology groups, p∗ is not necessarily the inverse of
i∗ : Hm

c (S n A) → Hm
c (S). However, we get from the above diagram that

p∗ ◦ i∗ : Hm
c (S n A) → Hm

c (S n A) is the identity when restricted to the
image of Hm

c,b(S n A) → Hm
c (S n A). In particular, since the Euler class is

bounded, denoting by εm the restriction of the Euler class both to S n A
and to S, we obtain εm = p∗(εm) as elements of Hm

c (S nA), and hence also
ρ∗(εm) = (p ◦ ρ)∗(εm). �

5. Euler class norm as a proportionality constant

The main purpose of this section is to prove the following:

Proposition 5.1. Let M be a closed oriented 2n-dimensional Riemannian
manifold whose universal cover is isometric to the Cartesian product of n
copies of the hyperbolic plane H. Then

‖M‖ =
χ(M)

(−2)n ‖ε2 ∪ . . . ∪ ε2‖∞
.

For a general closed oriented Riemannian manifold M , the simplicial vol-
ume and the volume are related by the Gromov–Thurston fundamental pro-
portionality principle (see [Gr82, Th78])

‖M‖ =
Vol(M)

c(M̃)
,

where c(M̃) ∈ R+ ∪ {+∞} is a constant depending only on the Riemannian

universal cover M̃ of M .
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For locally symmetric spaces of noncompact type, it is shown in [Bu06]
that the proportionality constant satisfies

c(M̃) =
∥∥ωfM∥∥∞ ,

where ωfM ∈ Hn
c (Isom(M̃)◦) is the image under the Van Est isomorphism of

the Isom(M̃)◦–invariant volume form ωfM on the symmetric space M̃ .

When M̃ = Hn, the Euler characteristic and the volume of M are related
by Hirzebruch’s proportionality principle [Hi58]

Vol(M) = (−2π)nχ(M).

Thus, for such manifolds we have

‖M‖ =
Vol(M)

‖ωHn‖∞
=

(−2π)nχ(M)

‖ωHn‖∞
.

In order to prove the proposition, we need to understand the relation
between the norms of the volume form and of the Euler class. On the one
hand, since the projection

∏n
i=1 SL(2,R) →

∏n
i=1 PSL(2,R) is finite-to-one,

the volume form ωHn defines continuous cohomology classes with the same
sup norm in H2n

c (
∏n

i=1 PSL(2,R)) and in H2n
c (
∏n

i=1 SL(2,R)). On the other
hand, since GL+(2,R) ∼= SL(2,R)×R>0, by Lemma 4.4 the sup norm of the
Euler class is unchanged by replacing it with its restriction to

∏n
i=1 SL(2,R)

which we still denote by ε2 ∪ . . . ∪ ε2. The proposition will follow from:

Lemma 5.2. The volume form and the Euler class are related by

ωHn = (−4π)nε2 ∪ . . . ∪ ε2

as elements in H2n
c (
∏n

i=1 SL(2,R)).

Proof of Lemma 5.2. As the Van Est isomorphism is multiplicative, we have

ωH×...×H = ωH ∪ . . . ∪ ωH ∈ H2n
c (

n∏
i=1

SL(2,R)),

so it is enough to show that

(5) ωH = −4πε2

as elements of H2
c (SL(2,R)).

Let Σg be a closed surface of genus g ≥ 2 and let ρ : π1(Σg)→ PSL(2,R) be
the embedding of π1(Σg) corresponding to an arbitrary complete hyperbolic
structure of Σg. It is shown in [Mi58] (see also [MiSt79, pages 312-314] for
an alternative topological proof) that ρ lifts to a representation ρ : π1(Σg)→
SL(2,R) and that

〈ρ∗(ε2), [Σg]〉 = 1− g =
χ(Σg)

2
.
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Since H2(π1(Σg)) is one dimensional, and

〈ρ∗(ωH), [Σg]〉 = 〈ρ∗(ωH), [Σg]〉 = Vol(Σg) = −2πχ(Σg),

we have ρ∗(ωH) = −4πρ∗(ε2). Moreover, as ρ(Σg) is a cocompact lattice of
SL(2,R), ρ∗ induces an isomorphism between H2

c (SL(2,R)) and H2(π1(Σg)),
and hence ωH = −4πε2. This completes the proof of Lemma 5.2, and hence
of Proposition 5.1. �

Remark 5.3. By Proposition 5.1, computing the simplicial volume of a
closed Hn-manifold is equivalent to computing the sup norm of ε2∪ . . .∪ε2 ∈
H2n
c (Πn

i=1GL+(2,R)). Milnor’s original inequality [Mi58] amounts to showing
‖ε2‖∞ = 1/4, and in [Bu07], the first author proved ‖ε2 ∪ ε2‖∞ = 1/24. For
more than two factors, only rough lower and upper bounds are currently
known.

6. Representations of product groups

In this section we prove the following general proposition¶

Proposition 6.1. Let H =
∏n

i=1Hi be a direct product of n groups and let
ρ : H → GL+(m,R) be an oriented representation such that ρ(Hi) is nona-
menable for each i. Then m ≥ 2n. When m = 2n, the identity component
of the Zariski closure of ρ(H) is reductive, and ρ factors through a map to∏n

i=1 GL(2,R)

∏n
i=1Hi

ρ

++
ρ1 //
∏n

i=1 GL(2,R)
ρ2 // GL+(2n,R),

and there is an even integer 0 ≤ t ≤ n such that, up to reordering the factors
Hi, ρ1 =

∏n
i=1 ρ1,i where ρ1,i is a representation of Hi and the restriction of

its image in
∏n

i=1 GL2(R) to the j’th factor is irreducible when j = i and
scalar otherwise, and V = R2n decomposes as an invariant direct sum

V =

t/2⊕
i=1

Wi ⊕
n⊕

i=t+1

Vi,

where the Wi’s are 4–dimensional and the Vi’s are 2–dimensional. The re-
striction of ρ2 to any pair of factors corresponding to indices (2i − 1, 2i)
with i ≤ t/2 on the invariant subspace Wi is isomorphic to the tensor of two
standard representations of GL2(R) on R2, and is trivial on any of the other
Wj and Vj. The restriction of ρ2 to a factor corresponding to i > t and to Vi
is isomorphic to the standard representation of GL(2,R) on R2, while it is
trivial on any other Vj and Wj. The decomposition is uniquely determined,

¶Unfortunately the variant of this proposition that we included in the announcement
[BuGe08, Lemma 3.1] is erroneous.
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and in particular the number t = t(ρ) is well defined. When t = 0, ρ(H) is
conjugated to a subgroup of Bl+2,n.

