
LEARNING PRODUCT CODEBOOKS USING VECTOR-QUANTIZED AUTOENCODERS
FOR IMAGE RETRIEVAL

Hanwei Wu and Markus Flierl

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology, Stockholm

{hanwei, mflierl}@kth.se

ABSTRACT
Vector-Quantized Variational Autoencoders (VQ-VAE)[1]
provide an unsupervised model for learning discrete rep-
resentations by combining vector quantization and autoen-
coders. In this paper, we study the use of VQ-VAE for
representation learning of downstream tasks, such as image
retrieval. First, we describe the VQ-VAE in the context of
an information-theoretic framework. Then, we show that
the regularization effect on the learned representation is
determined by the size of the embedded codebook before
the training. As a result, we introduce a hyperparameter to
balance the strength of the vector quantizer and the recon-
struction error. By tuning the hyperparameter, the embedded
bottleneck quantizer is used as a regularizer that forces the
output of the encoder to share a constrained coding space.
With that, the learned latent features better preserve the
similarity relations of the data space. Finally, we incorporate
the product quantizer into the bottleneck stage of VQ-VAE
and use it as an end-to-end unsupervised learning model
for image retrieval tasks. The product quantizer has the
advantage of generating large and structured codebooks. Fast
retrieval can be achieved by using lookup tables that store the
distance between any pair of sub-codewords. State-of-the-art
retrieval results are achieved by the proposed codebooks.

I. INTRODUCTION

Recent advances in variational autoencoders (VAE) pro-
vide new unsupervised approaches to learn the hidden struc-
ture of data [2]. However, the classic VAEs are prone to
the phenomenon of “posterior collapse ”. Here, the latent
representations are largely ignored by a decoder that is “too
powerful ”. Vector-quantized variational autoencoders (VQ-
VAE) learn discrete representations by incorporating the idea
of vector quantization (VQ) into the bottleneck stage. With
that, the “posterior collapse ”can be avoided [1], and the
latent features learned by the VQ-VAE are more meaningful.

In the following, we study the use of VQ-VAE for
representation learning for downstream tasks, such as image
retrieval. We first describe the VQ-VAE from an information-
theoretic perspective by using the so-called variational in-

formation bottleneck principle [3], [4]. We show that the
regularization term of the latent representation is determined
by the size of the embedded codebook, and hence, will
potentially affect the generalization ability of the model.
Since the regularizer is absent during the training, we
introduce a hyperparameter to balance the strength of the
vector quantizer and the reconstruction error. In this way,
the bottleneck vector quantizer is used as a regularizer
that enforces a constrained code space onto the output of
the encoder. This is critical for applications such as image
retrieval which require learned latent features that preserve
the similarity relation of the input data.

We further modify the VQ-VAE by introducing a product
quantizer (PQ) into the bottleneck stage such that the product
codebook can be learned in an end-to-end fashion. Compared
to classic vector quantization, the product quantizer can gen-
erate an exponentially large codebook at very low memory
cost [5]. In addition, distance calculations between query
and database items in the retrieval process can be avoided
by using lookup tables which store the distances between
codewords.

II. RELATED WORK

Several works have studied the end-to-end discrete repre-
sentation learning model with different incorporated struc-
tures in the bottleneck stage. [6] and [7] introduce scalar
quantization in the latent space and optimize the entire model
jointly for rate-distortion performance over a database of
training images. [8] proposes a compression model by per-
forming vector quantization on the network activations. The
model uses a continuous relaxation of vector quantization
which is annealed over time to obtain a hard clustering. [9]
and [10] introduce the Gumbel-Softmax gradient estimator
for non-differentiable discrete distributions. For extended
works on VQ-VAE, [11] uses the Expectation Maximization
algorithm in the bottleneck stage to train the VQ-VAE and
to achieve improved image generation results. We note that
the authors in [12] also explore the product quantization
idea for the VQ-VAE and use it to parallelize the decoding

process for the sequence model. This approach is known as
the decomposed VQ-VAE.

