PREDICTION-BASED SIMILARITY IDENTIFICATION FOR AUTOREGRESSIVE PROCESSES

Hanwei Wu, Qiwen Wang and Markus Flierl

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology, Stockholm
{hanwei, qiwen, mflierl}@kth.se

ABSTRACT
The task of similarity identification is to identify items in a database which are similar to a given query item for a given metric. The identification rate of a compression scheme characterizes the minimum rate that can be achieved which guarantees reliable answers with respect to a given similarity threshold [1]. In this paper, we study a prediction-based quadratic similarity identification for autoregressive processes. We use an ideal linear predictor to remove linear dependencies in autoregressive processes. The similarity identification is conducted on the residuals. We show that the relation between the distortion of query and database processes and the distortion of their residuals is characterized by a sequence of eigenvalues. We derive the identification rate of our prediction-based approach for autoregressive Gaussian processes. We characterize the identification rate for the special case where only the smallest value in the sequence of eigenvalues is required to be known and derive its analytical upper bound by approximating a sequence of matrices with a sequence of Toeplitz matrices.

I. INTRODUCTION
The problem of similarity identification of compressed data with zero false negative errors is studied in [1] [2]. This problem is investigated from an information-theoretic viewpoint and introduces the term identification rate of the source. It characterizes the minimal compression rate that allows query answers with a vanishing false positive probability. [1] [2] also provide identification rates for i.i.d. Gaussian sources with quadratic distortion and for binary sources with Hamming distance. For similarity identification of correlated sources, [3] proposes tree-structured vector quantizers that hierarchically cluster the data using k-center clustering. In [4], the authors compare two transform-based similarity identification schemes to cope with exponentially growing codebooks for high-dimensional data. The component-based approach shows both good performance and low search complexity. In [5], the authors present an analysis of the identification rate of the component-based approach for correlated Gaussian sources.

For large time series databases, [6] proposes the Piecewise Aggregate Approximation (PAA) to perform dimensionality reduction on the data and to index the reduced data with a spatial access method. In this paper, we study the similarity identification of autoregressive processes using a prediction-based approach.

The paper is organized as follows: In Section 2, we give a brief review of the key concepts of the problem. In Section 3, we discuss the similarity identification rate of our prediction-based approach for autoregressive Gaussian processes. In Section 4, we characterize the identification rate for a special case and derive its analytical upper bound. Numerical examples for an AR(1) process are shown in Section 5, and the conclusion is given in Section 6.

II. QUADRATIC SIMILARITY QUERIES
Let \(y = (y_1, y_2, \ldots, y_n)^T \) denote the query sequence and \(x = (x_1, x_2, \ldots, x_n)^T \) the data sequence. A rate-\(R_{ID} \) identification system \((T, g)\) consists of a signature assignment function \(T : \mathbb{R}^n \to \{1, 2, \ldots, 2^{nR_{ID}}\} \) and a query function \(g : \{1, 2, \ldots, 2^{nR_{ID}}\} \times \mathbb{R}^n \to \{\text{no, maybe}\} \).

The sequences \(x \) and \(y \) are called \(D_{ID}\)-similar if \(d(x, y) \leq D_{ID} \), specifically, the quadratic similarity is

\[
d(x, y) \triangleq \frac{1}{n} \|x - y\|^2 = \frac{1}{n} \sum_{i=1}^{n} \|x_i - y_i\|^2, \tag{1}\]

where \(\| \cdot \| \) is the standard Euclidean norm. A similarity query retrieves all data items that are \(D_{ID}\)-similar. The database keeps only a short signature \(T(x) \) for each \(x \). That is, given a query and the signatures, the identification system indicates whether the given query is \(D_{ID}\)-similar to an item in the database. A system is called \(D_{ID}\)-admissible if we obtain the output \(g(T(x), y) = \text{maybe} \) for any pair of data item and query \((x, y)\) which is \(D_{ID}\)-similar.

Such \(D_{ID}\)-admissible systems do not allow false negative errors. Hence, \(Pr\{\text{maybe}\} \) represents only the false positive errors. We follow the problem setup and adopt most notations in [1] and [2]. Therefore, we refer to [1] and [2] for more detailed background and problem description.
errors of the identification system. Further, for given distributions \(P_X \) and \(P_Y \) and a similarity threshold \(D_{\text{ID}} \), a rate \(R \) is said to be \(D_{\text{ID}} \)-achievable if there exists a sequence of \(D_{\text{ID}} \)-admissible systems \((T^{(n)}, g^{(n)})\) that can achieve a vanishing \(\Pr \{ \text{maybe} \} \) as \(n \) approaches infinity, i.e.

\[
\lim_{n \to \infty} \Pr \left\{ g^{(n)} \left(T^{(n)}(X), Y \right) = \text{maybe} \right\} = 0. \tag{2}
\]

The identification rate \(R_{\text{ID}} \) of the source is defined as the infimum of all \(D_{\text{ID}} \)-achievable rates.