The following classical generalization of Schur’s lemma is implicit in the
proof of Theorem 3 in [Cl37] when restricting to the case of product groups:

Lemma 6.2. Let r : H1 ×H2 → GL(W ) be an irreducible representation of
a direct product over an algebraically closed field. Then r is isomorphic to
the tensor of some (irreducible) representations ri : Hi → GL(W̃i), i = 1, 2.

Moreover, any linear automorphism T ∈ GL(W ) which commutes with
r(H2) is of the form T̃ ⊗ 1 for some T̃ ∈ GL(W̃1).

Proof. Let U ⊂ W be an r(H1) nontrivial irreducible subspace. If U = W ,
the lemma follows directly from Schur’s lemma with W̃1 = W and dim(W̃2) =
1. Suppose that U 6= W . Since W is irreducible, we can find h1, . . . , hk ∈ H2

with h1 = 1 such that W =
∑k

i=1 r(hi)U and r(hj)U is not contained in∑j−1
i=1 r(hi)U for every j ≤ k. Since the hi commute with H1, r(hj)U are H1

isomorphic invariant subspaces, hence H1–irreducible, so we conclude that
W =

⊕k
i=1 r(hi)U is a direct sum. Choose an ordered basis B1 of U and

extend it to an ordered basis B of W by adding r(hi)B1, i = 2, . . . , k, to it.
With respect to the basis B the elements of r(H1) are block diagonal with k
identical blocks. To prove the lemma, we have to show that if T is a linear
transformation of W commuting with r(H1) then each of the k×k blocks of T
determined by the basis B = B1∪ . . .∪Bk is a scalar matrix. In other words,
denoting by Pj : W → r(hj)U, j = 1, . . . , k, the associated projections, we
have to show that r(h−1

j ) ◦ Pj ◦ T ◦ r(hi) is a scalar transformation of U for
every i, j. Since all four transformations involved commute with r(H1), and
U is H1 irreducible, this is a consequence of Schur’s lemma. �

The following simple observation will be used in the proof below.

Lemma 6.3. Suppose that ∆ is a subgroup of GL(m,C) and Cm decomposes
as a direct sum of one ∆–invariant subspace U of dimension > 1 and (m−
dimU) ∆–invariant lines. Then every ∆–irreducible subspace of dimension
> 1 is contained in U .

Proof. Let W be a ∆–invariant subspace of dimension > 1. If W is not
contained in U , then the corresponding projection PL on one of the lines L
in the given decomposition is nonzero on W . This implies that W is not
irreducible since ker(PL|W ) is a ∆–invariant subspace of W of codimension
1. �

Proof of Proposition 6.1. Consider VC = C⊗ V as a complex vector spaces.
By choosing a basis for V we may identify GL(m,C) with the group of com-
plex linear automorphisms of VC and GL(m,R) as the subgroup preserving
the real subspace V .



MILNOR–WOOD INEQUALITIES FOR Hn-MANIFOLDS 27

Let Gi be the Zariski closure of ρ(Hi) in GL(m,C). Let G◦i be the identity
connected component of Gi with respect to the Zariski topology, and let
G◦i = Si n Ui be a Levi decomposition of the complex algebraic group G◦i ,
Si being reductive and Ui unipotent (see [Ma92], 0.28). The Gi commute
with each other, being the Zariski closure of commuting groups. Hence the
Si also commute with each other. Let S =

∏n
i=1 Si be their product. Then

S is reductive. Our nonamenability assumption implies in particular that
each Si is nonabelian.

We will first prove the analog of the statement when
∏
Hi is replaced by

S =
∏
Si, ρ by the complex representation corresponding to the inclusion of

S in GL(m,C), and the nonamenability assumption by the data that each Si
is nonabelian. That is, we will show that m ≥ 2n and in the equality case,

VC decomposes as an S–invariant direct sum
⊕t/2

i=1 WC,i⊕
⊕n

i=t+1 VC,i where
the WC,i are 4–dimensional and isomorphic to tensors of pairs of invariant
complex planes corresponding to pairs of factors of S, the VC,i are planes,
and each Si acts nonscalarly on exactly one subspace in this decomposition.
Moreover we will show that this decomposition is unique.

To prove this claim we argue by induction on n, the case n = 1 being
trivial. Suppose n > 1. Since S is reductive, VC decomposes as an S–
invariant direct sum of S–irreducible subspaces

⊕l
j=1 VC,j.

Suppose first that l > 1. Then since each Si is nonabelian, its restriction
to at least one of the VC,j is nonabelian, and the conclusion that m ≥ 2n
follows from the induction hypothesis applied to all the VC,j simultaneously,
i.e.

m =
l∑

j=1

dimVC,j ≥ 2
l∑

j=1

#{i : the restriction of Si to VC,j is nonabelian} ≥ 2n.

Moreover if m = 2n, each Si is nonabelian on exactly one VC,j, and since the
restriction of Si to every other VC,j (i.e. one on which it acts commutatively)
is central, it follows from Schur’s lemma that it acts scalarly there. The

uniqueness of the decomposition VC =
⊕t/2

i=1WC,i ⊕
⊕n

i=t+1 VC,i follows in
this case from the induction hypothesis and Lemma 6.3.

Suppose now that l = 1, i.e. S acts irreducibly on VC. Writing S =
S1 ×

∏n
i=2 Si, we derive from Lemma 6.2 that VC ∼= Ṽ1 ⊗ Ṽ2 where Ṽ1 is a

representation of S1 and Ṽ2 is a representation of
∏n

i=2 Si. The assumption

that all Si are nonabelian and the inductive hypothesis give dim Ṽ1 ≥ 2 and
dim Ṽ2 ≥ 2(n− 1). Thus m = dimVC ≥ 4(n− 1) ≥ 2n, and equality implies
that n = 2,m = 4 and our representation is isomorphic to the tensor of two
2–dimensional representations of S1 and S2=n. This finishes the proof of the
analogous statement for the complex representation given by the inclusion
of S in GL(m,C).
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We shall denote by j◦ and k◦ either a pair of indices (2i − 1, 2i) or a
single index i according to whether i ≤ t/2 or i > t. We let |j◦| = 1, 2
according to whether j◦ is a single index or a pair of indices. For each pair
j◦ = (2i− 1, 2i), 1 ≤ i ≤ t/2, we let

G◦j◦ = G◦2i−1 ×G◦2i, Sj◦ = (S2i−1 × S2i) and Uj◦ = (U2i−1 × U2i),

and let VC,j◦ be the unique Sj◦–irreducible space of dimension > 1 (Lemma
6.3).

