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ABSTRACT
The task of similarity identification is to identify items in
a database which are similar to a given query item for
a given metric. The identification rate of a compression
scheme characterizes the minimum rate that can be achieved
which guarantees reliable answers with respect to a given
similarity threshold [1]. In this paper, we study a prediction-
based quadratic similarity identification for autoregressive
processes. We use an ideal linear predictor to remove linear
dependencies in autoregressive processes. The similarity
identification is conducted on the residuals. We show that
the relation between the distortion of query and database
processes and the distortion of their residuals is characterized
by a sequence of eigenvalues. We derive the identification
rate of our prediction-based approach for autoregressive
Gaussian processes. We characterize the identification rate
for the special case where only the smallest value in the
sequence of eigenvalues is required to be known and derive
its analytical upper bound by approximating a sequence of
matrices with a sequence of Toeplitz matrices.

I. INTRODUCTION

The problem of similarity identification of compressed
data with zero false negative errors is studied in [1] [2].
This problem is investigated from an information-theoretic
viewpoint and introduces the term identification rate of
the source. It characterizes the minimal compression rate
that allows query answers with a vanishing false positive
probability. [1] [2] also provide identification rates for i.i.d.
Gaussian sources with quadratic distortion and for binary
sources with Hamming distance. For similarity identification
of correlated sources, [3] proposes tree-structured vector
quantizers that hierarchically cluster the data using k-center
clustering. In [4], the authors compare two transform-based
similarity identification schemes to cope with exponen-
tially growing codebooks for high-dimensional data. The
component-based approach shows both good performance
and low search complexity. In [5], the authors present an
analysis of the identification rate of the component-based
approach for correlated Gaussian sources.

For large time series databases, [6] proposes the Piecewise
Aggregate Approximation (PAA) to perform dimensionality
reduction on the data and to index the reduced data with a
spatial access method. In this paper, we study the similarity
identification of autoregressive processes using a prediction-
based approach.

The paper is organized as follows: In Section 2, we give
a brief review of the key concepts of the problem1. In
Section 3, we discuss the similarity identification rate of
our prediction-based approach for autoregressive Gaussian
processes. In Section 4, we characterize the identification
rate for a special case and derive its analytical upper bound.
Numerical examples for an AR(1) process are shown in
Section 5, and the conclusion is given in Section 6.

II. QUADRATIC SIMILARITY QUERIES

Let y = (y1, y2, .., yn)T denote the query sequence and
x = (x1, x2, .., xn)T the data sequence. A rate-RID iden-
tification system (T, g) consists of a signature assignment
function T : Rn → {1, 2, · · · , 2nRID} and a query function
g:{1, 2, · · · , 2nRID} × Rn → {no,maybe}.

The sequences x and y are called DID-similar if d(x,y) ≤
DID, specifically, the quadratic similarity is

d(x,y) ,
1

n
‖x− y‖2 =

1

n

n∑
i=1

‖xi − yi‖2, (1)

where ‖·‖ is the standard Euclidean norm. A similarity query
retrieves all data items that are DID-similar. The database
keeps only a short signature T (x) for each x. That is, given a
query and the signatures, the identification system indicates
whether the given query is DID-similar to an item in the
database. A system is called DID-admissible if we obtain
the output g (T (x),y) = maybe for any pair of data item
and query (x,y) which is DID-similar.

Such DID-admissible systems do not allow false negative
errors. Hence, Pr{maybe} represents only the false positive

1We follow the problem setup and adopt most notations in [1] and [2].
Therefore, we refer to [1] and [2] for more detailed background and problem
description.



errors of the identification system. Further, for given distri-
butions PX and PY and a similarity threshold DID, a rate R
is said to be DID-achievable if there exits a sequence of DID-
admissible systems

(
T (n), g(n)

)
that can achieve a vanishing

Pr{maybe} as n approaches infinity, i.e.

lim
n→∞

Pr
{
g(n)

(
T (n)(X),Y

)
= maybe

}
= 0. (2)

The identification rate RID of the source is defined as the
infimum of all DID-achievable rates.

