
1

Graph-Preserving Sparse Non-Negative Matrix

Factorization with Application to Facial

Expression Recognition
Ruicong Zhi, Markus Flierl, Member, IEEE Qiuqi Ruan, Senior Member, IEEE

and W. Bastiaan Kleijn, Fellow, IEEE

Abstract

In this paper, a novel graph-preserving sparse non-negative matrix factorization (GSNMF) algorithm

is proposed for facial expression recognition. The GSNMF algorithm is derived from the original

NMF algorithm by exploiting both sparse and graph-preserving properties. The latter may contain

the class information of the samples. Therefore, GSNMF can be conducted as an unsupervised or

a supervised dimension reduction method. A sparse representation of the facial images is obtained

by minimizing the l1-norm of the basis images. Furthermore, according to graph embedding theory,

the neighborhood of the samples is preserved by retaining the graph structure in the mapped space.

The GSNMF decomposition transforms the high-dimensional facial expression images into a locality-

preserving subspace with sparse representation. To guarantee convergence, we use the projected gradient

method to calculate the non-negative solution of GSNMF. Experiments are conducted on the JAFFE

database and the Cohn-Kanade database with not-occluded and partially occluded facial images. The

results show that the GSNMF algorithm provides better facial representations and achieves higher

recognition rates than NMF. Moreover, GSNMF is also more robust to partial occlusions than other

tested methods.
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I. INTRODUCTION

In recent years, the demand for human-computer interaction has increased significantly. Facial expres-

sion recognition is one of the most important subjects in the fields of human-computer interaction and

information processing [1]. As a reflection of emotions, facial expressions have been extensively studied

in psychology [2][3][4]. The study of Mehrabian [5] indicated that in face-to-face communication of

human, 7% of the communication information is transferred by linguistic language, 38% by paralanguage,

and 55% by facial expressions. This indicates that facial expression plays an important role in human

communication.

It is commonly accepted that the intrinsic dimensionality of the space of possible face images is much

lower than that of the original image space. Thus, it is necessary to look for efficient dimensionality

reduction methods for facial feature extraction. Also, good features for representing facial expression can

alleviate the complexity of the classification algorithm design. Many techniques have been proposed to

analyze facial expressions [6][7], and the most popular class of methods are subspace-based algorithms.

Basically, the subspace-based algorithms discover the latent facial features by decomposing (projecting)

the image onto a linear (nonlinear) low dimensional image subspace. There are many commonly used

subspace-based methods, e.g. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA)

and Locality Preserving Projections (LPP). PCA [8] represents the faces by projecting the facial images

to the directions of maximal covariance in the facial image data. The basis images corresponding to PCA

are ordered according to the decreasing amount of variance they represent, i.e. the respective eigenvalues.

LDA [9] projects the images onto a subspace in such a way that the ratio of the between-class scatter and

the within-class scatter is maximized. LDA is a class-specific projection method, generally outperforming

PCA. LPP [10] aims to find an embedding that preserves local information, and obtains a face subspace

that best detects the essential face manifold structure. These approaches have been shown to be efficient in

recognizing facial expressions. Shan et.al [11] revealed the comprehensive comparison of some commonly

used subspace methods for facial expression recognition, and concluded that supervised LPP outperforms

the other supervised methods. In facial analysis problems, a researcher is often confronted with the

singular problem that arises from the fact that image dimensions are extremely larger than the number of

samples. A solution to this problem is to utilize PCA as a preprocessing step to reduce the dimensionality

of the image space. Therefore, Eigenfaces (PCA), Fisherfaces (PCA plus LDA) [12] and Laplacianfaces

(PCA plus LPP) [13] were developed for facial image processing.

The aforementioned algorithms result in holistic representations for facial images, which store the
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facial image as a perceptual whole, without explicitly specifying its parts (e.g. eyes, nose, mouth, chin).

They can also be seen as dense image representations [14]. On the contrary, other researches argue for a

sparse image representation that leads to ”efficient coding” in the visual cortex [15]. Ellison and Massaro

[16] revealed that facial expressions are better represented by facial parts, suggesting a non-holistic

representation.

Non-negative matrix factorization (NMF) algorithm is a recent method for finding a non-negative

decomposition of the original data matrix. It has been used for various applications [17][19]. NMF is

based on the idea that negative numbers are physically meaningless in many data-processing tasks. NMF

represents a facial image as a linear combination of basis images. The difference between NMF and

PCA is that NMF guarantees non-negativity of the elements in both basis vectors and the representation

weights used in the linear combination. Lee and Seung [18] showed that NMF can learn a parts-based

representation. The basis images consist of basis vectors representing eyes, nose, mouse, etc. Although

the decomposition tends to produce parts-based representations of basis images by composing the parts

in an additive fashion, this is not always the case. Several work revealed that NMF decomposition

often produces a holistic image representation [19][20][21]. Several extended NMF algorithms have been

proposed to obtain a local representation of the facial images, e.g. LNMF (Local Non-negative Matrix

Factorization) [21] and DNMF (Discriminant Non-negative Matrix Factorization) [22]. A comparison

among these three algorithms for facial expression recognition indicates that DNMF outperforms LNMF

and NMF [23].

In this paper, we develop a novel graph-preserving sparse non-negative matrix factorization (GSNMF)

algorithm for facial expression recognition. A preliminary version of the algorithm was presented in [24].

This method is derived from the NMF algorithm and exploits both sparse and discriminant properties.

First, we extend NMF to include a sparseness constraint which is measured by l1-norm of the basis

images obtained in the non-negative decomposition. Then, according to graph embedding theory, the

neighborhood of the samples is preserved by minimizing the graph-preserving criterion in the mapped

space [13]. Thus, we exploit locality preserving information in addition to the sparseness constraint.

Furthermore, the similarity matrix in the graph-preserving constraint can involve information of various

images separated to different facial expression classes to improve the classification performance. There-

fore, the algorithm can be used in a supervised manner by considering the neighborhood information of

the image data. Furthermore, we show that the DNMF algorithm can be incorporated into the GSNMF

framework.