Consider now a unipotent element u ∈ Uk◦ . Since for j◦ 6= k◦, u centralizes
Sj◦ , it preserves VC,j◦ , and by Schur’s lemma acts scalarly, hence, being
unipotent, trivially on VC,j◦ . To show that VC,k◦ is u invariant as well, we
argue by way of contradiction. Suppose that u(v) /∈ VC,k◦ for some v ∈ VC,k◦ .
Let j◦ 6= k◦ be such that the projection of u(v) to VC,j◦ is nontrivial, and
choose s ∈ Sj◦ for which su(v) is not on the line spanned by u(v). Such s
exists since Sj◦ acts irreducibly on VC,j◦ . This however gives the impossible

2 = rank{su(v), u(v)} = rank{u−1su(v), v}
= rank{s−1u−1su(v), s−1(v)} = 1,

where the last equality holds since s and u commute and s acts scalarly on
Cv. This holds for any u ∈ Uk◦ , so all the VC,j◦ are Gk◦ = Sk◦nUk◦–invariant,
and since k◦ is arbitrary, it follows that the decomposition VC =

⊕
VC,j◦ is

G = S n U invariant.
Next we show that G◦ is reductive. Consider first k◦ with |k◦| = 1. Since

Uk◦ is unipotent, the subspace of Uk◦–invariant vectors in VC,k◦ is non-trivial.
As Uk◦ is normalized by Sk◦ , this subspace is Sk◦–invariant, and as Sk◦ is
irreducible on VC,k◦ , it must be the full space, i.e. Uk◦ acts trivially on
VC,k◦ . We already saw in the previous paragraph that Uk◦ acts trivially on
VC,j◦ for any j◦ 6= k◦, so Uk◦ is trivial. Similarly, if |k◦| = 2, we write

G◦k◦ = G◦2i−1 × G◦2i = (S2i−1 × S2i) n (U2i−1 × U2i) and VC,k◦ = Ṽ2i−1 ⊗ Ṽ2i

where the Ṽj are irreducible Gj spaces, j ∈ {2i − 1, 2i}. If u is a unipotent
belonging to one of the factors, say u ∈ U2i−1, then, being in the centralizer of
the other factor, u preserves the tensor structure of VC,k◦ and acts trivially
on its second factor (Lemma 6.2). As above we deduce that the space of
U2i−1 invariants in Ṽ2i−1 is the full space, and hence that U2i−1 acts trivially
on VC,k◦ as well as on VC,j◦ for any j◦. Thus U is trivial, i.e. G◦ = S is
reductive.

Finally, since the decomposition established above is unique, and the G◦k◦
are defined over R, each VC,k◦ is invariant under complex conjugation, hence
is defined over R. In other words VC,k◦ = C ⊗ Vk◦ – the complexification of
the real space Vk◦ = VC,k◦ ∩ V . The uniqueness of the decomposition also
implies that the result holds for G =

∏
Gi rather than its Zariski identity

component
∏
G◦i .
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Moreover, in the case t = 0, since the representation ρ is oriented and
the elements of ρ(Hi) act scalarly and hence preserve orientation on the real
2-dimensional spaces Vj, for j 6= i, they also preserve the orientation on Vi.
This proves the last statement of the proposition. �

Remark 6.4. (i) In later sections we shall need to apply Proposition 6.1 in a
slightly more general setup where H is an almost direct product of n factors,
i.e H = (

∏n
i=1Hi)/C where CC

∏n
i=1Hi is a (finite) central subgroup. In this

case, given ρ : H → GL+(2n,R) and letting ρ̃ :
∏n

i=1 Hi → GL+(2n,R) be
the induced representation, we can decompose ρ̃ = ρ̃2 ◦ ρ̃1, as in Proposition
6.1. Then ρ̃1(C) lies both in the center of

∏n
i=1 GL(2,R) and in the kernel of

ρ̃2, and ρ decomposes as ρ = ρ2 ◦ ρ1 through a map to
∏n

i=1 GL(2,R)/ρ1(C)
which is an almost direct product. If the restriction of ρ̃2 to a factor or a pair
of factors of

∏n
i=1 GL(2,R) is irreducible or tensor of irreducible or scalar on

some subspace of V = R2n the same holds for the restriction of ρ2 to the
image of that factor (or pair of factors) in

∏n
i=1 GL(2,R)/ρ2(C). We shall

denote t(ρ) = t(ρ̃).
(ii) In the case when S ≤ GL+(2n,R) is an almost direct product of 2n

nonamenable subgroups, we shall simply write t(S) = t(i), where i : S ↪→
GL+(2n,R) is the inclusion.

We end this section with an extension of Lemma 4.1 that will be applied
repeatedly in the sequel combined with Proposition 6.1.

Lemma 6.5. Let ρ :
∏n

i=1Hi → GL+(2n,R) be a representation such that
ρ(Hi) is nonamenable for every i. If t(ρ) > 0 then

ρ∗(ε2n) = 0.

Proof. By Proposition 6.1, ρ factors through a map to
∏n

i=1 GL2(R):

∏n
i=1 Hi

ρ

++
ρ1 //
∏n

i=1 GL2(R)
ρ2 // GL+(2n,R).

Up to replacing
∏n

i=1Hi by a finite index subgroup, which has no influence
on the vanishing of the Euler class, we can assume that the image of ρ1 is
contained in the product

∏n
i=1 GL+

2 (R). If t(ρ) > 0, then up to permuting
the factors, Proposition 6.1 allows us further to describe ρ2 as follows: Let
ι denote the canonical inclusion of

∏n
i=1 SL2(R) in

∏n
i=1 GL+

2 (R). Precom-
posed with ι, the representation ρ2 has the form

ρ2 ◦ ι(A,B,C) =

(
A⊗B 0

0 ρ′2(C)

)
,
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forA,B ∈ SL2(R) and C ∈ Πn
i=3SL2(R), where ρ′2 : Πn

i=3SL2(R)→ GL+
2n−4(R)

is some representation. Denote by p : Πn
i=1GL+

2 (R) → Πn
i=1SL2(R) the nat-

ural projection. Note that ρ2 and ρ2 ◦ ι ◦ p lie in the same path connected
component in the space of representations, thus ρ∗2(εm) = (ρ2 ◦ ι ◦ p)∗(εm).
Finally, since ρ2 ◦ ι is the inclusion of the direct sum of the tensor represen-
tation ρ⊗ of SL(2,R) × SL(2,R) and the representation ρ′2 on Πn

i=3SL2(R),
we have

(ρ2 ◦ ι)∗(εm) = ρ∗⊗(ε4) ∪ (ρ′2)∗(εm−4) = 0,

since ρ∗⊗(ε4) = 0 by Lemma 4.1. �

7. Lattices in PSL(2,R)n and their representations

Recall that a lattice in a semisimple Lie group G is said to be irreducible if
it projects densely to every proper quotient of G. Let G =

∏n
i=1 PSL(2,R) ∼=

Isom(Hn)◦, and let Γ be a lattice‖ in G. By [R72, Theorem 5.22], up to
replacing Γ by a finite index subgroup Γ′ ≤ Γ, G decomposes as a direct
product G =

∏m
j=1Gj such that:

• each Gj is a direct product of PSL(2,R)’s,
• Γ′j := Γ′ ∩Gj is an irreducible lattice in Gj, and
• Γ′ is the direct product of the Γ′j’s.