III. QUANTIZER-BASED REGULARIZATION

A. Information Bottleneck and VQ-VAE

In this section, we give a brief description of how the VQ-
VAE can be developed by using the concept of information
bottleneck. Let I denotes the index of the input data, X the
feature representation of the input data, and Z the index of
the latent codeword. The objective is to learn a distribution
p(Z|I) from the given data distribution p(I,X). Given
certain constraints, the learned representation Z should retain
from I as much information as possible about X. The
above variables are subject to the Markov chain constraint
X↔ I ↔ Z.

Similar to the deterministic information bottleneck (DIB)
principle as introduced in [4], we focus on minimizing the
representational cost H(Z) of the learned latent represen-
tation. Since the lossy compression of I incurs information
loss when inferring X from Z, we can formulate the problem
as a rate-distortion-like problem that leverages the represen-
tational cost and the compression distortion by using the
Lagrangian formulation

LIB = dIB(I, Z) + εH(Z), (1)

where dIB(·) is the information bottleneck distortion and ε
the Lagrangian parameter.

Now, consider the case where the information bottleneck
distortion is defined as the Kullback-Leibler (KL) divergence
between the true data distribution and the data distribution
generated by the latent representation [13], i.e.,

dIB(I, Z) = KL(p(X|I)‖p(X|Z)). (2)

We can decompose dIB(I, Z) into two terms

KL(p(X|I)‖p(X|Z)) = (3)∫ ∑
z

p(x, z) log
p(z)

p(x, z)
dx−

∫ ∑
i

p(i,x) log
p(i)

p(i,x)
dx.

(4)

The second term of (4) is determined solely by the given
data distribution p(I,X) and can be ignored for the propose
of minimization. The first term of (4) has an upper bound
by replacing p(x|z) with a variational approximation q(x|z)
[3] ∫ ∑

z

p(x, z) log
p(z)

p(x, z)
dx (5)

≤−
∑
i

p(i)

∫
p(x|i)

∑
z

p(z|i) log q(x|z)dx. (6)

In the VQ-VAE setting, vector quantization is applied to
the output of the encoder. Hence, p(z|i) is defined as

p(z = k|I = i) =

{
1 for k = argmin

z∈[K]

‖ze(xi)− µ(z)‖2

0 otherwise,

where K is the number of codewords of the quantizer,
µ(z), z = 1, . . . ,K, are the codewords, and ze(·) is the
encoder neural network. The approximation distribution can
be expressed as

q(x|z) = q(x|Q(z)) = q
(
x|µ(z)

)
, (7)

where Q(·) is a lookup function that maps the index to
the codeword. Ideally, the decoder does not allocate any
probability mass to q

(
x|µ(z)

)
for µ(z) 6= zq(x), where zq(·)

outputs the closest codeword to ze(x). Hence, we can write∑
z

p(z|i) log q(x|z) = log q(x|zq(xi)). (8)

If we assume that q(x|z) = N (x|x̂,1) with x̂ = g
(
µ(z)

)
,

then g(·) is the decoder neural network. Hence, the log-
likelihood of q(x|z) is proportional to the squared difference
between the input and the output of the model. Therefore,
(6) is considered as the reconstitution error of the model.

We use a similar variational approximation technique to
upper-bound the entropy H(Z) of the latent variable in (1)
as proposed in [4].

H(Z) ≤ −
∑
z

p(z) log r(z) (9)

= −
∑
i

∑
z

p(i)p(z|i) log r(z) = −H(p(Z), r(Z))

(10)

As a standard practice, the marginal r(Z) is set to be an
uniform distribution. Then the cross entropy (10) becomes
a constant that equals to logK, and hence, can be omitted
from the loss function. That is, the constraint on the learned
representations is determined by the size of the embedded
codebook before the training.