III. IDENTIFICATION RATE OF AUTOREGRESSIVE GAUSSIAN PROCESSES

A. Prediction-based Approach

We use a prediction-based approach to handle autoregressive processes for \(D_{\text{ID}} \)-similarity identification. The prediction-based approach exploits the linear dependencies among random variables by embedding a \(D_{\text{ID}} \)-admissible scheme in an open-loop prediction scheme. The optimal linear predictors remove the linear dependencies in the stationary process such that the prediction residual process is a white noise process. If the data source is an autoregressive process, its prediction residual process is an i.i.d. process. The query is also handled by a linear predictor and the prediction residual is fed into the \(D_{\text{ID}} \)-admissible scheme. Fig. 1 illustrates the described prediction-based scheme.

Fig. 1. Prediction-based approach for autoregressive sources. \(\{X_t\} \) and \(\{Y_t\} \) are the database and query processes, respectively. \(\{\hat{X}_t\} \) and \(\{\hat{Y}_t\} \) are the corresponding optimal predictors. \(\{U_t\} \) and \(\{V_t\} \) are the prediction residuals.

We first describe the linear prediction part of the scheme. Consider an autoregressive process of order \(m \) (AR\((m)\)) and mean \(\mu_S \) as

\[
S_t = Z_t + \mu_S (1 - a_m^T e_m) + a_m^T S_{t-1}^{(m)}, \tag{3}
\]

where \(\{Z_t\} \) is a zero-mean i.i.d. process, \(a_m = (a_1, \ldots, a_m)^T \), \(S_t^{(m)} = (S_{t-1}, \ldots, S_{t-m})^T \), and \(e_m \) is an \(m \)-length vector with all entries being one.

For linear one-step prediction, we use \(N_p \) preceding samples \(S_{t-1}^{(N_p)} \) to predict the current random variable \(S_t \), where \(N_p \) is greater than or equal to the order \(m \). The predictor is then given by

\[
\hat{S}_t = h_{N_p}^T S_{t-1}^{(N_p)}, \tag{4}
\]

where the constant vector \(h_{N_p} = (h_1, \ldots, h_{N_p})^T \) characterizes the predictor.

The optimal linear predictor for the autoregressive process is given by

\[
h_{N_p}^* = a_{N_p}, \tag{5}
\]

with \(a_{N_p} = (a_1, \ldots, a_m, 0, \ldots, 0)^T \), where the first \(m \) elements are given by the process parameter vector \(a_m \) and the remaining \(N_p - m \) elements are all zeros [7]. Then, the prediction residual for optimal prediction is

\[
U_t = S_t - \hat{S}_t = Z_t + \mu_U, \tag{6}
\]

where \(\{U_t\} \) is an i.i.d. process (white noise) with mean \(\mu_U = \mu_S (1 - a_m^T e_m) \) and variance \(\sigma_U^2 = \mathbb{E}[Z_t^2] \).

B. Identification rate \(R_{\text{ID}}^P \)

We define the identification rate of the prediction-based scheme \(R_{\text{ID}}^P \) as the infimum over all \(D_{\text{ID}} \)-achievable rates of the prediction-based approach. Theorem 1 gives \(R_{\text{ID}}^P \) for autoregressive Gaussian sources.

Theorem 1. Let both the database and the query be generated by zero-mean autoregressive processes \(X_t = U_t + a_m^T X_{t-1}^{(m)} \) and \(Y_t = V_t + a_m^T Y_{t-1}^{(m)} \) according to (3) respectively, where \(\{U_t\} \) and \(\{V_t\} \) are two independent zero-mean Gaussian i.i.d. processes with unit variance. The identification rate of the autoregressive Gaussian source is

\[
R_{\text{ID}}^P = \frac{1}{l} \sum_{i=1}^{t} R_{i}^{(i)} \tag{7}
\]

\[
R_{i}^{(i)} = \max \left\{ \log_2 \left(\frac{2 \ln(2) \lambda_{i,t}^l}{v} \right), 0 \right\} \tag{8}
\]

with \(v \in \{0, 2 \lambda_{i,t}^l \ln(2) \} \), where \(\lambda_{i,t}^l \geq \cdots \geq \lambda_{i,t}^1 \) are the eigenvalues of \(M_t^T M_t \) with the model \(x = M_t u \). The corresponding similarity threshold is determined by

\[
D_{\text{ID}}^P = \frac{1}{l} \sum_{i=1}^{t} \lambda_{i,t}^l (1 - 2^{-R_{i}^{(i)}}). \tag{9}
\]

Proof. From the modeling of the database process, the database vector can be represented by a matrix-vector multiplication, \(x = M_t u \), i.e.