For the rest of this section let us assume that Γ = Γ′, i.e. that Γ itself
decomposes as a direct product of irreducible factors Γj = Γ ∩ Gj. Let
ρ : Γ → GL+(2n,R) be an orientable 2n–dimensional representation of Γ.
In order to analyze the possible images of ρ, we shall distinguish between 3
cases:

Case 1: Γ is completely reducible, i.e. Γ =
∏n

i=1 Γi, where each Γi is a
lattice in PSL(2,R). It is an immediate consequence of Proposition 6.1 that:

Proposition 7.1. In this case either

• ρ(Γi) is amenable for some i = 1, . . . , n,
• t(ρ) > 0, or
• ρ(Γ) is conjugate to a subgroup of Bl+2,n.

Case 2: Γ is rigid, i.e. each Gj has real rank at least 2, or equivalently no
Gj is PSL(2,R). By Margulis arithmeticity theorem, every Γi is a Hilbert–
Blumenthal modular group.

Proposition 7.2. In this case, up to replacing Γ by a finite index subgroup,
ρ(Γ) is contained in a connected semisimple Lie group S for which all the
noncompact simple factors are locally isomorphic to PSL(2,R). The number
of the simple factors of S is at most n, and in the case it is exactly n, either

‖In this section we do not need to assume that Γ is cocompact.
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(a) t(S) > 0, or
(b) S has no compact factors, and

(b1) it is conjugate to SBl2,n, the diagonal product of SL2(R)′s,
(b2) ρ is faithful and ρ(Γ) ∩ Z(S) = ∅, and
(b3) the image of ρ(Γ) in S is a lattice and is cocompact in the case Γ ≤ G

is cocompact.

Proof. By Whitney’s theorem (see [PR94, Theorem 3.6]), the Zariski closure

of ρ(Γj) in GL+(2n,R), which we shall denote below by ρ(Γj)
z
, has finitely

many connected components with respect to the Hausdorff topology induced
from GL+(2n,R). Hence, up to replacing Γ by a finite index subgroup, we

may assume that ρ(Γj)
z

is connected (as a real group) for each j ≤ m.

Moreover, as ρ(Γj)
z

is closed in GL+(2n,R), it is a Lie group (see [Kn96,
Proposition 1.75]).

Since for each j, rankR(Gj) ≥ 2, it follows from Margulis’ Theorem (see

[Ma92, Ch. IX, Theorem 5.8]) that ρ(Γj)
z

is semisimple, and hence ρ(Γ)
z

is

also semisimple. Lets denote S = ρ(Γ)
z
, and let Snc, Sc be the product of

noncompact, resp. compact, simple factors of S. Then S is an almost direct
product S = Snc × Sc (i.e. Snc ∩ Sc is finite and central in S).

Let ρ̃ : Γj → Ad(Snc) be the representation induced from ρ by dividing out
Sc and composing with the Adjoint representation of Snc. Since each simple
factor S ′ of Snc is noncompact, the projection of the image of each ρ̃(Γj) to
S ′, being normal, is either trivial or Zariski dense, and

∏m
j=1 Γj is superrigid

in G =
∏m

j=1Gj =
∏n

i=1 PSL(2,R) (as rankR(Gj) ≥ 2, ∀j), it follows from

Margulis’ Superrigidity Theorem [Ma92, Ch. VII, Sec. 5] that ρ̃ extends to
a representation of G =

∏n
i=1 PSL(2,R). Thus Ad(Snc) is a homomorphic

image of
∏n

i=1 PSL(2,R). This proves the first statement of the proposition.
In order to see that the number of simple factors of S is at most n, we

apply Proposition 6.1 to the product of the simple factors of S̃, the universal
covering Lie group of S. Note that all the simple factors of S (including
the compact ones) considered as abstract groups with no topology are nona-
menable. Suppose now that S has exactly n simple factors. Then if t(S) > 0
we are in case (a). Assuming t(S) = 0, we get from Proposition 6.1 that S is
conjugate to a subgroup of Bl+2,n. Then all the simple factors of S are locally
isomorphic to PSL2(R) (i.e. S = Snc), and hence dim(S) = 3n. Further-
more, since S is connected and semisimple, its conjugate in Bl+2,n is contained
in, and hence, by dimension equality, coincides with the commutator group
of Bl+2,n which is SBl(2,R). This proves (b1).

(b2) follows from Margulis’ Superrigidity Theorem as the map G→ Ad(S)
extending the map Γ 3 γ 7→ AdS(ρ(γ)) is an isomorphism.
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The fact (b3), that the image of Γ in S is a (cocompact) lattice, holds
because G/Γ is (equivariantly) homeomorphic to Ad(S)/AdS(ρ(Γ)) and S
has a finite center by (b1). �

Case 3: The mixed case. The mixed case is when some, but not all, of
the Gj are isomorphic to PSL(2,R). Denote by R ⊂ {1, . . . ,m} the set of
indices corresponding to rigid factors of Γ =

∏m
j=1 Γj. In this case we have:

Proposition 7.3. Up to replacing each rigid factor by a finite index subgroup
(without changing the nonrigid factors), we have that either
(i) for some j /∈ R, ρ(Γj) is amenable,
(ii) for some j ∈ R, ρ(Γj) is contained in a group locally isomorphic to∏k

i=1 PSL(2,R) where k is strictly smaller than the number of factors of Gj,
or
(iii) there are n groups Hi, i = 1, . . . , n and an almost direct product H =
(
∏n

i=1Hi)/C such that ρ factors through a map

Γ

ρ

((
ρ1 // H

ρ2// GL+(2n,R),

and we have that either

(iii′) t(ρ2) > 0, or
(iii′′) ρ(Γ) is conjugated to a subgroup of Bl+2,n.