To solve the problem of no gradient flowing through the
discrete variables, the stop gradient operator sg(·) is used to
separate the gradient update such that both encoder-decoder
and the codebook are trained independently. Therefore, we
can recover the empirical loss function of the VQ-VAE [1]
from the information bottleneck principle of (6) as

LVQ-VAE =
1

N

N∑
i=1

[
log q(x|z)) + ‖sg (ze(xi))− zq(xi)‖22

+β‖ze(xi)− sg (zq(xi)) ‖22
]
,

(11)

where we assume p(i) = 1
N and where N is the number of

training items. The third term of (11) is the commitment
loss which forces the encoder output ze(x) to commit

(a) K = 20 (b) K = 25

Fig. 1: Visualization of ze(x). The colors indicate different
digit classes.

to a codeword. β is a constant weight parameter for the
commitment loss.

B. Regularization Effects of the Bottleneck VQ

In this section, we investigate the relations among the size
of the codebook, the quantization error, and the generaliza-
tion ability of the model. When we increase the size of the
embedded codebook, the output of encoder has more code-
word choices. In this case, the latents are more likely to be
quantized into codewords that are far away from each other.
As a result, lower reconstruction errors can be achieved due
to the high discriminability of latent codewords. However,
the generalization is poor in this case because the setting
does not encourage similar data points to be mapped together
in the latent space. On the other hand, a smaller size of the
codebook decreases the average discriminability of the input
data. In order to reduce reconstruction errors for the low
rate setting, the model is forced to ensure that neighboring
data points are also represented closely together in the latent
space, which potentially leads to a better generalization
ability.

In Fig. 1, we plot the two-dimensional latent representa-
tion learned from the MNIST dataset with 10 digit classes
using MLP encoder-decoder networks. Although the high
rate case (K = 25) has lower reconstruction error than the
low rate case (K = 20), we can observe from the figures
that the latent representation in the high rate case shows
more overlap than in the low rate case. This indicates the
weak generalization ability of the high rate setting.

In order to solve the problem of the weak generalization
ability of the high rate setting, we introduce a hyperpa-
rameter to control the strength of the vector quantizer.
Specifically, we introduce a multiplicative weight λ to both
second and third term of (11) to control the updating power
of the vector quantizer. If we increase the value of λ, the
vector quantizer becomes “more powerful”. This minimizes
the quantization error and pushes codewords far away from
each other. In this case, the input data is less likely to
be updated to another codeword due to the weak encoder-
decoder optimization in the first term of (11). This may

decrease the reconstruction error, but it leads to a weaker
generalization ability. On the other hand, a small value of
λ creates a “weaker” vector quantizer and the quantization
error increases. This is equivalent to adding noise to the
latents. In this case, the input data will be easily swayed
away to other codewords due to the increased quantization
error. This creates similar effects as the low rate setting of
the vector quantizer, where the locality of the data space
in the latent space is better preserved. In this way, the
bottleneck vector quantizer is used as a regularizer of the
latent representation as it enforces a shared coding space on
the encoder output.

In Fig. 2, we plot the learned representation using the
same layer structure as in Fig. 1, but we use the introduced
hyperparameter λ = 0.5. We can observe that the latent
representation preserves the similarity relations of the input
data better than the representation as shown in Fig. 1b in
terms of using the space more uniformly.

Fig. 2: Representation with K = 25 codewords and hyper-
parameter λ = 0.5.

C. Tuning of the Hyperparameter λ

In the following, we provide a method for finding appro-
priate values of λ. We use the ratio of the average distances
of the closest codeword to the second closest codeword of the
input data as a robust indicator for the “impact” of the vector
quantizer. For example, in Fig. 3, we plot the reconstruction
error over above distance ratio for varying values of λ. We
observe that the reconstruction error decreases for distance
ratios between 0.35 and 0.6 as the codewords are updated
more easily by the encoder-decoder optimization. However,
when the distance ratio exceeds approximately 0.62, the
input data is swayed over too easily to other codewords
by the encoder-decoder optimization. Therefore, the network
optimization becomes sub-optimal and the reconstruction
error increases significantly. In order to find an appropriate
value for the hyperparameter λ, we limit our search of λ by
restricting the permissible range of distance ratios.