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_t \\
\end{bmatrix} = \begin{bmatrix}
 1 & 1 & 1 \\
 m_1 & 1 \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{t-1} & \ldots & \ldots & m_1 \\
\end{bmatrix} \begin{bmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_t \\
\end{bmatrix},
\]

where \((x_1, x_2, \ldots, x_t) \) is the database process and \((u_1, u_2, \ldots, u_t) \) the residual process. The parameters of the
where y is the input query and v the residual of the query.

Now, we analyze the similarity between query and database processes $d(x, y)$.

$$d(x, y) = \frac{1}{t} \sum_{i=1}^{t} \|x_i - y_i\|^2$$

$$= \frac{1}{t} (x - y)^T (x - y)$$

$$= \frac{1}{t} (M_t (u - v))^T (M_t (u - v))$$

$$= \frac{1}{t} (u - v)^T M_t^T M_t (u - v)$$

$$= \frac{1}{t} (u - v)^T Q \Lambda_t Q^T (u - v)$$

$$= \frac{1}{t} (\tilde{u} - \tilde{v})^T \Lambda_t (\tilde{u} - \tilde{v})$$

$$= \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i} (\tilde{u}_i - \tilde{v}_i)^2$$

$$= \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i} d(\tilde{u}_i, \tilde{v}_i)$$

Then, the optimal rate allocation for each time step is obtained by

$$\max_{\tilde{R}_{ID}^{(i)}, \ldots, \tilde{R}_{ID}^{(t)}} D_{ID} = \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i} \tilde{R}_{ID}^{(i)}$$

$$s.t. \quad \frac{1}{t} \sum_{i=1}^{t} \tilde{R}_{ID}^{(i)} \leq R_{ID},$$

$$\quad s.t. \quad \tilde{R}_{ID}^{(i)} \geq 0.$$ \hfill (21)

As all similarity-rate functions $\tilde{R}_{ID}^{(i)}(\tilde{R}_{ID}^{(i)})$ are concave and strictly increasing, we consider the equivalent problem

$$\max J = D_{ID} - v R_{ID}$$

$$s.t. \quad \tilde{R}_{ID}^{(i)} \geq 0,$$ \hfill (22)

where v is a positive Lagrange multiplier. The derivative of the cost function J with respect to $\tilde{R}_{ID}^{(i)}$ is

$$\frac{\partial J}{\partial \tilde{R}_{ID}^{(i)}} = \frac{2}{t} \lambda_{t,i} 2^{-\tilde{R}_{ID}^{(i)}} \ln(2) - 1.$$ \hfill (23)

Setting (23) to zero, we obtain

$$\tilde{R}_{ID}^{(i)} = -\log_2 \left(\frac{v}{2 \ln(2) \lambda_{t,i}} \right).$$ \hfill (24)

In order to satisfy the nonnegative constraint for the rate, each time step is only assigned a rate if the multiplier v is smaller than $2 \ln(2) \lambda_{t,i}$, with the largest multiplier being $v_{\max} = 2 \lambda_{t,1} \ln(2)$. \hfill (25)

Then we sweep over permitted values of the Lagrange multiplier $v \in \{0, 2 \lambda_{t,1} \ln(2)\}$ to obtain the $(R_{ID}^{(i)}, D_{ID}^{(i)})$ curve.

IV. SPECIAL CASE

A. R_{ID}^{PS} for Autoregressive Processes

We denote the symmetric matrix $M_t^T M_t$ from (14) as P_t. P_t is the product of triangular Toeplitz matrices. Note that such a product can also be used to represent the inverse of the autocorrelation matrix of an autoregressive process as defined in [8]. We discuss a special case of the prediction-based approach if only the smallest eigenvalue of P_t is known. As we will show in the next section, the smallest eigenvalue of P_t is bounded by the essential infimum of the power spectral density of the stochastic process, which is usually available in practical scenarios.

In this section, we give an approximation R_{ID}^{PS} for the identification rate. For that, we consider the same database and query autoregressive processes as in Theorem 1. Proposition 1 gives our result for R_{ID}^{PS}.

Proposition 1. Given a prediction-based identification system with the same setup as in Theorem 1, its identification rate is approximated by

$$R_{ID}^{PS}(D_{ID}) = \log_2 \left(\frac{2 \lambda_{\min}}{2 \lambda_{\min} - D_{ID}} \right),$$ \hfill (26)
where λ_{\min} is the smallest eigenvalue of $M_t^T M_t$ for $t \to \infty$.