Proof. Fix a labeling of the simple factors of PSL(2,R)n by {1, . . . , n}, and
for j ∈ R denote by Kj the set of indices corresponding to the factors of
Gj under this labeling. By replacing every Γj, j ∈ R, by a finite index

subgroup, we may assume that the Zariski closure Fj = ρ(Γj)
z

of ρ(Γj) in
GL(2n,R) is connected in the Hausdorff topology. Then, as in Case (2),
for each j ∈ R, Fj is locally isomorphic to a product of PSL(2,R)’s, and
the number of factors is at most dim(Gj)/3. Assuming that (ii) above is
not satisfied, for every rigid component j, Fj is an almost direct product of
exactly |Kj| such factors, so let us name its simple factors by Hi, i ∈ Kj, and
write Fj =

∏
i∈Kj

Hi/Cj where Cj is a finite central group in
∏

i∈Kj
Hi. Set

C =
∏

j∈RCj, for j /∈ R, set Hi = Fj = ρ(Γj), where i = i(j) ∈ {1, . . . , n} is

the labeling index of Gj, and define H =
∏n

i=1Hi/C =
∏m

j=1 Fj. Since the
Γj’s commute which one another, the Fj’s commute and the product of the
inclusion maps Fj → GL+(2n,R) gives a well defined representation, which
we denote by ρ2 : H → GL+(2n,R). Obviously we set ρ1 : Γ→

∏m
j=1 Fj = H

to be the product of the restrictions ρ|Γj
: Γj → Fj. Finally if we assume in

addition that (i) is not satisfied, we may apply Proposition 6.1 and conclude
that either (iii′) or (iii′′) must hold. �
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8. An inequality of Euler classes

In this section we prove the following:

Theorem 8.1. Let Γ be a cocompact lattice in Isom(Hn)+ and

ρ : Γ −→ GL+(2n,R)

a representation. Then

‖ρ∗(ε2n)‖∞ ≤ ‖ ε2 ∪ . . . ∪ ε2︸ ︷︷ ︸
n times

‖∞.

Proof. The inclusion of a finite index subgroup ∆ in Γ induces isometric
embeddings

H∗(Γ) −→ H∗(∆) and H∗b (Γ) −→ H∗b (∆)

both on the standard and bounded cohomology groups. The statement for
bounded cohomology groups is a particular case of [Mo01, Proposition 8.6.2]
and the standard case is proven identically. As a result, we may replace
Γ by a finite index subgroup which is contained in the identity connected
component Isom(Hn)◦ ∼=

∏n
i=1 PSL(2,R) and decomposes as in Section 7.

We will argue case by case, showing that if ρ∗(ε2n) 6= 0 then, up to replacing
Γ again by a finite index subgroup, ρ(Γ) is conjugate to a subgroup of Bl+2,n.
By Lemma 4.3, if for some j, ρ(Γj) is amenable, then ρ∗(ε2n) = 0. We shall
assume below that this is not the case.
Case 1: Γ is completely reducible.

In this case, assuming ρ∗(ε2n) 6= 0 we have by Lemma 6.5 that t(ρ) = 0,
hence Proposition 7.1 gives that ρ(Γ) is conjugate to a subgroup of Bl+2,n.

Case 2: Γ is rigid.
Replacing Γ by a further finite index subgroup, if necessary, we get from

Proposition 7.2 that ρ(Γ) is contained in a connected Lie group S locally

isomorphic to
(
PSL(2,R)

)k
with k ≤ n. Note that ρ∗ factors through

H2n
c (GL+(2n,R)) −→ H2n

c (S) ∼= H2n
c

(
Πk
i=1PSL(2,R)

)
−→ H2n(Γ).

If k < n, then the middle cohomology group is zero and hence ρ∗(ε2n) van-
ishes. If k = n, then Proposition 7.2 gives us further that either t(S) > 0,
in which case ρ∗(ε2n) = 0 (Lemma 6.5), or S is conjugate to a subgroup of
Bl+2,n.

Case 3: The mixed case.
Applying Proposition 7.3 and arguing as above, we derive that if either

(i), (ii) or (iii′) of 7.3 holds then ρ∗(ε2n) = 0. Thus we may assume in this
case as well that ρ(Γ) is conjugate to a subgroup of Bl+2,n.
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We have therefore reduced to the situation where, up to conjugating the
image, ρ factors through a map ρ0 into Bl+2,n:

Γ
ρ //

ρ0 $$IIIIIIIIIII GL+(2n,R)

Bl+2,n.
?�
i

OO

The Whitney product formula for the Euler class gives

i∗(ε2n) = ε2 ∪ . . . ∪ ε2 ∈ H2n
c (Bl+2,n),

and hence

‖ρ∗(ε2n)‖∞ = ‖ρ∗0 ◦ i∗(ε2n)‖∞ = ‖ρ∗0(ε2 ∪ . . . ∪ ε2)‖∞ ≤ ‖ε2 ∪ . . . ∪ ε2‖∞ .

�

9. The proofs of Theorems 1.1, 1.6, 1.7

Proof of Theorem 1.1. Let M be a closed oriented Riemannian manifold
with universal cover Hn =

∏n
i=1H. Let Γ be the fundamental group of M

embedded as a cocompact lattice in Isom(Hn)+ acting on Hn by deck trans-
formations. Let ξ be a GL+(2n,R)–bundle over M . Suppose that ξ admits
a flat structure, and let ρ : Γ→ GL+(2n,R) be the corresponding represen-
tation. Identifying H2n(M) with H2n(Γ), ε(ξ) considered as an element of
H2n(Γ) is equal to ρ∗(ε2n). Since this identification is an isometry, Theorem
8.1 gives

‖ε2n(ξ)‖∞ = ‖ρ∗(ε2n)‖∞ ≤ ‖ε2 ∪ . . . ∪ ε2‖∞ .

Combining Equation (1), the proportionality principle established in Propo-
sition 5.1 and the last inequality, we conclude

|〈ε(ξ), [M ]〉| = ‖ε(ξ)‖∞ ‖M‖ =
‖ε(ξ)‖∞

‖ε2 ∪ . . . ∪ ε2‖∞
χ(M)

(−2)n
≤ 1

(−2)n
χ(M),

which completes the proof of the theorem. �

Proof of Theorem 1.6. Let Γ < Isom(Hn)+ be the fundamental group of
M with Γ̃ a cofaithful lift of Γ in G+

n and ρ : Γ → Γ̃ < G+
n the cofaitfhul

map. Up to replacing M by a finite cover, which amounts to multiplying
each side of the equality we are proving by the same number (the degree of
the cover), we may assume that Γ ≤

∏n
i=1 PSL(2,R) and Γ̃ ≤

∏n
i=1 SL(2,R).
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We thus have a commutative diagram

Γ
� � //� s

ρ

%%LLLLLLLLLLLL Πn
i=1PSL(2,R)

Πn
i=1SL(2,R).

