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ABSTRACT

In this paper, we present a novel algorithm for representing fa-
cial expressions. The algorithm is based on the non-negative
matrix factorization (NMF) algorithm, which decomposes the
original facial image matrix into two non-negative matrices,
namely the coefficient matrix and the basis image matrix. We
call the novel algorithm graph-preserving sparse non-negative
matrix factorization (GSNMF). GSNMF utilizes both sparse
and graph-preserving constraints to achieve a non-negative
factorization. The graph-preserving criterion preserves the
structure of the original facial images in the embedded sub-
space while considering the class information of the facial im-
ages. Therefore, GSNMF has more discriminant power than
NMF. GSNMF is applied to facial images for the recogni-
tion of six basic facial expressions. Our experiments show
that GSNMF achieves on average a recognition rate of 93.5%
compared to that of discriminant NMF with 91.6%.

Index Terms— Facial expression recognition, non-
negative matrix factorization, graph-preserving constraint,
sparse representations

1. INTRODUCTION

Efficient methods for facial expression recognition are based
on finding low-dimensional representations for facial images
by extracting facial features. The features reflect the intrinsic
structure of facial expressions and allow for efficient classifi-
cation.

A popular class of feature extraction methods is formed
by appearance-based algorithms such as Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA),
and Locality Preserving Projections (LPP) [1]. They utilize
linear transformations to obtain low-dimensional facial sub-
spaces that have different structures. PCA aims to find sub-
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spaces with maximum covariance. LDA aims to find sub-
spaces that maximize the ratio of the between-class scatter
and the within-class scatter of the facial images. LPP obtains
subspaces which preserve the locality structure of the facial
images. PCA is an unsupervised method, and LDA is a su-
pervised method, while LPP can be conducted as either un-
supervised or supervised. All these methods obtain ”holistic”
representations for facial images. As there is no further con-
straint on the linear transformation, the low-dimensional rep-
resentations of facial images contain both negative and non-
negative values. Negative intensity values in images do not
have physical meaning. This motivates non-negative decom-
position methods for arrays of facial images. Efficient de-
compositions can be achieved with the Non-negative Matrix
Factorization (NMF) algorithm [2].

The NMF algorithm decomposes a facial image into a lin-
ear combination of basis images. Both the coefficient values
and basis images are non-negative. That means that NMF
only allows the combination of basis images using addition
rather than subtraction. The basis images are ”block compo-
nents” of the facial images, so they are likely representations
for facial parts. However, previous work revealed that NMF
decompositions produce holistic image representations rather
than sparse representations. Therefore, related work focused
on finding sparse representations of facial images, e.g., non-
negative sparse coding (SNMF) [3], local non-negative matrix
factorization (LNMF) [4], etc. These methods add sparsity
constraints to NMF to obtain improved facial representations.

For facial expression recognition, the most important goal
is to achieve high recognition accuracy when classifying dif-
ferent facial expressions. It is well-known that prior class in-
formation is very helpful for improving classification perfor-
mance. All NMF-based algorithms mentioned above are un-
supervised. They do not consider the fact that different sam-
ples belong to different classes. Therefore, we introduce a
graph-preserving constraint that considers class information
for sparse NMF. The graph-preserving constraint maintains
the neighborhood structure of the facial samples after embed-
ding them into the low-dimensional subspace. Experimental



results show that this graph-preserving sparse non-negative
matrix factorization (GSNMF) algorithm performs better than
sparse NMF (SNMF) and discriminant NMF (DNMF)[8]. It
has more discriminant power to distinguish six basic facial
expressions and achieves higher recognition accuracies than
other tested NMF methods.

The paper is organized as follows: Section 2 reviews
the NMF algorithm briefly; Section 3 introduces the graph-
preserving sparse NMF; Section 4 outlines the utilized pro-
jected gradient method, and Section 5 reports our experiments
on facial expression recognition based on the Cohn-Kanade
database.

2. REVIEW OF NMF

Let the matrix X = [x1, x2, · · · , xn] represent a set of n im-
ages, where each image xi = [xi,1, xi,2, · · · , xi,m]T is given
by a m-dimensional vector. The m×n image matrix X repre-
sents the image database. It can be approximated by a linear
combination of basis images W = [W1, W2, · · · , Wp] with
Wi = [wi,1, wi,2, · · · , wi,m]T . That is, each image vector xi

can be written as a linear combination of basis images, i.e.
xi = Whi, where hi is a p-dimensional vector containing the
linear decomposition coefficients. Extending the approxima-
tion to all images, we have X ≈ WH . Both the basis image
matrix W and coefficient matrix H contain non-negative el-
ements. One of the common methods to measure the quality
of the approximation is the square of the Euclidean distance