A widely used solution for NMF-based methods is the multiplicative update method, which was
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proposed by Lee and Seung [25]. The NMF optimization problem is nonconvex. Algorithms usually

deal with several local minima and produce sequences of iterations. A common misunderstanding is that

the limit points of such sequences are local minima [25][26][27]. In optimization theory, a local minimum

must be a stationary point. The commonly used multiplicative update method can not guarantee stationary

and convergence [28]. In this work, we use the projected gradient method to ensure the stationarity of limit

points. This method has been successfully used for the NMF algorithm [27]. We introduce a projected

gradient framework for constrained NMF algorithms, and utilize the proposed framework to solve the

GSNMF algorithm.

This paper is organized as follows: The motivation is outlined in Section II. The projected gradient

framework for constrained NMF is described in Section III. The graph-preserving sparse non-negative

matrix factorization (GSNMF) algorithm is proposed in Section IV; Experimental results that verify our

approach for facial expression recognition are depicted in Section V. Finally, conclusions are drawn in

Section VI.

II. LOCALITY PRESERVATION FOR NMF-BASED ALGORITHM

The key ingredient of NMF is the non-negative constraint imposed on the two decomposed matrices.

The non-negative constraints are compatible with the intuitive notion of combining parts to form a

whole. As a parts-based representation can naturally deal with partial occlusion and some illumination

problems, it is considered to perform superior for facial image processing. Suppose there are n points

X = [x1, x2, . . . , xn] in a high-dimensional image space Rm, each image xi denoted by a m-dimensional

vector xi = [xi,1, xi,2, . . . , xi,m]T . Thus, the image database is represented by a m×n matrix X . X can

be decomposed into the product of two non-negative matrices, such that

X ≈ WH, (1)

where W is a m×p matrix, whose columns comprise basis functions and H is a p×n coefficient matrix.

Usually p is chosen so that (m + n)p < nm to achieve compression or dimensionality reduction. Each

element xij of the matrix X can be written as xij =
∑

k wikhkj . There are two common methods to

measure the quality of the approximation. One is the square of the Euclidean distance

D(X||WH) = ||X −WH||2F =
∑
ij

(
xij −

∑
k

wikhkj

)2

. (2)

The other is the Kullback-Leibler divergence between X and WH
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D(X||WH) =
∑
ij

(
xij ln

xij∑
k wikhkj

+
∑
k

wikhkj − xij

)
. (3)

NMF aims to find the non-negative decomposition of X according to the following optimization

problem:

minD(X||WH)

s. t. wi,k ≥ 0, hk,j ≥ 0,∀k, i, j (4)

As NMF does not involve any class information, the method is not capable of taking advantage of

discriminant aspects and subsequently generally performs poorly in terms of classification performance.

To illustrate this point, let us consider 100 two-dimensional synthetic data points belonging to two classes,

C1 and C2. The two classes are drawn from a two-dimensional Gaussian random variable. The two-class

dataset is shown in Fig. 1(a). The data along with its one-dimensional NMF transformation are shown in

Fig. 1(b) and the probability density functions (PDFs) of the projected data are shown in Fig. 1(c). The

locality preserving power can be measured by J =
∑

i,j ||x̃i − x̃j ||22Sij [10], where x̃i and x̃j denote the

projected points and Sij are the elements of the similarity matrix. For NMF projected data, the value of

locality preserving measure is 1246.5. Fig. 1(b) shows that the projected points overlap significantly. As

the projected data also follow Gaussian probability distributions, the error rate of two-class classification

can be calculated by

p(error) =
∫ Θ

−∞
p(x̃, C1)dx̃+

∫ +∞

Θ
p(x̃, C2)dx̃, (5)

where p(x̃, C1), p(x̃, C2) are the joint PDFs of the projected data, and Θ is the decision threshold. This

error is depicted as the overlapping area in Fig. 1(c).

As class information is important for classification problem, the locality structure of the data should

be preserved in order to improve discriminant properties. By considering locality preserving properties,

we introduce a graph-preserving constraint to the NMF algorithm and obtain an improved separation of

the two classes. The projected data are shown in Fig. 2(a), and the corresponding Gaussian PDFs are

shown in Fig. 2(b). It can be seen that the projected data are better separated when compared to NMF

only. Consequently, the error rate (almost no overlap in Fig. 2(b) ) is much smaller than that of NMF.

The locality preserving measure of the projected data is 322.8 which is much smaller than that of NMF.

This means that the classification results improve if the locality structure of the data is retained.
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Fig. 1. NMF for a two-class problem: (a)original data set (b) reduced NMF decomposition (c) gaussian PDF of the reduced

data.

III. PROJECTED GRADIENT FRAMEWORK

A popular approach to minimize the cost functions of various NMF algorithms is the multiplicative

update method. In this method, the optimization of the cost function is performed using an auxiliary

function. With the help of the auxiliary function, the optimal solution of W and H can be obtained by

specified update rules, and the cost value is non-increasing after every update. However, it does not ensure

the convergence of the algorithm to a limit point that is also a stationary point of the optimization problem
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Fig. 2. GSNMF for a two-class problem: (a) reduced GSNMF decomposition (b) gaussian PDF of the reduced data.

[26][28]. In order to ensure stationarity, we use projected gradients to solve the optimization problem with

additional constraints. In this section, we give a projected gradient framework for constrained non-negative

matrix factorization. The projected gradient method guarantees the stationarity of the limit points.