III. IDENTIFICATION RATE OF
AUTOREGRESSIVE GAUSSIAN PROCESSES

A. Prediction-based Approach

We use a prediction-based approach to handle autore-
gressive processes for DID-similarity identification. The
prediction-based approach exploits the linear dependencies
among random variables by embedding a D̂ID-admissible
scheme in an open-loop prediction scheme. The optimal
linear predictors remove the linear dependencies in the
stationary process such that its prediction residual process is
a white noise process. If the data source is an autoregressive
process, its prediction residual process is an i.i.d. process.
The query is also handled by a linear predictor and the
prediction residual is fed into the D̂ID-admissible scheme.
Fig. 1 illustrates the described prediction-based scheme.
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Fig. 1. Prediction-based approach for autoregressive sources.
{Xt} and {Yt} are the database and query processes, re-
spectively. {X̂t} and {Ŷt} are the corresponding optimal
predictors. {Ut} and {Vt} are the prediction residuals.

We first describe the linear prediction part of the scheme.
Consider an autoregressive process of order m (AR(m)) and
mean µS as

St = Zt + µS(1− aTmem) + aTmS
(m)
t−1, (3)

where {Zt} is a zero-mean i.i.d. process, am =

(a1, . . . , am)T , S
(m)
t−1 = (St−1, . . . , St−m)T , and em is an

m-length vector with all entries being one.
For linear one-step prediction, we use Np preceding

samples S
(Np)
t−1 to predict the current random variable St,

where Np is greater than or equal to the order m. The
predictor is then given by

Ŝt = hTNp
S
(Np)
t−1 , (4)

where the constant vector hNp
= (h1, . . . , hNp

)T character-
izes the predictor.

The optimal linear predictor for the autoregressive process
is given by

h∗Np
= aNp , (5)

with aNp = (a1, . . . , am, 0, . . . , 0)T , where the first m
elements are given by the process parameter vector am and
the remaining Np −m elements are all zeros [7]. Then, the
prediction residual for optimal prediction is

Ut = St − Ŝt = Zt + µU , (6)

where {Ut} is an i.i.d. process (white noise) with mean µU =
µS(1− aTmem) and variance σ2

U = E[Z2
t ].

B. Identification rate RP
ID

We define the identification rate of the prediction-based
scheme RPID as the infimum over all DID-achievable rates
of the prediction-based approach. Theorem 1 gives RPID for
autoregressive Gaussian processes.

Theorem 1. Let both the database and the query be
generated by zero-mean autoregressive processes Xt =

Ut + aTmX
(m)
t−1 and Yt = Vt + aTmY

(m)
t−1 according to (3)

respectively, where {Ut} and {Vt} are two independent
zero-mean Gaussian i.i.d. processes with unit variance. The
identification rate of the autoregressive Gaussian source is

RPID =
1

t

t∑
i=1

R
(i)
ID (7)

R
(i)
ID = max

{
log2

(
2 ln(2)λt,i

v

)
, 0

}
(8)

with v ∈ {0, 2λt,1 ln(2)}, where λt,1 ≥ · · · ≥ λt,t are
the eigenvalues of MT

t Mt with the model x = Mtu. The
corresponding similarity threshold is determined by

DP
ID =

1

t

t∑
i=1

λt,i2
(

1− 2−R
(i)
ID

)
. (9)

Proof. From the modeling of the database process, the
database vector can be represented by a matrix-vector mul-
tiplication, x = Mtu , i.e.

x1
x2
...
xt

 =


1
m1 1

m1 1
...