IV. APPLICATION: IMAGE RETRIEVAL

A. PQ-VAE

For the PQ-VAE model, the output of the encoder ze(x) ∈
RD is fed into a product quantizer. The product quantizer

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Ratio

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

R
ec

on
st

ru
ct

io
n

Er
ro

r

Fig. 3: Reconstruction error over distance ratio for varying
λ.

consists of M sub-vector quantizers which handle sub-
vectors of dimension D/M . Each sub-quantizer partitions
the subspace into K clusters. The sub-clusters are character-
ized by the sub-codebook Cm =

{
µ
(1)
m , · · · , µ(K)

m

}
, where

m = 1, · · · ,M denotes the m-th sub-vector quantizer.
Each sub-vector is quantized to one of the K codewords

by the nearest neighbor search

z(m)
q (x) = µ(k)

m , where k = argmin
i
‖z(m)

e (x)− µ(i)
m ‖2.

(12)
The output of the M sub-quantizers is concatenated to the
full codeword zq(x) =

[
z
(1)
q (x), z

(2)
q (x), · · · , z(M)

q (x)
]

and
then passed as input to the decoder. The decoder then
reconstructs the input images x given the full codewords
zq(x).

The M sub-quantizers are trained independently. Each
sub-codeword is simply updated by the average of the latents
that have been assigned to it in each iteration.

B. Querying

The discrete encoding z of images can be generated by
using the trained encoder and learned product codebook. The
encoder outputs n channel vectors for quantization. Hence,
each image is represented by an encoding vector of size
n×M , where each element is the index of the closest sub-
codeword to the sub-vector of the output of the encoder. The
encoding vector of an image can then be compressed into a
code of length R = NM log2K bits.

The querying is conducted in the encoding space. Besides
the encoding of database images, we store M Lookup Tables
(LT) with K × K entries. Each LT stores the distances
between every two sub-codewords of its sub-codebook. The
image encoding is used for the indices of the table. When
querying, the distance between query q and database x is
obtained by summing up the distances as given by the LTs

d(q,x) = LT1

(
z(1)u , z(1)

)
+ · · ·+ LTM

(
z(M)
u , z(M)

)
,

(13)
where zu denotes an encoding of the query image, and z
an encoding of the database image. Hence, fast retrieval can
be achieved because no additional distance calculations are
needed.

C. Results

We use the CIFAR-10 dataset which contains 60000
images of size 32 × 32 × 3 to test the performance of PQ-
VAE on the image retrieval task. We train the model by using
50000 images from the training set. Further, we treat their
discrete encodings as the database items. 10000 test images
are used as queries. We use the mean Average Precision
(mAP) of the top 1000 returned images as the performance
measure.

The encoder consists of 2 strided convolutional layers
with stride 2 and filter size 3 × 3. Each convolution layer
is followed by a 2 × 2 max pooling layer. The number of
channels of the first layer is set to be 64 and is doubled for
the following layers. All the convolution layers use rectified
linear units (ReLU) as activation functions. In this setting,
the input images are compressed into n = 2 × 2 discrete
encodings. The decoder follows a structure that is symmetric
to the encoder. We use the ADAM optimizer [14] with a
learning rate of 1e-4 and evaluate the performance after
30000 iterations with a batch-size of 100.

We test the cases of latent codes with compression rates of
32, 48 and 64 bits. To achieve those rates, we set the product
quantizer to use M = 4 sub-quantizers and the number
of codewords of the sub-quantizers to K = 4, 8, 16. We
compare our model to other unsupervised reference methods
in Table I. Our proposed model outperforms the reference
methods in the table. Note that we do not compare to results
of models that have been pre-trained by ImageNet in a
supervised fashion.