OOOO

Since ρ is injective and ρ(Γ) is a cocompact lattice in Πn
i=1SL(2,R), the

induced map ρ∗ : H∗c (Πn
i=1SL(2,R))→ H∗(Γ) is an isometric embedding (cf.

[Mo01, Proposition 8.6.2] or [Bu06, Theorem 3]). Thus

‖ρ∗(ε2 ∪ . . . ∪ ε2)‖∞ = ‖ε2 ∪ . . . ∪ ε2‖∞.
Let ξρ be the flat GL+(2n,R)–bundle over M corresponding to the represen-
tation ρ : Γ→ Πn

i=1SL(2,R) ∼= SBl2,n(R) < GL+(2n,R). Then

|χ(ξρ)| = |〈ρ∗(ε2 ∪ . . . ∪ ε2), [M ]〉| = ‖ε2 ∪ . . . ∪ ε2‖∞‖M‖ =
1

2n
|χ(M)|,

where the last equality follows from Proposition 5.1. �

Proof of Theorem 1.7. Let N be a closed Hn–manifold of the form

N = Σg1 × . . .× Σgk
×N ′,

where N ′ is rigid, k ≥ 0, and the Σgi
’s are surfaces of genus gi ≥ 2, and let

ξN be a flat GL+(2n,R)-bundle over N . In order to show that

χ(ξN) ∈
{
± χ(N ′)

2Dim(N ′)/2
Πk
i=1`i : |`i| ≤ gi − 1} ∪ {0

}
,

we split the proof into three different cases, as before:

Case 1: N = Σg1 × · · · × Σgn is a product of surfaces and N ′ is trivial.
The fundamental group Γ of N is a product of n surface groups Γi. Let
ρ : Γ → GL+(2n,R) be the oriented representation corresponding to ξN . If
the restriction of ρ to any of the surface groups is amenable, then ρ∗(ε2n) = 0
by Lemma 4.3, and if t(ρ) > 0 then again ρ∗(ε2n) = 0 by Lemma 6.5, so let
us assume that this is not the case. It now follows from Proposition 7.1,
that ρ(Γ) is conjugate to a subgroup of Bl+2,n. Since conjugation induces iso-
morphisms of cohomology groups, we can without loss of generality assume
that the image of ρ is in fact contained in Bl+2,n. Moreover, it follows from
Proposition 7.1 that up to reordering the factors if necessary, the i-th factor
Γi is mapped irreducibly to the i-th factor of Bl+2,n

∼= Πn
i=1GL+(2,R) and

scalarly to every other factor. Denote by ri : Γi → GL+(2,R) the restriction
of ρ to Γi composed with the projection onto the i-th factor of Bl+2,n. Then ρ
and (r1, . . . , rn) have the same projection to Πn

i=1PSL(2,R). Thus by Lemma
2.2,

ρ∗(ε2n) = r∗1(ε2) ∪ . . . ∪ r∗n(ε2).
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We hence obtain that

χ(ξN) = 〈ε2n, [N ]〉 = 〈r∗1(ε2) ∪ . . . ∪ r∗n(ε2), [Σg1 × . . .× Σgn ]〉
= 〈r∗1(ε2), [Σg1 ]〉 · . . . · 〈r∗n(ε2), [Σgn ]〉.

Finally, for every i, 〈r∗i (ε2), [Σgi
]〉 is the Euler number of a flat bundle over

the surface Σgi
, and hence, by Equation (1) and Proposition 5.1, satisfies

|〈r∗i (ε2), [Σgi
]〉| = ‖r∗i (ε2)‖∞‖Σgi

‖ ≤ ‖r
∗
i (ε2)‖∞
‖ε2‖∞

χ(Σgi
)

−2
≤ gi − 1,

which is Milnor’s classical inequality [Mi58].

Case 2: N = N ′ is rigid. Let Γ denote the fundamental group of N and
let ρ : Γ → GL+(2n,R) be a representation inducing the flat bundle ξN .
Proposition 5.1 gives

|χ(ξN)| = ‖ρ∗(ε2n)‖∞‖M‖ =
‖ρ∗(ε2n)‖∞

‖ε2 ∪ . . . ∪ ε2‖∞
1

2n
|χ(M)|.

Hence the result will follow from the next claim:

Claim. Either ρ∗(ε2n) = 0 or ‖ρ∗(ε2n)‖∞ = ‖ε2 ∪ . . . ∪ ε2‖∞.

Since the inclusion of a finite index subgroup in Γ induces isometric em-
beddings on the standard and bounded cohomology groups, we can without
loss of generality replace Γ by a finite index subgroup. Thus, as in the proof
of Theorem 8.1, applying Proposition 7.2, we can reduce to the situation
where either ρ∗(ε2n) = 0, or ρ is injective, and its image ρ(Γ) is, up to con-
jugation, contained, discrete and cocompact in S = SBl2,n. In the latter
case, we again invoke [Mo01, Proposition 8.6.2] (or [Bu06, Theorem 3]) to
conclude that the induced map ρ∗ : H∗c (SBl2,n) → H∗(Γ) is an isometric
embedding and

‖ρ∗(ε2n)‖∞ = ‖ε2 ∪ . . . ∪ ε2‖∞,
which finishes the proof of the claim.

Case 3: The mixed case: N = Σg1 × . . . × Σgk
× N ′ with k > 0 and N ′

nontrivial. The fundamental group Γ of N decomposes as Γ = Γ1 × . . . ×
Γk × Γ′, where the Γi’s are surface groups and Γ′ is the fundamental group
of the rigid factor N ′. Let ρ : Γ→ GL+(2n,R) be a representation inducing
the flat bundle ξN .