A. Constrained NMF Problem

The cost function of constrained non-negative matrix factorization can be stated as a Lagrangian

formulation

Dcons(X||WH) = D(X||WH) + ζg(W,H), (6)

where g(W,H) is the constraint function with respect to W and H and is twice differentiable. ζ is a

positive constant. The goal is to find W and H by solving the following problem:

min
W,H

Dcons(X||WH)

s. t. wi,k ≥ 0, hk,j ≥ 0,∀k, i, j (7)

The optimization problem of (7) can be carried out by the block coordinate descent method for bound-

constrained optimization [29]. We can fix one matrix and solve the optimization problem with respect to

the other matrix. In order to find the solution, two functions are defined as fW (H) = Dcons(X||WH)

and fH(W ) = Dcons(X||WH) by keeping W and H fixed, respectively.
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In order to find the optimal solution, the problem (7) is divided into two sub-problems: first, we fix

H , and update W to achieve the conditional optimal value of the sub-minimization problem; second, we

fix W , and update H to achieve the conditional optimal value of the sub-minimization problem.

B. Solving the Sub-Problems

We utilize the projected gradient method to solve the conditional optimization problems. When fixing

H , the optimization with respect to W is an iterative procedure that is repeated until a stationary point

is obtained. For the conditional problem W (t+1) = arg min
W≥0

fHt(W ), the update rule [27] is defined as

W (t+1) =
[
W (t) − αt∇fH(W (t))

]+
, (8)

Equation (8) is a function of αt, so we consider the following form

W (t+1) = W (t)(αt) = [W (t) − αt∇fH(W (t))]+, (9)

where t is the number of iterations, αt = βφt , so W (t+1) = W (t)(βt). φt is the first non-negative integer

such that

fH(W (t+1))− fH(W (t)) ≤ σ
⟨
∇fH(W (t)),W (t+1) −W (t)

⟩
⇒ fH(W (t)(βφt))− fH(W (t)) ≤ σ

⟨
∇fH(W (t)),W (t)(βφt)−W (t)

⟩
, (10)

The rule [·]+ = max [·, 0] guarantees that the update does not contain any negative entries. The operator

⟨·, ·⟩ is the Frobenius inner product between matrices. In our experiments, β and σ are chosen to be 0.1

and 0.01, respectively. To reduce the computational cost, inequality (10) can be reformulated as

(1− σ)
⟨
∇fH(W (t)),W (t+1) −W (t)

⟩
+

1

2

⟨
W (t+1) −W (t),

(
W (t+1) −W (t)

)
∇2fH(W (t+1))

⟩
≤ 0.

(11)

The theoretical proof of the inequality (11) is in the Appendix.

C. Check of Stationarity

The iteration will stop when the solution is close to a stationary point. For bound-constrained opti-

mization problems, a common condition to check if a point is close to a stationary point is [27]
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||∇P fH(W (t))||F ≤ εW ||∇fH(W (1))||F , (12)

where || · ||F is the Frobenius norm and ∇P fH(W ) is the projected gradient defined as

∇P fH(W ) =

 [∇fH(W )]i,k , if wi,k > 0

min (0, [∇fH(W )]i,k) , if wi,k = 0,
(13)

where εW is the stopping tolerance which is predefined.

The procedure of solving the sub-problem of optimizing the cost function with respect to H for fixed

W is similar with the discussion above. The two sub-problems are solved iteratively until the convergence

rule is satisfied

||∇P fH(W (t))||F + ||∇P fW (H(t))||F ≤ ε
(
||∇fH(W (1))||F + ||∇fW (H(1))||F

)
. (14)

IV. GRAPH-PRESERVING SPARSE NON-NEGATIVE MATRIX FACTORIZATION (GSNMF) ALGORITHM

In this section, we first discuss the use of the l1-norm constraint for NMF in order to obtain a sparse

representation of the facial images. Then locality-constraint optimization based on graph embedding is

proposed. Finally, we obtain the graph-preserving sparse non-negative matrix factorization by considering

the class information of the samples. GSNMF offers a sparse solution with more discriminant power than

the NMF mehtod.

A. Sparse Solution via l1-norm Constraint

For NMF, the columns of matrix W denote basis images and the elements of coefficient matrix H

are non-negative. This means that we can only add the basis images rather than subtract to approximate

the original image. For facial images, the basis images are supposed to be facial parts. However, NMF

can not always give an intuitive decomposition into parts. This motivates the search for a parts-based

representation of images. One of the solutions is to introduce sparseness constraint to NMF [20][30].

The concept of sparseness refers to a representation where most elements take values close to zero while

only a few have significantly non-zero values.

The sparseness degree of a representation can be measured by the number of nonzero elements in

the decomposition. It can be expressed by the l0-norm, which counts the number of nonzero entries

in a matrix. However, the problem of finding the sparsest solution of an underdetermined problem is

hard to solve and even difficult to approximate [31]. The emerging theory of sparse representation and
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compressed sensing [32][33] reveals that if the solution of the l0-norm is sparse enough, the solution of the

l0-norm minimization problem is equal to the solution of the l1-norm minimization problem. Therefore,

the l0-norm can be approximated by the l1-norm. The l1-norm is defined as ||W ||1 =
∑

k,j |wk,j |. By

combining the goal of minimizing reconstruction error and sparseness, a new cost function is obtained.

DSNMF (X||WH) = D(X||WH) + λ
∑
k,j

wk,j

s. t. wi,k ≥ 0, hk,j ≥ 0,
∑

iwi,k = 1,∀k, i, j (15)

We use the square of the Euclidean distance to measure the error between X and WH . In this case,

the cost function should become

DSNMF (X||WH) = ||X −WH||2F + λ
∑
k,j

wk,j , (16)

where || · ||F is the Frobenius norm.

B. Derivation of Graph-preserving Sparse Non-negative Matrix Factorization (GSNMF)

In this subsection, we consider a supervised NMF-based dimensionality reduction method which is

derived from the graph embedding analysis [13]. Let G = {X,S} be an undirected weighted graph. X

is the vector set, X = [x1, x2, · · · , xn] ∈ Rm×n (for image processing problem, each entry of the matrix

X denotes an image). S ∈ Rn×n is the similarity matrix. Each element of the real symmetric matrix S

measures the similarity between a pair of vertices, which is assumed to be non-negative in this work.