Proof. Continuing from (17), we have

$$d(x, y) = \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i}(\tilde{u}_i - \tilde{v}_i)^2 \quad (27)$$

$$\geq \lambda_{\min} \frac{1}{t} \sum_{i=1}^{t} (\tilde{u}_i - \tilde{v}_i)^2 \quad (28)$$

$$= \lambda_{\min} \frac{1}{t} \| \tilde{u} - \tilde{v} \|^2 \quad (29)$$

$$= \lambda_{\min} \frac{1}{t} \| u - v \|^2 \quad (30)$$

$$= \lambda_{\min} d(u, v) \quad (31)$$

where (30) is due to the orthonormality of Q.

Now, let the residual processes u and v be \hat{D}_{ID}-similar, i.e., $d(u, v) \leq \hat{D}_{\text{ID}}$ With above result, we have

$$d(u, v) \leq \frac{d(x, y)}{\lambda_{\min}} \leq \frac{\hat{D}_{\text{ID}}}{\lambda_{\min}} := \hat{D}_{\text{ID}}. \quad (32)$$

Further, the residual process is unit variance Gaussian, and we have the identification rate [1]

$$R_{\text{ID}}^{PS} = \log_2 \left(\frac{2}{2 - \hat{D}_{\text{ID}}} \right). \quad (33)$$

\[\Box \]

B. Asymptotic Upper Bound of R_{ID}^{PS}

We first derive an asymptotic lower bound for the λ_{\min} of P_t. Similar to the derivation in [8], the inverse covariance matrix P_t

$$P_t = \left\{ \sum_{k=0}^{t-\max(i,j)} m_k m_{k+|i-j|} \right\} \quad (34)$$

is asymptotically equivalent to a Toeplitz matrix, as defined by a nonnegative function $g(\omega)$ with its domain $[-\pi, \pi]$,

$$T_t(g) = \{ r_{i,j} \} = \left\{ \sum_{k=0}^{\infty} m_k m_{k+|i-j|} \right\} \quad (35)$$

where $g(\omega)$ is

$$g(\omega) = \sum_{k=-\infty}^{\infty} e^{-jk\omega} \left\{ \sum_{i=0}^{\infty} m_i m_{i+k} \right\} = \sum_{k=0}^{\infty} m_k e^{-jk\omega} \quad (36)$$

The entries of the Toeplitz matrix are given by $g(\omega)$:

$$r_{i,j} = r_{i-j} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j|i-j|} g(\omega) d(\omega) \quad (37)$$

Let $\tau_{i,j}$ be the eigenvalues of $T_t(g)$. According to Theorems 2.1 and 6.2 of [9], if two sequences $\{P_t\}$ and $\{T_t(g)\}$

are asymptotically equivalent, then there are constants N_t and N_u such that

$$N_t \leq \lambda_{\min,k} \leq N_u, t = 1, 2, \ldots, k = 0, 1, \ldots, t - 1, \quad (38)$$

where the essential infimum $N_t = \text{ess inf} g$ is defined as the largest value of a for which $g(\omega) \geq a$ except on a set of total length or measure 0, and the essential supremum $N_u = \text{ess sup} g$. According to Corollary 4.2 of [9], the minimum eigenvalue of a Toeplitz matrix converges to the essential infimum of g

$$\lim_{t \to \infty} \min_{i} \tau_{i,i} = N_t. \quad (39)$$

Hence, we have N_t as the lower bound of λ_{\min}. Since the identification rate is an increasing function of the similarity threshold, R_{ID}^{PS} is upper bounded by using N_t.

V. NUMERICAL RESULTS

We consider a zero-mean Gauss-Markov source with unit variance and correlation coefficient $\rho = 0.3$. P_t approaches a Toeplitz matrix which is defined by using

$$g(\omega) = \frac{1}{1 + 2\rho \cos(\omega) + \rho^2}. \quad (40)$$

The $\text{ess inf} g(\omega) = 0.5917$ when $\cos(\omega) = -1$. We simulate sequences of length $t = 20000$ and observe that the minimum eigenvalue λ_{\min} of $M_t^T M_t$ converges to its lower bound 0.5917. We compare R_{ID}^P and R_{ID}^{PS} in Fig. 2.

![Fig. 2. R_{ID}^P and R_{ID}^{PS} for AR(1) sequences with $\rho = 0.3$.](image)

VI. CONCLUSIONS

In this work, we derive the identification rate of a prediction-based approach for autoregressive Gaussian processes. We show that it depends on a sequence of eigenvalues that we derive from our prediction model. Further, we approximate the identification rate for a special case and derive its upper bound by using the minimum eigenvalue of Toeplitz matrices.
VII. REFERENCES