Replacing the rigid factor Γ′ by a finite index subgroup has no effect on
the equality we are proving (both sides are multiplied by the index of the
subgroup). Hence, assuming that ρ∗(εn) 6= 0 , arguing as above, we may
reduce the situation to case (iii′) of Proposition 7.3.
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Furthermore, by Proposition 6.1, up to conjugation we can assume that
the representation

ρ : Γ = Γ1 × . . .× Γk × Γ′ → Bl+2,n
∼= GL+(2,R)× . . .×GL+(2,R)

maps surface group factor Γi irreducibly to the i–th factor of Bl+2,n and
scalarly to the others and, the rigid factor Γ′ is mapped scalarly to each
of the k first factors of Bl+2,n. Define ri : Γi → GL+(2,R) as the restriction

of ρ to Γi composed with the projection onto the i–th factor of Bl+2,n and

r′ : Γ′ → Πn
i=k+1GL+(2,R) as the restriction of ρ to Γ′ composed with the

projection onto the last n− k factors of Bl+2,n. Then ρ and

(r1, . . . , rk, r
′) : Γ1 × . . .× Γk × Γ′ → Bl+2,n

have the same projection to Πn
i=1PSL(2,R), hence by Lemma 2.2 the cor-

responding pullbacks of the Euler class coincide. Thus the first part of the
theorem follows in this case from its validity in cases 1 and 2.

Let us now explain the second statement of the theorem, namely that if
N is cofaithful, then all the integers satisfying the given rule are actually
attained as Euler numbers of flat bundles. The assertion is true for surfaces
by [Mi58]. It is further true for any rigid cofaithful manifold N ′, since the
Euler number is then equal to either 0 or ±χ(N ′)/2dim(N ′)/2, where 0 is
realized for example by the trivial bundle, and the latter, up to orientation,
by the cofaithful map (Theorem 1.6). The general case follows by considering
direct products of flat bundles over the factors of N with the appropriate
Euler numbers. �

10. The proof of Theorem 1.10

For a group G we denote by Sn n Gn the semidirect product where Sn
permutes the factors of Gn =

∏n
i=1 G. When G is a subgroup of GL(2,R),

Sn n Gn admits a natural embedding in GL(2n,R) where Gn embeds diag-
onally in Bl2,n. We will not distinguish between Sn nGn and this represen-
tation of it, and denote by (Sn nGn)+ its intersection with GL+(2n,R). In
particular G+

n = (Sn n GL1(2,R))+, the 2n sheeted cover of Isom(Hn)+, is
imbedded in this form.

Recall that s denotes the quotient map

s : Isom(Hn) ∼= Sn n PGL(2,R)n → Sn.

For a subgroup Γ ≤ Isom(Hn) and an abelian groupA we denote byH1
Sym(Γ, An)

the first cohomology group of Γ in An with respect to the action of Γ on An

that permutes the factors according to the map s.

Lemma 10.1. Suppose that Γ ≤ Isom(Hn) is a rigid lattice. Then:

(1) H1
Sym(Γ,Rn) = 〈0〉.



38 MICHELLE BUCHER AND TSACHIK GELANDER

(2) The inclusion of 〈±1〉 in R∗ induces an isomorphism H1
Sym(Γ, (〈±1〉)n) ∼=

H1
Sym(Γ, (R∗)n), and this cohomology group is finite.

Proof. Let Γ0 be the intersection of Γ with the identity connected compo-
nent of Isom(Hn). Then Γ0 is a rigid lattice in PSL(2,R)n, hence has finite
abelianization and in particular, no nontrivial homomorphisms to R, as fol-
lows for instance by Margulis’ normal subgroups theorem. Moreover, as s|Γ0

is trivial, any element of H1
Sym(Γ,Rn) restricts to a homomorphism on Γ0,

and is hence identically 0 on Γ0. It follows from the cocycle equation that
any element α ∈ H1

Sym(Γ,Rn) is constant on cosets of Γ0:

α(γ0γ) = α(γ0) + s(γ0) · α(γ) = α(γ), ∀γ0 ∈ Γ, γ ∈ Γ.

Thus H1
Sym(Γ,Rn) ∼= H1

Sym(Γ/Γ0,Rn), which is trivial since Γ/Γ0 is finite and
hence has property (T ). This proves (1).

Since R∗ ∼= R⊕ Z/(2) we have

H1
Sym(Γ, (R∗)n) ∼= H1

Sym(Γ,Rn)⊕H1
Sym(Γ, (Z/(2))n),

and the first statement of (2) follows from (1).
Moreover, since Γ0 is a lattice in

∏n
i=1 PSL(2,R), it is finitely generated,

and hence Hom(Γ0, (Z/(2))n) is finite. By the cocycle equation, an element
α ∈ H1

Sym(Γ, (Z/(2))n) is determined by its restriction to Γ0 and by its values

on a finite set of cosets representatives for Γ0 in Γ. Thus H1
Sym(Γ, (Z/2)n) is

finite. �

We now give the proof of Theorem 1.10: Let M be a closed locally Hn

rigid manifold with fundamental group Γ.

Nonzero Euler number implies cofaithfulness: Suppose that M admits
a dim(M)–dimensional flat vector bundle with nonzero Euler number. Up to
reversing the orientation we may assume that the Euler number is positive,
hence by Corollary 1.9, equals | 1

2nχ(M)|. Let ρ : Γ → GL+(2n,R) be the
linear representation inducing this structure. By Proposition 7.2, Γ admits a
normal finite index subgroup ∆ such that ρ(∆) is contained in a semisimple
Lie group S with at most n simple factors, for which every noncompact
simple factor is locally isomorphic to PSL(2,R). If S admits less than n
factors or a compact factor, Lemma 4.4 combined with the fact that Snc (the
product of noncompact factors of S) is locally isomorphic in that case to the
isometry group of a symmetric space of dimension strictly smaller than 2n,
yields that ρ∗(ε2n) = 0, contrary to our assumption. Therefore, S is locally
isomorphic to PSL(2,R)n. By Lemma 6.5, t(S) = 0, hence we may assume
that (b1), (b2), (b3) of Proposition 7.2 hold for ∆ and ρ, and in particular, up
to replacing ρ by some conjugate representation, that S = SBl2,n and ρ(∆)
is a uniform lattice there. In particular, since ρ(∆) is normal in ρ(Γ) and, by
(b3) and Borel’s density theorem, Zariski dense in S, it follows that ρ(Γ) is
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contained in the normalizer of S = SBl2,n, namely, in (SnnGL(2,R)n)+. By
replacing ∆ further by some characteristic finite index subgroup if necessary,
we may assume additionally that ∆ itself lies in PSL(2,R)n, the identity
connected component of Isom+(Hn) ∼= (Sn n PGL(2,R)n)+.