There are various methods to form the similarity matrix, such as Gaussian kernel with Euclidean distance

[34], local neighborhood relationship [35], and prior class information in supervised learning algorithms

[36]. The Laplacian matrix L and the diagonal matrix E of the graph G are defined as

L = E − S, Eii =
∑
j

Sij . (17)

We aim to find a map for the low-dimensional representation of the graph G. The similarity relationship

between the vertex pairs are maintained in the corresponding low-dimensional subspace. Most NMF-based

algorithms impose constraints on the coefficient matrix H , as H is the low-dimensional representation of

original sample X . However, for pattern recognition tasks, the main purpose is to get good classification

performance. For each original data point xi, we project it by x̃i = W Txi. The projected data matrix
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X̃ = [x̃1, x̃2, · · · , x̃n] ∈ Rp×n is used for classification. Hence, we incorporate effective constraints on

W . The graph-preserving criterion is given by

∑
i,j

||x̃i − x̃j ||2Sij . (18)

The graph-preserving criterion aims to preserve the neighborhood of the data samples. If the similarity

between points xi and xj is large, the distance between the corresponding projected points x̃i and

x̃j should be small. If neighboring points are mapped far apart, then the criterion will incur a heavy

penalty. The graph-preserving character is illustrated in Fig. 3. The graph-preserving criterion can be used

unsupervised or supervised. If it is unsupervised, the similarity matrix S can be constructed according

to the distances between pairs of samples, and the map will preserve the neighborhood of close samples,

as shown in Fig. 3(a). If the criterion is supervised, the similarity matrix can be constructed utilizing the

prior class information of the samples, and the map will preserve the class structure of the samples, as

shown in Fig.3(b).

Now, we consider the non-negative decomposition problem which maps a graph into p-dimensional

Euclidean space. The projective matrix is W = [w1, w2, · · · , wp], where the columns of W provide

the projective coordinates of the vertices. We need to find a tradeoff among reconstructive error, graph-

preserving criterion, and sparseness. Thus, the cost function of graph-preserving sparse non-negative

matrix factorization (GSNMF) is defined as

DGSNMF (X||WH) = ||X −WH||2F + λ
∑
k,j

wk,j + η

∑
i,j

||x̃i − x̃j ||2Sij

 , (19)

where || · ||F is the Frobenius norm, λ is a positive constant which controls the sparseness, and η is a

positive constant which controls the locality of the decomposition. x̃i and x̃j are the data vectors after

projecting to the image basis matrix W . The desired decomposition is obtained by solving the following

optimization problem:

min
W,H

DGSNMF (X||WH)

s. t. wi,k ≥ 0, hk,j ≥ 0,
∑

iwi,k = 1,∀k, i, j (20)

The graph-preserving criterion can be rewritten as
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1

2

∑
i,j

||x̃i − x̃j ||2Sij =
1

2

∑
i,j

tr
[
(x̃i − x̃j)(x̃i − x̃j)

T
]
Sij

=
1

2
tr

∑
i,j

(x̃i − x̃j)(x̃i − x̃j)
TSij


= tr

∑
i,j

(
x̃iSij(x̃i)

T − x̃iSij(x̃j)
)T

= tr

∑
i

x̃iEii(x̃i)
T −

∑
i,j

x̃iSij(x̃j)
T

March 3, 2010 DRAFT
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= tr

∑
i,j

x̃iLij(x̃j)
T


= tr(X̃LX̃T ), (21)

where X̃ = [x̃1, x̃2, · · · , x̃n] is a p × n matrix which is the data matrix after the projection on the

image basis matrix W and the vector x̃i denotes the ith column of the matrix X̃ . E is a diagonal matrix

with entries that are column or row sums of S (since S is symmetric), i.e. Eii =
∑

j Sij . L = E − S

is the Laplacian matrix. In this work, we use a Gaussian kernel with Euclidean distance to construct the

similarity matrix S. That is, if xi and xj belong to the same class, then Sij = exp
(
||xi − xj ||2/t

)
(t is

an empirical parameter); otherwise, Sij = 0.

C. Projected Gradient Method for GSNMF

In order to obtain the solution of GSNMF algorithm, according to the analysis in Section III, we need

to calculate the first and second order gradients of the two functions fGSNMF
W (H) and fGSNMF

H (W ).

The GSNMF cost function can be rewritten as DGSNMF = J1 + λJ2 + ηJ3, where J1 = ||X −WH||2,

J2 =
∑

k,j wk,j and J3 =
∑

i,j ||x̃i − x̃j ||2Sij . Thus, the first- and second-order gradients of fGSNMF
W (H)

and fGSNMF
H (W ) are composed by the gradients of the three functions. J1 is the function of both W

and H , J2 and J3 are functions of W . Then fGSNMF
W (H) and fGSNMF

H (W ) can be simplified as

fGSNMF
W (H) = JH

1 + C1 (C1 is constant)

fGSNMF
H (W ) = JW

1 + λJW
2 + ηJW

3 . (22)

Thus, the gradients of these two functions are

∇fGSNMF
W (H) = ∇JH

1

∇2fGSNMF
W (H) = ∇2JH

1

∇fGSNMF
H (W ) = ∇JW

1 + λ∇JW
2 + η∇JW

3 (23)

∇2fGSNMF
H (W ) = ∇2JW

1 + λ∇2JW
2 + η∇2JW

3 .

We can write JH
1 as
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JH
1 = ||X −WH||2F

= tr
(
(X −WH)T (X −WH)

)
= tr(HTW TWH −HTW TX −XTWH +XTX). (24)

Both X and W are constant matrices. According to the matrix calculus, we get the first gradient of

JH
1 as

∇JH
1 = 2W TWH − 2W TXT

= 2W T (WH −X). (25)

To calculate the second derivative, we use vector notation. If we concatenate the columns of H to a

vector vec(H), then (24) can be written as

JH
1 = vec(H)T


W TW

. . .