. . .
mt−1 · · · m1 1



u1
u2
...
ut

 ,
where (x1, x2, · · · , xt) is the database process and
(u1, u2, · · · , ut) the residual process. The parameters of the



process form the matrix Mt and its diagonal elements are
mi,i = 1 for i = 1, 2, . . . , t. The other entries below
the diagonal depend on the coefficients of am which are
assumed to be estimated by an optimal predictor. The entries
above the diagonal are equal to zero, i.e., Mt is a lower
triangular matrix. Similarly, we can write the query process
as

y = Mtv, (10)

where y is the input query and v the residual of the query.
Now, we analyze the similarity between query and

database processes d(x,y).

d(x,y) =
1

t

t∑
i=1

‖xi − yi‖2 (11)

=
1

t
(x− y)T (x− y) (12)

=
1

t
(Mt(u− v))T (Mt(u− v)) (13)

=
1

t
(u− v)TMT

t Mt(u− v) (14)

=
1

t
(u− v)TQΛtQ

T (u− v) (15)

=
1

t
(ũ− ṽ)TΛt(ũ− ṽ) (16)

=
1

t

t∑
i=1

λt,i(ũi − ṽi)2 (17)

=
1

t

t∑
i=1

λt,id(ũi, ṽi) (18)

with d(ũi, ṽi) := (ũi − ṽi)2. Equation (15) comes from the
eigendecomposition of a symmetric matrix, where Q is a
t× t square matrix whose i-th column is the eigenvector qi
of MT

t Mt, and qTi qi = 1. Λt is the diagonal matrix whose
diagonal elements Λii are the corresponding eigenvalues λt,i.
Note the eigenvalues λt,i are positive for all finite i and t
since MT

t Mt is positive definite. Therefore, the Gaussian
variables ũ and ṽ are the projections of u and v on the
eigenvectors of MT

t Mt, ũ = QTu and ṽ = QTv. The
projected variables are still i.i.d.

E[(QTu)(QTu)T ] = E[QTuuTQ] = QT IQ = I. (19)

We assume for each time step an ideal identification
system for unit variance Gaussian data, i.e., d(ũi, ṽi) ≤ D̃(i)

ID

with identification rate R̃(i)
ID such that D̃(i)

ID = 2
(

1− 2−R̃
(i)
ID

)
[1]. With above analysis, we have x and y DID-similar with

d(x,y) ≤ 1

t

t∑
i=1

λt,iD̃
(i)
ID := DID. (20)

Then, the optimal rate allocation for each time step is
obtained by

max
D̃

(1)
ID ,...,D̃

(t)
ID

DID =
1

t

t∑
i=1

λt,iD̃
(i)
ID

s.t.
1

t

t∑
i=1

R̃
(i)
ID ≤ RID,

s.t. R̃
(i)
ID ≥ 0.

(21)

As all similarity-rate functions D̃(i)
ID

(
R̃

(i)
ID

)
are concave and

strictly increasing, we consider the equivalent problem

max J = DID − vRID

s.t. R̃
(i)
ID ≥ 0,

(22)

where v is a positive Lagrange multiplier. The derivative of
the cost function J with respect to R̃(i)

ID is

∂J

∂R̃
(i)
ID

=
2

t
λt,i2

−R̃(i)
ID ln(2)− 1

t
v. (23)

Setting (23) to zero, we obtain

R̃
(i)
ID = − log2

(
v

2 ln(2)λt,i

)
. (24)

In order to satisfy the nonnegative constraint for the rate,
each time step is only assigned a rate if the multiplier v is
smaller than 2 ln(2)λt,i, with the largest multiplier being

vmax = 2λt,1 ln(2). (25)

Then we sweep over permitted values of the Lagrange
multiplier v ∈ {0, 2λ1 ln(2)} to obtain the

(
RPID, D

P
ID

)
curve.

IV. SPECIAL CASE
A. RPS

ID for Autoregressive Processes
We denote the symmetric matrix MT

t Mt from (14) as Pt.
Pt is the product of triangular Toeplitz matrices. Note that
such a product can also be used to represent the inverse of
the autocorrelation matrix of an autoregressive process as
defined in [8]. We discuss a special case of the prediction-
based approach if only the smallest eigenvalue of Pt is
known. As we will show in the next section, the smallest
eigenvalue of Pt is bounded by the essential infimum of the
power spectral density of the stochastic process, which is
usually available in practical scenarios.

In this section, we give an approximation RPS
ID for the iden-

tification rate. For that, we consider the same database and
query autoregressive processes as in Theorem 1. Proposition
1 gives our result for RPS

ID .