D(X‖WH) = ||X −WH ||2F =
∑
ij

(
xij −

∑
k

wikhkj

)2

,

(1)
where || · ||F denotes the Frobenius norm. NMF aims to find
the non-negative decomposition of X according to the follow-
ing optimization problem:

min
W,H

D(X‖WH)

s. t. wi,k ≥ 0, hk,j ≥ 0, ∀ k, i, j (2)

3. GRAPH-PRESERVING SPARSE NON-NEGATIVE
MATRIX FACTORIZATION

Shortcomings of the original NMF have been pointed out and
extensions of the original NMF have been suggested. Li [4]
found that the original NMF can only extract global features
from some face databases and developed a local non-negative
matrix factorization for enforcing parts-based representa-
tions. Hoyer [3] extended the original NMF to include the
option to control the sparseness of the NMF explicitly. How-
ever, the structure of the image space is not considered in
these works. Here, we propose a novel graph-preserving
sparse non-negative matrix factorization algorithm that ob-
tains a sparse representation of the images while preserving
the neighborhood structure of the image data.

The degree of sparseness of the representation can be
measured by the number of nonzero elements obtained in
the decomposition matrix of basis images. The l0-norm
counts the number of nonzero entries in a matrix. Note that
if the solution of l0 is sparse enough, the solution of the
l0-norm minimization problem is equal to the solution of
the l1-norm minimization problem. Therefore, a sparse non-
negative decomposition can be obtained by adding l 1-norm
constraints. The l1-norm of the basis matrix is defined as
||W ||1 =

∑
k,j |wk,j |.

In order to find a subspace that preserves the structure of
the high dimensional image space, we use a graph-preserving
constraint that is derived from graph embedding theory. Let
G = {X, S} be an undirected weighted graph. X is the vec-
tor set, X = [x1, x2, · · · , xn] ∈ Rm×n (each column of the
matrix X represents an image). S ∈ Rn×n is the similar-
ity matrix. Each element of the real-valued symmetric matrix
S measures the similarity of a pair of vertices, which is as-
sumed to be non-negative in our paper. Each original data
point xi is projected by x̃i = WT xi. The projected data ma-
trix X̃ = [x̃1x̃2, · · · , x̃n] ∈ Rp×n is used for classification.
Our graph-preserving constraint is given by

∑
i,j

||x̃i − x̃j ||22Sij . (3)

The graph-preserving constraint aims to preserve the
neighborhood of the data samples. The graph-preserving
character is illustrated in Fig.1. The graph-preserving con-
straint can be used unsupervised or supervised, depending
on the construction method for the similarity matrix. If it is
unsupervised, the weight matrix S is constructed according
to the distances between pairs of samples. If it is supervised,
the weight matrix is constructed utilizing the prior class in-
formation of the samples, and the weight values for sample
pairs belonging to different classes are zero. The similarity
value Sij enforces similarity between the vectors as depicted
in Fig. 1. For example, if the similarity between points x i and
xj is large, the distance between the corresponding projected
points x̃i and x̃j should be small.

We need to find a tradeoff between reconstruction error,
graph-preserving threshold, and sparseness. Thus, the cost
function of graph-preserving sparse non-negative matrix fac-
torization (GSNMF) is defined as

DGSNMF (X‖WH) =

||X − WH ||2F + λ
∑
k,j

wk,j + η

⎛
⎝∑

i,j

||x̃i − x̃j ||22Sij

⎞
⎠ ,

(4)

where || · ||F is the Frobenius norm, λ is a positive multiplier
which controls the sparseness, and η is a positive multiplier
which controls the locality of the decomposition.
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Fig. 1. Graphs for original data space and projected data
space. y denotes projected points, y = x̃i = WT xi.

4. PROJECTED GRADIENT FOR GSNMF

In order to calculate the update rules for coefficients and ba-
sis images, a projected gradient method is carried out that has
been successfully used for the NMF algorithm [5]. The pro-
jected gradient method is better than the multiplicative update
method as the former can guarantee the convergence of the
optimization problem.