W TW

 vec(H) +H’s linear terms + C2, (26)

where C2 is constant. The second partial derivatives of JH
1 with respect to vec(H) form the Hessian

matrix. From (26), we can see that the Hessian matrix is block diagonal, and each block W TW is a

positive semi-definite matrix.

The function fGSNMF
H (W ) consists of three parts. First, we use a similar procedure as explained above

to obtain the first and second order gradients of JW
1 . The first order gradient of JW

1 is obtained by the

partial derivative with respect to W , that is

∇JW
1 = WHHT +WHHT −XHT −HXT

= 2(WH −X)HT . (27)

Concatenate W T ’s columns to a vector vec(W T ), then JW
1 can be written as

JW
1 = vec(W T )T


HHT

. . .

HHT

 vec(W T ) +W ’s linear terms + C3, (28)
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where C3 is constant. The second-order gradient of JW
1 with respect to vec(W T ) is the diagonal matrix

in (28) which diagonal elements are HHT .

As JW
2 is a linear function of W , its second order gradient is zero, and the first gradient is

∇JW
2 =

∂JW
2

∂W
= 1m1Tp , (29)

where 1p = [1, 1, · · · , 1]T is an p-dimensional vector.

In order to get the first- and second-order gradients of JW
3 , (21) can be rewritten as

tr

∑
i,j

x̃iLij(x̃j)
T

 = tr

∑
i,j

W TxiLijx
T
j W


= tr

W T

∑
i,j

xiLijx
T
j

W


= tr(W TXLXTW ). (30)

Concatenate the columns of W to a vector vec(W ), JW
3 reads

JW
3 = vec(W )T


XLXT

. . .

XLXT

 vec(W ). (31)

The second-order gradient of JW
3 with respect to vec(W T ) is the diagonal matrix in (31) which

diagonal elements are XLXT . The first gradient of JW
3 is

∇JW
3 =

∂JW
3

∂W
= 2

∑
i,j

xiLij(x̃j)
T = 2XLX̃T . (32)

Finally, we minimize the cost function in (19) with two similar iterative procedures. First, we use the

projected gradient method as described in Section III to solve the following conditional problem.

W (t+1) = argmin fGSNMF
Ht (W )

s. t. wi,k ≥ 0, hk,j ≥ 0,
∑

iwi,k = 1,∀k, i, j (33)

Then the same algorithm will be taken to obtain the optimal solution for the conditional problem

H(t+1) = argmin fGSNMF
W t+1 (H), s. t. wi,k ≥ 0, hk,j ≥ 0,∀k, i, j.
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D. Connection to Discriminant Non-negative Matrix Factorization

In this subsection, we discuss the connection between graph-preserving sparse non-negative matrix fac-

torization and discriminant non-negative matrix factorization as proposed in [22]. The objective function

of discriminant non-negative matrix factorization is

Dp(X||WH) = ||X −WH||2F + γtr[P̃w]− δtr[P̃b], (34)

where γ and δ are positive constants. P̃w and P̃b are the within-class scatter matrix and the between-class

scatter matrix, respectively. Both are defined using the projected image vectors x̃i = W Txi. Suppose

there are K classes, and the r-th class contains nr points, where nr is the number of samples in each

pattern class. The definitions of the scatter matrices are

P̃w =

K∑
r=1

nr∑
i=1

(x̃
(r)
i − m̃(r))(x̃

(r)
i − m̃(r))T (35)

P̃b =

K∑
r=1

nr(m̃
(r) − m̃)(m̃(r) − m̃)T , (36)

where m̃(r) denotes the mean of the projected data points of class r, i.e. m̃(r) = (1/nr)
∑nr

j=1 x̃j . m̃ is

the mean of all the projected data points, that is, m̃ = (1/n)
∑n

l=1 x̃l, where n is the total number of

the samples, i.e. n =
∑K

r=1 nr.

Now, we consider the special case where the similarity matrix is defined as

S =


S1

S2 0

. . .

0 SK

 , where Sr =


1
nr

1
nr

· · · 1
nr

...
...

. . .
...

1
nr

1
nr

· · · 1
nr

 r = 1, 2, · · · ,K. (37)

That is, for any i and j, Sij is 1/nr when xi and xj both belong to the r-th class; otherwise, Sij is

0. Then Dii =
∑

i Sij = I , where I is the identity matrix. The Laplacian matrix is L = D−S = I −S.

According to the analysis in [13], the within-class scatter matrix and between-class scatter matrix can

be rewritten as

P̃w =

K∑
r=1

[
X̃rX̃

T
r − 1

nr
X̃r(1r1Tr )X̃

T
r

]
=

K∑
r=1

X̃rLrX̃
T
r (38)

P̃b = −X̃LX̃T + X̃

(
I − 1

n
11T

)
X̃T = −X̃LX̃T + C, (39)
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where X̃r = [x̃
(r)
1 , x̃

(r)
2 , · · · , x̃(r)nr ] is a p×nr matrix, Lr = I−(1/nr)(1r1Tr ) is a nr×nr symmetric matrix,

and 1r = [1, 1, · · · , 1]T is a nr-dimensional column vector with all elements being one. To simplify the

above equation, we utilize the following definitions: X̃ = [X̃1, X̃2, · · · , X̃K ] is the p× n projected data

matrix where each column denotes one image point. The Laplacian matrix is L = diag(L1, L2, · · · , LK).

Thus, we have P̃w = X̃LX̃T , where L = I − S. C = I − (1/n)11T is a constant.