Proposition 1. Given a prediction-based identification sys-
tem with the same setup as in Theorem 1, its identification
rate is approximated by

RPS
ID(DID) = log2

(
2λmin

2λmin −DID

)
, (26)



where λmin is the smallest eigenvalue of MT
t Mt for t→∞.

Proof. Continuing from (17), we have

d(x,y) =
1

t

t∑
i=1

λt,i(ũi − ṽi)2 (27)

≥ λmin
1

t

t∑
i=1

(ũi − ṽi)2 (28)

= λmin
1

t
‖ũ− ṽ‖2 (29)

= λmin
1

t
‖u− v‖2 (30)

= λmind(u,v), (31)

where (30) is due to the orthonormality of Q.
Now, let the residual processes u and v be D̂ID-similar,

i.e., d(u,v) ≤ D̂ID. With above result, we have

d(u,v) ≤ d(x,y)

λmin
≤ DID

λmin
:= D̂ID. (32)

Further, the residual process is unit variance Gaussian, and
we have the identification rate [1]

RPS
ID = log2

(
2

2− D̂ID

)
. (33)

B. Asymptotic Upper Bound of RPS
ID

We first derive an asymptotic lower bound for the λmin of
Pt. Similar to the derivation in [8], the inverse covariance
matrix Pt

Pt =


t−max(i,j)∑

k=0

mkmk+|i−j|

 (34)

is asymptotically equivalent to a Toeplitz matrix, as defined
by a nonnegative function g(ω) with its domain [−π, π],

Tt(g) = {ri,j} =

{ ∞∑
k=0

mkmk+|i−j|

}
(35)

where g(ω) is

g(ω) =

∞∑
k=−∞

e−jkω

{ ∞∑
i=0

mimi+k

}
=

∣∣∣∣∣
∞∑
k=0

mke
−jkω

∣∣∣∣∣
2

.

(36)

The entries of the Toeplitz matrix are given by g(ω):

ri,j = ri−j =
1

2π

∫ π

−π
e−j|i−j|g(ω)d(ω) (37)

Let τt,i be the eigenvalues of Tt(g). According to the The-
orems 2.1 and 6.2 of [9], if two sequences {Pt} and {Tt(g)}

are asymptotically equivalent, then there are constants Nl
and Nu such that

Nl ≤ λt,k, τt,k ≤ Nu, t = 1, 2, · · · , k = 0, 1, · · · , t− 1,
(38)

where the essential infimum Nl = ess inf g is defined as the
largest value of a for which g(ω) ≥ a except on a set of
total length or measure 0, and the essential supremum Nu =
ess sup g. According to Corollary 4.2 of [9], the minimum
eigenvalue of a Toeplitz matrix converges to the essential
infimum of g

lim
t→∞

min
i
τt,i = Nl. (39)

Hence, we have Nl as the lower bound of λmin. Since the
identification rate is an increasing function of the similarity
threshold, RPS

ID is upper bounded by using Nl.

V. NUMERICAL RESULTS
We consider a zero-mean Gauss-Markov source with unit

variance and correlation coefficient ρ = 0.3. Pt approaches
a Toeplitz matrix which is defined by using

g(ω) =
1

1− 2ρ cos(ω) + ρ2
. (40)

The ess inf g(ω) = 0.5917 when cos(ω) = −1. We sim-
ulate sequences of length t = 20000 and observe that the
minimum eigenvalue λmin of MT

t Mt converges to its lower
bound 0.5917. We compare RPID and RPS

ID in Fig. 2.
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Fig. 2. RPID and RPS
ID for AR(1) sequences with ρ = 0.3.

VI. CONCLUSIONS
In this work, we derive the identification rate of a

prediction-based approach for autoregressive Gaussian pro-
cesses. We show that it depends on a sequence of eigenvalues
that we derive from our prediction model. Further, we
approximate the identification rate for a special case and
derive its upper bound by using the minimum eigenvalue of
Toeplitz matrices.
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