32 bits 48 bits 64 bits
LSH [15] 12.00 12.00 15.07
Spectral Hashing [16] 13.30 13.00 13.89
Spherical Hashing [17] 13.30 13.00 15.38
ITQ [18] 16.20 17.50 16.64
Deep Hashing [19] 16.62 16.80 16.69
PQ-VAE 21.86 22.79 23.42

Table I: Mean Average Precision (mAP) of the top 1000
returned images for compression rates of 32, 48, and 64
bits.

V. CONCLUSIONS

We extended the work of VQ-VAE by embedding a
product quantizer into the bottleneck of an autoencoder
for the image retrieval task. We formulate the VQ-VAE
problem by using the so-called variational information bot-
tleneck principle and show that the regularization term for
the learned representations is determined by the size of
the embedded codebook. We introduce a hyperparameter
to control the impact of the vector quantizer such that
we can further regularize the latent representation. With
an appropriately tuned hyperparameter, we show that our
learned representations improve the mean average precision
of our image retrieval task.

VI. REFERENCES
[1] A. Oord, K. Kavukcuoglu, and O. Vinyals, “Neural

discrete representation learning,” in NIPS, 2017.
[2] D. P. Kingma and M. Welling, “Auto-encoding varia-

tional Bayes,” in ICLR, 2014.
[3] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy,

“Deep variational information bottleneck,” in ICLR,
2017.

[4] D. J. Strouse and D. Schwab, “The deterministic
information bottleneck,” Neural Comput., vol. 29, no.
6, pp. 1611–1630, 2017.

[5] H. Jegou, M. Douje, and C. Schmid, “Product quan-
tization for nearest neighbor search,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 27, no.
10, pp. 1615 –1630, 2011.

[6] L. Theis, W. Shi, A. Cunningham, and F. Huszar,
“Lossy image compression with compressive autoen-
coders,” in ICLR, 2017.

[7] J. Balle, V. Laparra, and E. P. Simoncelli, “End to end
optimized image compression,” in ICLR, 2017.

[8] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,
R. Timofte, L. Benini, and L. V. Gool, “Soft-to-hard
vector quantization for end-to-end learning compress-
ible representations,” in NIPS, 2017.

[9] E. Jang, S. Gu, and B. Poole, “Categorical reparame-
terization with Gumbel-Softmax,” in ICLR, 2017.

[10] C. J. Maddison, A. Minh, and Y. W. Teh, “The con-
crete distribution: A continuous relaxation of discrete
random variables,” in ICLR, 2017.

[11] A. Roy, A. Vaswani, A. Neelakantan, and N. Parmar,
“Theory and experiments on vector quantized autoen-
coders,” arXiv preprint arxiv:1803.03382, 2018.

[12] L. Kaiser, A. Roy, A. Vaswani, A. Neelakantan, N. Par-
mar, S. Bengio, J. Uszkoreit, and N. Shazeer, “Fast
decoding in sequence models using discrete latent vari-
ables,” in Proc. of the 35th International Conference
on Machine Learning, June 2018.

[13] A. Gilad-Bachrach, A. Navot, and N. Tishby, “An
information theoretic tradeoff between complexity and
accuracy,” in Proceedings of the COLT, 2003.

[14] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2015.

[15] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locatlity-sensitive hashing scheme based on p-stable
distributions,” in Symposium on Computational Geom-
etry, 2004.

[16] Y. Weiss, A. Torralba, and R. Fergus, “Spectral
hashing,” in NIPS, 2008.

[17] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon,
“Spherical hashing: Binary code embedding with hy-
perspheres,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 37, no. 11, pp. 2304 –2316,
Nov. 2015.

[18] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “It-

erative quantization: A procrustean approach to learn-
ing binary codes for large-scale image retrieval,” IEEE
Trans. on Pattern Analysis and Machine Intelligence,
vol. 35, no. 12, pp. 2916–2929, Dec. 2013.

[19] V. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou,
“Deep hashing for compact binary codes learning,” in
Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, June 2015, pp. 2475 – 2483.