By inserting (38) and (39) to (34), the objective function of DNMF becomes

Dp(X||WH) = ||X −WH||2F + γtr[P̃w]− δtr[P̃b]

= ||X −WH||2F + γtr(X̃LX̃T )− δtr(−X̃LX̃T + C)

= ||X −WH||2F + (γ + δ)tr(X̃LX̃T )− δC. (40)

Thus, DNMF can be seen as a special case of the GSNMF algorithm. The discriminant constraints are

exactly the graph-preserving constraints in the GSNMF algorithm if the similarity matrix is defined as in

(37). For DNMF, the distribution of variation for any two points in the same class is set to be 1/nr. That

means each sample has the same contribution to classification. While GSNMF utilizes the a penalty to

make sure that the projected points retain the same local structure as the original points. The similarity

matrix will incur a heavy penalty when neighboring points are mapped far apart. Furthermore, GSNMF

uses a sparseness constraint whereas the standard form of DNMF does not.

V. FACIAL EXPRESSION RECOGNITION EXPERIMENTS

In this section, we investigate the performance of the proposed method for facial expression recog-

nition for six basic facial expressions (namely anger, disgust, fear, happiness, sadness, and surprise).

Three facial expression databases were used to verify the efficiency of the proposed algorithm. That is,

Cohn-Kanade facial expression database [37], JAFFE facial expression database [38] and GENKI facial

expression database [39]. Experiments were conducted on frontal facial expression images (Cohn-Kanade

database and JAFFE database), partially occluded facial expression images (Cohn-Kanade database) and

spontaneous facial expression images (GENKI database). In all experiments, we applied preprocessing to

locate the faces. The face parts of the original facial images were cropped, and the size of each cropped

image in all experiments is 60× 60 pixels. Fig. 4 shows an example of the original face image and the

corresponding cropped image. In this work, we use the nearest-neighbor classifier for classification. The

Euclidean metric is used as the distance measure.

March 3, 2010 DRAFT



18

 

(a)

 

(b)

Fig. 4. Original face image and cropped image from the Cohn-Kanade database.

A. Preprocessing

In practice, a preprocessed data matrix is used for non-negative matrix factorization. Donoho et al.

[40] showed that traditional NMF cannot find the correct decomposition because all column vectors in

X have a constant part. To deal with this problem, some preprocessing of the original data matrix X is

necessary. The data matrix X can be written as

X = WH +K01T , (41)

where K0 is m-dimensional vector with elements being the minimal value of each row in X , and 1 is

an n-dimensional vector with all elements equal to one. Therefore, we first subtract a constant matrix

from X in order to get a more precise recovery of generating W and H . Then, the matrix (X −K01T )

is used as new data matrix to obtain the GSNMF representation of facial images.

B. Experimental Results on the Cohn-Kanade Database

The Cohn-Kanade database [37] consists of video sequences of subjects displaying distinct facial

expressions, starting from a neutral expression and ending with the peak of the expression. As some
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Fig. 5. Cropped face images from the Cohn-Kanade database.

subjects in the Cohn-Kanade database show less than six facial expressions, we use a subset with thirty

subjects for our experiments. For each expression of a subject, the last eight frames in the videos are

selected, and we treat these frames as static images for both training and testing. Some of the cropped

face images in the Cohn-Kanade database with different facial expressions are shown in Fig. 5.

In the experiments, we divide the database into two subsets: training set and testing set. Experiments

are conducted according to the following cases:

Case1: number of training set for one expression per person: 1; testing set: 7.

Case2: number of training set for one expression per person: 2; testing set: 6.

For each case, facial expression recognition experiments are conducted on the subset versus different

dimensions (p). The tested approaches are NMF, DNMF, SNMF [41], Eigenfaces, Fisherfaces, Lapla-

cianfaces and the proposed GSNMF. Fig. 6 shows the recognition accuracies of the two subsets versus

dimensionality reduction, where Fig. 6(a) and Fig. 6(b) correspond to Case 1 and Case 2, respectively.

The performance of all NMF motivated methods is reported for up to 100 basis images. As we can see,

the proposed GSNMF method outperforms all other tested approaches in facial expression recognition.

The best facial expression recognition accuracies obtained in Case 1 when using NMF, DNMF, SNMF,

and GSNMF are 89.9%, 91.6%, 91.6% and 93.5%; the best facial expression recognition accuracies

obtained in Case 2 when using NMF, DNMF, SNMF, and GSNMF are 91.3%, 92.9%, 93.0% and 94.3%.

GSNMF has a recognition accuracy that is nearly 2% better than DNMF.

The parameters λ and η in the GSNMF cost function (19) should be chosen carefully. As each term

in the cost function has its contribution, the final optimal solution is a tradeoff among the three terms.
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(a)

 

(b)

Fig. 6. Comparison of algorithms showing recognition accuracies versus dimension for the Cohn-Kanade database (a) Case 1

(b) Case 2.

In our experiments, we have tested values for λ and η by starting with small values, and changing them

step by step. Good results have been obtained when choosing λ and η values in the range [0.5, 1].

We also compare recognition performance with previously published on the Cohn-Kanade database.

Zhou et. al. [42] utilized feature selection method to roughly classify the facial expressions and fine

classification is based on rules. They obtained an average recognition accuracy of 90%. In [43], a

recognition result of 90.84% using face model features and relevance vector machine was reported.

Chen et. al. [44] utilized Haar-like features and Gabor features as input to weak hybrid classifiers, and

achieved 93.1% average correction rate for six basic facial expressions. Our work focuses on evaluate

the efficiency of GSNMF for facial feature extraction. Classifier design is not emphasized in this work.

GSNMF algorithm gives comparable results by using the simplest nearest neighbor classifier, and it

demonstrates the superiority of the GSNMF algorithm.

C. Experimental Results on the JAFFE Database

The JAFFE facial expression database [38] consists of 213 images of Japanese female facial expressions.

Ten subjects posed 3 or 4 examples for each of the six basic expressions plus neutral face. Some of the

cropped face images in the JAFFE database with different facial expressions are shown in Fig. 7. For the

facial expression experiments, we randomly select two images for each expression per person to form the
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Fig. 7. Cropped face images from the JAFFE database.