Let f : ∆ →
∏n

i=1 PSL2(R) be the composition of ρ|∆ followed by Ad :
SBl2,n → Ad(SBl2,n) ∼=

∏n
i=1 PSL2(R). By Mostow’s rigidity theorem f

extends to an isomorphism f̃ :
∏n

i=1 PSL2(R) →
∏n

i=1 PSL2(R) which, by
reordering the factors of the target group, preserves the order of the factors.
For every γ ∈ Γ and δ ∈ ∆ we have

f(γδγ−1) = ρ(γ)f(δ)ρ(γ)−1

where the term on the right hand side is understood as Ad(ρ(γ)ρ(δ)ρ(γ)−1).
Hence by Borel’s density theorem we have

(6) f̃(γgγ−1) = ρ(γ)f̃(g)ρ(γ)−1

for any g ∈ PSL(2,R)n. In particular, s(ρ(γ)) = s(γ), i.e. ρ(γ) and γ
induce the same permutation on the factors of SL(2,R)n and PSL(2,R)n

respectively. Thus we can write ρ(γ) ∈ (Sn n GL(2,R)n)+ as

(s(γ), ρ1(γ), . . . , ρn(γ)),

where ρi(γ) is the component of ρ(γ) in the i’th factor of GL(2,R)n. One
can easily verify that the map α : Γ→ Rn given by

α(γ) := (log det(ρ1(γ)2), . . . , log det(ρn(γ)2))

is a cocycle, and hence by Lemma 10.1 cohomologous to the trivial map.
Thus there exists a diagonal matrix of the form Λ = diag(λ1, λ1, . . . , λn, λn)
such that the image of ρ conjugated by Λ is contained in G+

n = (Sn n
GL1(2,R)n)+.

Finally let ψ : (Sn n GL1(2,R)n)+ → (Sn n PGL(2,R)n)+ be the canon-
ical projection determined by modding out the center of GL1(2,R)n. Since
(Sn n PGL(2,R)n)+ is isomorphic to Aut+(PSL(2,R)n), where the faithful
action of the first on PSL(2,R)n is by conjugation on its identity connected
component, we deduce from Equation 6 that ψ ◦ρ : Γ→ (SnnPGL(2,R)n)+

is injective. Hence

ρ ◦ (ψ ◦ ρ)−1 : ψ(ρ(Γ))→ (Sn n GL1(2,R)n)+

induces a faithful lift, showing that M is cofaithful.

Characterisation of flat structures with positive Euler number as
elements in H1

Sym(Γ,Z/(2)n): Suppose now that M is cofaithful, and let

ρ1 : Γ → G+
n ≤ GL+(2n,R) be the representation induced by the cofaithful

lift of Γ from Sn n (PGL(2,R)n)+ to (Sn n (GL1
2)n)+ ∼= G+

n where the latter
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is realized as the subgroup GL(2n,R)+ described at the beginning of this
section. Let ρ : Γ → GL+(2n,R) be another representation, and suppose
that ρ∗(ε2n) 6= 0. As above, we derive from Proposition 7.2 that there is
a finite index normal subgroup ∆ ≤ Γ such that the restriction of ρ to ∆
is faithful and ρ(∆) is conjugated to some cocompact lattice in SBL2,n(R).
Thus, it follows from Mostow’s rigidity theorem that ρg|∆ = ρ1|∆ for an
appropriate element g ∈ GL(2n,R) (by ρg we mean ρ composed with the
conjugation by g). Now let γ be an arbitrary element of Γ. Since ∆ is
normal in Γ, we have

ρ1(γ−1)ρ1(δ)ρ1(γ) = ρ1(γ−1δγ) = ρg(γ−1δγ) = ρg(γ−1)ρg(δ)ρg(γ)

= ρg(γ−1)ρ1(δ)ρg(γ),

for every δ ∈ ∆. Thus ρg(γ)ρ1(γ)−1 lies in the centralizer of ρ1(∆), and
by Borel’s density theorem, in the centralizer of SBL2,n(R). Hence ρg(γ) is
equal to ρ1(γ) multiplied from the left by a matrix of the form

diag(χ1(γ), χ1(γ), . . . , χn(γ), χn(γ))

where the χ1, . . . , χn are functions on Γ taking values in R∗. It also follows
that the permutation representation determined by conjugating by ρg(γ) on
the factors of SBl2,n is the same as the one coming from conjugation by
ρ1(γ), namely that s(ρ(γ)) = s(γ). A simple calculation shows that the map
α : Γ → (R∗)n given by α(γ) = (χ1(γ), . . . , χn(γ)) is a cocycle. Hence by
Lemma 10.1, after conjugating ρg further by some diagonal matrix of the
form diag(λ1, λ1, . . . , λn, λn) if necessary, we may assume that α takes its
values in 〈±1〉n. It follows that the conjugacy class of ρ in GL(2n,R)+ is
completely determined by the cocycle α and the sign of the determinant of
g, where det(g) < 0 corresponds to negative Euler number.

Let Γ0 be as in the proof of Lemma 10.1. Then the restriction of every
[α] ∈ H1

s (Γ, 〈±1〉n) to Γ0 is a homomorphism. Set

Γ0 = Γ0 ∩ {ker[α] : [α] ∈ H1
s (Γ, 〈±1〉n).

Then Γ0 is a characteristic subgroup of finite index in Γ and the restrictions
to Γ0 of all the representations of Γ which induce flat vector bundles with
nonzero (resp. positive) Euler number are conjugate in GL(2n,R) (resp. in
GL+(2n,R)).

For the other direction, any cocycle α : Γ → 〈±1〉n produces such a
representation by setting

ρα(γ) := diag
(
α(γ)1, α(γ)1, . . . , α(γ)n, α(γ)n

)
ρ1(γ)

which gives rise to a flat vector bundle with positive Euler number. More-
over if α and β are two such cocycles and the corresponding representations
ρα, ρβ are conjugate in GL+(2n,R), the conjugating element must centralize
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ρα(Γ0) and hence, by the Borel density theorem, belongs to the centralizer
of SBl2,n(R), i.e. it is of the form diag(λ1, λ1, . . . , λn, λn). This shows that α
and β are cohomologus as cocycles with coefficients in (R∗)n, namely, they
represent the same element in H1

Sym(Γ, (R∗)n). By Lemma 10.1 (2), they

represent the same element in H1(Γ, 〈±1〉). This completes the proof of the
theorem. �

Remark 10.2. The finiteness of the number of flat vector bundles of any
given dimension over any rigid manifold is true in general. Indeed, one can
deduce from the proof of Margulis superrigidity theorem, the fact that any
rigid lattice has finite abelianization, and Jordan’s theorem, that π1(M) ad-
mits only finitely many nonequivalent representations in any fixed dimension.
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