The desired decomposition is obtained by solving the fol-
lowing optimization problem:

min
W,H

DGSNMF (X‖WH)

s. t. wi,k ≥ 0, hk,j ≥ 0, ∀ k, i, j (5)

By fixing W or H , we can get two functions f GSNMF
W (H)

and fGSNMF
H (W ), respectively. Then the optimization prob-

lem can be divided into two conditional problems. We utilize
the projected gradient method to obtain the conditional prob-
lems. This method has been successfully used for NMF.
According to the projected gradient algorithm [5], we need
to calculate the first and second order gradients of the two
functions fGSNMF

W (H) and fGSNMF
H (W ). The GSNMF

cost function contains three terms, and it can be written
as DGSNMF = J1 + λJ2 + ηJ3, where J1 = ||X −
WH ||2F , J2 =

∑
k,j wk,j and J3 =

∑
i,j ||x̃i − x̃j ||22Sij .

fGSNMF
W (H) and fGSNMF

H (W ) can be simplified as

fGSNMF
W (H) = JH

1 + C (C is constant)
fGSNMF

H (W ) = JW
1 + λJW

2 + ηJW
3 . (6)

Thus, the gradients of these two functions are

∇fGSNMF
W (H) = ∇JH

1

∇2fGSNMF
W (H) = ∇2JH

1

∇fGSNMF
H (W ) = ∇JW

1 + λ∇JW
2 + η∇JW

3 (7)

∇2fGSNMF
H (W ) = ∇2JW

1 + λ∇2JW
2 + η∇2JW

3 .

For the first conditional problem, we fix H and update W .
The update rule is defined as

W (t+1) =
[
W (t) − αt∇fH(W (t))

]+
, (8)

where [·]+ = max[·, 0], t is the number of iterations, αt =
βϕt and ϕt is the first non-negative integer such that

(1−σ)〈∇fH (W (t)),W (t+1)−W (t)〉
+ 1

2 〈W (t+1)−W (t),(W (t+1)−W (t))∇2fH (W (t+1))〉≤0, (9)

where < ·, · > is the Frobenius inner product. In this work, β
and σ are chosen to be 0.1 and 0.01. The iterative procedure
is set to stop when the solution is close to a stationary point.
A common condition is

||∇P fH(W (t))||F ≤ εW ||∇fH(W (1))||F , (10)

where εW is the predefined stopping tolerance. ∇P fH(W (t))
is the projected gradient. A similar procedure is conducted to
update H by fixing W .

5. EXPERIMENTS FOR FACIAL EXPRESSION
RECOGNITION

In this section, the proposed GSNMF algorithm is conducted
for facial expression recognition on the Cohn-Kanade facial
expression database [7]. The Cohn-Kanade database con-
sists of subjects displaying distinct facial expressions, start-
ing from neutral expression and ending with the peak of the
expression. Each subject contains six basis facial expres-
sions (anger, disgust, fear, happiness, sadness and surprise).
For each expression of a subject, the last eight frames in the
video are selected, and we treat these frames as static images
for both training and testing. The original facial images are
cropped to capture the faces only, and the size of each cropped
image is 60×60. In addition, the nearest neighbor classifier is
taken for classification. Some of the cropped image samples
are shown in Fig.2.



Fig. 2. Cropped face images from the Cohn-Kanade database.

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

Dimension

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

GSNMF
SNMF
DNMF
NMF

Fig. 3. Comparison of algorithms showing recognition ac-
curacies versus the dimensionality of the projections on the
Cohn-Kanade database.

In our experiments, we use the Gaussian kernel with
Euclidean distance to construct the similarity matrix S.
That is, if xi and xj belong to the same class, then Sij =
exp

(−||xi − xj ||22/t
)

(t is an empirical positive parameter);
otherwise, Sij = 0. In our facial expression recognition
experiments, a random subset with one randomly selected
image of a person for each expression is taken to compose the
training set, and the remaining images are used to form the
testing set. Our proposed GSNMF algorithm is compared to
three other NMF-based algorithms, namely SNMF, DNMF,
and NMF. DNMF is the discriminant NMF as proposed in [8]
and SNMF the non-negative sparse coding in [9]. The aver-
age facial expression recognition accuracies of the six facial
expressions obtained by GSNMF, SNMF, DNMF and NMF
are shown in Fig. 3. The best facial expression recognition
accuracies obtained for GSNMF, SNMF, DNMF, and NMF
are 93.5%, 91.6%, 91.6%, and 90.2%, respectively. The dis-
gust images get most confused with sadness images. It can be
seen that the proposed GSNMF algorithm achieves the best
recognition accuracy compared to the other tested algorithms.

6. CONCLUSION

In this paper, we present a novel image representation ap-
proach that is applied to the facial expression recognition
problem. GSNMF enhances the sparse and discriminant
character of the NMF algorithm by using both the sparsity
and graph-preserving constraints. The facial representation
obtained by GSNMF aims to preserve the locality structure
of the image space. For the optimization problem, we de-
rive a projected gradient method. Our experiments show that
GSNMF achieves higher recognition accuracy than NMF,
SNMF, and DNMF. For example, GSNMF achieves a recog-
nition rate of 93.5% compared to that of DNMF with 91.6%.
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