 

Fig. 8. Basis images extracted from the JAFFE database (a) Eigenfaces (b) Fisherfaces (c) NMFfaces (d) GSNMFfaces.

training set, and the remainder is used to test the algorithms. The facial expression recognition accuracies

obtained by Eigenfaces, Fisherfaces, Laplacianfaces, NMF, DNMF, SNMF, and GSNMF are shown in Fig.

9. It can been seen that the recognition accuracies obtained for the JAFFE database are much lower than

that obtained for the Cohn-Kanade database. This can be explained by the fact that the facial expressions

posed in the Cohn-Kanade database are much more apparent than that in the JAFFE database. From Fig.

9, we can see that the proposed GSNMF algorithm again achieves the best recognition accuracy of the

tested algorithms. GSNMF is a more efficient method for facial expression recognition.

According to the principle of non-negative matrix factorization, the face images are represented by

combining multiple basis images with addition only. In contrast to PCA, no subtractions can occur. From

this point of view, the basis images are expected to represent the facial parts. For comparison, five basis

images corresponding to Eigenfaces, Fisherfaces, NMF, and GSNMF are shown in Fig. 8. We can see

that NMF does not give an intuitive decomposition into parts. The NMF basis images reflect the holistic

features of the faces rather than local features. GSNMF generates more sparse basis images which reflect

distinct facial components for each facial expression.
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Fig. 9. Comparison of algorithms showing recognition accuracies versus dimension for the JAFFE database.

Now we compare recognition performance with previously published results. Zhang [45] used a neural

network to get 90.1% recognition accuracy. In [46], a result of 92% using linear discriminant analysis

was reported, but they only included nine people’s face images. Guo et. al. [47] utilized selected Gabor

features and compared various classifier’ performances, and the linear programming feature selection

with support vector machine achieved 91% recognition accuracy. In conclusion, GSNMF algorithm gives

comparable results with the simplest nearest neighbor classifier.

D. Facial Expression Recognition under Partial Occlusion

GSNMF can extract parts-based facial features of the facial expression images, so it is supposed to

be robust to some partial occlusion on the facial expression images. In this subsection, we verify the

performance of GSNMF algorithms on facial expression images from the Cohn-Kanade database with

eyes, nose, and mouth occlusions. Some preprocessing was done to get the occlusive facial expression

images. An eyes mask and a nose mask, as well as a mouth mask were created to simulate partial

occlusion on the facial images. Some samples from the Cohn-Kanade database under eyes, nose, and

mouth region occlusion for all facial expressions are shown in Fig. 10. The experiments are conducted

on occluded facial expression images in the same way as described in the previous subsection, and

the randomly chosen training samples for one expression per person are fixed to 3. We compare the
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Fig. 10. Samples of facial expression images with partial occlusion from the Cohn-Kanade database.

Laplacianfaces, SNMF, and the proposed GSNMF algorithm for the occluded facial images.

The recognition accuracies of six basic facial expressions obtained by the three algorithms are shown in

Fig. 11. The confusion matrix is computed for the GSNMF algorithm. The confusion matrix is a K×K

matrix containing the information of the actual class (its columns) and the class label obtained through

classification (its rows). The diagonal entries of the confusion matrix are the percentages corresponding

to the correctly classified facial expressions, while the off-diagonal entries are the percentages corre-

sponding to misclassification rates. The confusion matrices obtained for no occlusion, eyes occlusion,

nose occlusion, and mouth occlusion are merged in Table I. The effects of the three occlusion types are

analyzed as follows:

(1) Eyes occlusion

Performing facial expression recognition on facial images under eyes occlusion using GSNMF, SNMF,

and Laplacianfaces, achieved 93.3%, 91.2%, and 90.0%, respectively. It seems that eyes occlusion most

affects sadness, anger, surprise and disgust.

(2) Nose occlusion

Performing facial expression recognition on facial images under nose occlusion using GSNMF, SNMF,

and Laplacianfaces, achieved 94.0%, 92.8%, and 91.3%, respectively. It seems that nose occlusion most

affects disgust, anger, fear, and sadness.

(3) Mouth occlusion

Performing facial expression recognition on facial images under mouth occlusion using GSNMF,

SNMF, and Laplacianfaces, achieved 91.4%, 90.1%, and 88.8%, respectively. It seems that mouth occlu-

sion most affects anger, fear, happiness and surprise.

To summarize, mouth occlusion affects the facial expression recognition results the most. Therefore, the
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(a)

 

(b)

(c)

Fig. 11. Comparison of three algorithms for six facial expressions on partially occluded facial images (a) under eyes occlusion

(b) under nose occlusion (c) under mouth occlusion.
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TABLE I

CONFUSION MATRIX FOR GSNMF WITH DIFFERENT OCCLUSIONS ON THE COHN-KANADE DATABASE.

surprise sadness anger disgust fear happiness

no 92.7 0 0 2.7 3.3 1.3

surprise eyes 89.3 0.7 1.3 2.7 4.0 2.0

nose 91.3 0.7 0.7 2.7 3.3 1.3

mouth 88.7 1.3 1.3 3.3 3.3 2.0

no 0 95.3 0 2.7 2.0 0

sadness eyes 0 94.7 1.3 1.3 2.7 0

nose 0 94.7 0.7 2.0 2.7 0

mouth 0 93.3 0 3.3 2.0 1.3

no 0 0 98.7 0 0 1.3

anger eyes 0 0.67 94.7 3.3 0 1.3

nose 0 0 97.3 1.3 0 1.3

mouth 0 2.0 94 2.7 0 1.3

no 1.3 3.3 2.0 93.3 0 0

disgust eyes 1.3 2.0 2.7 91.3 2.7 0

nose 0 3.3 2.7 92.7 0 1.3

mouth 0 4.0 3.3 91.3 0 1.3

no 0 0 1.3 2.0 95.3 1.3

fear eyes 0 1.3 1.3 0 94 3.3

nose 0 0 1.3 2.0 94 2.7

mouth 2.0 1.3 2.0 2.7 88 4.0

no 0 0 2.0 1.3 0 96.7

happiness eyes 0 0 2.7 1.3 0 96

nose 0 1.3 3.3 1.3 0 94

mouth 0 0 4.7 1.3 0.7 93.3

mouth region is the most important region for recognizing the six basic facial expressions. The region of

eyes is the second important region for facial expression recognition, while nose occlusions affect mostly

facial expressions which have changes in the nosewing area.

E. Spontaneous Facial Expression Recognition

Until now, most of the facial expression recognition techniques focus on optimizing performance on

posed facial expressions that are collected under tightly controlled laboratory conditions on a small

number of human subjects. This is mainly because authentic affective expressions are difficult to collect,
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Fig. 12. Automatically detected face images from the GENKI-4K database.

and manual labeling of spontaneous facial expressions for ground truth is very time consuming, error

prone and expensive [4].

However, increasing evidence in psychology and neuroscience shows that spontaneously and deliber-

ately displayed facial behavior has differences both in utilized facial muscles and their dynamics [48].

For instance, many types of spontaneous smiles are smaller in amplitude, longer in total duration, and

slower in onset and offset time than posed smile [48], [49], [50].

In this section, we verify our proposed GSNMF algorithm on spontaneous facial expressions, and the

MPLab GENKI-4K Database was used. The MPLab GENKI-4K Database [39] is a subset of GENKI

database, it contains 4000 face images labeled as either ”smile” or ”non-smile”, of approximately as many

different human subjects. The facial images are downloaded from publicly available Internet repositories

of personal web pages, and spanning a wide range of illumination conditions, head poses and personal

identity.

First, we used the automatic face detection system [51] developed by Mikael Nilsson to obtain cropped

face images. A correct detection accuracy of 96.3% was achieved. 3853 face images were successfully

detected, containing 2114 smiles and 1739 non-smiles. In the experiments, 1000 face images (500 smiles

and 500 non-smiles) were randomly selected for training and the remainder was used for testing, and the

human subjects in testing set are different from that of training set. All images were first converted to gray

scale. The automatically located face images were rescaled to pixels, and gray level was normalized. Some

of the automatically detected face images are demonstrated in Fig. 12. In the experiments, we compare the

Laplacianfaces, SNMF, and GSNMF algorithms for spontaneous facial expression images. The recognition

accuracies obtained by different algorithms versus dimensions are shown in Fig. 13, and the corresponding

confusion matrices are demonstrated in Table II. The proposed GSNMF algorithm achieves reasonable

results on spontaneous facial expression images, even there is not so much preprocessing on the facial
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Fig. 13. Comparison of three algorithms on spontaneous facial expression images from the GENKI-4K database.

TABLE II

CONFUSION MATRICES FOR GSNMF, SNMF, AND LAPLACIANFACES ON THE GENKI-4K DATABASE (A) GSNMF (B)

SNMF (C) LAPLACIANFACES.

(a)

smile nonsmile

smile 94.6 5.5

nonsmile 8.3 91.7

(b)

smile nonsmile

smile 91.8 8.2

nonsmile 9.9 90.2

(c)

smile nonsmile

smile 89.3 10.7

nonsmile 9.4 90.6

images. It indicates that GSNMF is efficient for facial expression representation, and its local facial

representation has some tolerance for head movement.

VI. CONCLUSIONS

By considering sparse representations of original facial images and neighborhood preserving costs,

we present a novel graph-preserving sparse non-negative matrix factorization (GSNMF) algorithm for

facial feature extraction. Furthermore, we apply a projected gradient method to ensure that the limit

point of the solution is stationary. We show that GSNMF is a more general method for non-negative

solutions than DNMF, which can be incorporated in the GSNMF framework. Experimental results

show that GSNMF outperforms other NMF-based algorithms and other well-known feature extraction

March 3, 2010 DRAFT



28

methods, like Eigenfaces, Fisherfaces, and Laplacianfaces in terms of recognition accuracy in all facial

expression recognition experiments (no occlusion, partial occlusion and spontaneous emotions). GSNMF

preserves the local structure of the samples and makes use of class label information, which is helpful

for classification. Moreover, the GSNMF algorithm obtains parts-based representations of facial images,

and is more robust than other tested methods for facial expression recognition.

APPENDIX A

THEORETICAL PROOF OF THE INEQUALITY (11)

First, we consider a function f(x) and any vector d. According to Taylor expansions, f(x+ d) can be

written as

f(x+ d) = f(x) +∇fT (x)d+
1

2
dT∇2f(x)d. (42)

So,

f(x+ d)− f(x) = ∇fT (x)d+
1

2
dT∇2f(x)d. (43)

Hence, for two consecutive iterations x(t+1) and x(t), we have

f(x(t+1))− f(x(t)) = ∇fT (x(t))(x(t+1) − x(t)) +
1

2
(x(t+1) − x(t))T∇2f(x(t))(x(t+1) − x(t)). (44)

The vector form of inequality (10) is

f(x(t+1))− f(x(t)) ≤ σ∇fT (x(t))(x(t+1) − x(t)). (45)

According to (44), it can be written as

∇fT (x(t))(x(t+1) − x(t)) + 1
2(x

(t+1) − x(t))T∇2f(x(t))(x(t+1) − x(t)) ≤ σ∇fT (x(t))(x(t+1) − x(t))

⇒ (1− σ)∇fT (x(t))(x(t+1) − x(t)) + 1
2(x

(t+1) − x(t))T∇2f(x(t))(x(t+1) − x(t)) ≤ 0. (46)

Take consideration of W instead of x, the matrix form of (46) is

(1− σ)
⟨
∇fH(W (t)),W (t+1) −W (t)

⟩
+

1

2

⟨
W (t+1) −W (t),

(
W (t+1) −W (t)

)
∇2fH(W (t+1))

⟩
≤ 0.

(47)
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