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Abstract—This paper considers the problem of compression for
similarity queries [1] and discusses transform-based compression
schemes. Here, the focus is on the tradeoff between the rate of
the compressed data and the reliability of the answers to a given
query. We consider compression schemes that do not allow false
negatives when answering queries. Hence, classical compression
techniques need to be modified. We propose transform-based
compression schemes which decorrelate original data and regard
each transform component as a distinct D-admissible system.
Both compression and retrieval will be performed in the trans-
form domain. The transform-based schemes show advantages
in terms of encoding speed and the ability of handling high-
dimensional correlated data. In particular, we discuss component-
based and vector-based schemes. We use P{maybe}, a probability
that is related to the occurrence of false positives to assess our
scheme. Our experiments show that component-based schemes
offer both good performance and low search complexity.

I. INTRODUCTION

The problem of efficient data retrieval from large databases
has become more relevant in recent years. Retrieval based on
similarity queries is based on data items that are similar to a
given query as defined by a similarity threshold. The notion of
similarity is often defined by a specific metric measure, such
as Euclidean distance and Hamming distance.

In case of a mobile scenario(see Fig. 1 for example), the
capacity of communication between query and database side is
often limited. This motivates us to construct retrieval schemes
that reduce the communication between query and database
side along with a proper computational load on both sides.
Also, we are considering the false negative error type that
may occur in the retrieval process and which is not permit-
ted in some applications, such as security cameras. On the
other hand, although false positive errors can be detected by
further verification, they increases the computational cost, and
hence, reduce the efficiency. Therefore the tradeoff between
communication rate and the reliability of answers to the
query is an interesting question to explore. Our setting is
closely related to the problem of compression for similarity
queries as introduced in [1] [2]. [2] studies the problem
from an information-theoretic viewpoint and introduces the
term identification rate of the source which characterizes the
minimal compression rate that allows query answers with a
vanishing false positive probability, when false negatives are
not allowed. [2] [1] derives the identification rate for Gaussian
sources with quadratic distortion and for binary sources with
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Fig. 1: Querying can be performed locally at the client. Only
matched signatures are sent to the database that is stored in a
different location.

Hamming distance. For practical schemes, [3] constructs a
scheme based on a Type Covering lemma (TC) using lossy
compression as a building block. The results show that the
compression rate is close to the fundamental limit for binary
sources with Hamming similarity measure. In [4], the authors
present a shape-gain quantizer for i.i.d. Gaussian sequences:
scalar quantization is applied on the amplitude of data vector
and the shape (the projection on the unit sphere) is quantized
using a warped spherical code.

In our previous work [5], we propose tree-structured vector
quantizers that hierarchically cluster the data into sphere-
shaped quantization cells, that the k-center clustering method
is more suitable for similarity queries. However, vector quan-
tization is inherently computational expensive. Hence, it is
difficult to produce a sufficient number of centroids for a large
volume of high dimensional data.

Therefore, in this paper, we propose transform-based com-
pression schemes for similarity queries. On the database side,
transform-based schemes compute a linear transformation of
the data and use it to map the original data to uncorrelated
coefficients. Then each coefficient is quantized separately and
the indices are compressed by entropy coding. For the retrieval
process, the queries will be mapped through the same linear
transformation as the database and then compared with the



codebook stored in the database. The advantages of transform-
based schemes are threefold. First, the transform packs energy
to the first coefficients which is beneficial for bit allocation
schemes. Second, the transform-based schemes avoid comput-
ing Euclidean distances between high dimensional vectors in
the encoding process, and hence, require less computations
compared to vector quantization. Third, the transform-based
scheme can generate a large number of centroids from its
uncorrelated coefficients and is less affected by the curse of
dimensionality. These advantages are beneficial for practical
applications.

The paper is organized as follows. In Section II, we give
an introduction to compression for similarity queries. We
include a brief description of orthonormal transforms and
the preservation of Euclidean distance. In Section III and
IV, we discuss two transform-based schemes, namely vector-
based and component-based similarity queries. Section III
discusses the decision rules of the two approaches to similarity
queries in the transform domain. Section IV describes the two
corresponding encoding-retrieval schemes. Simulation results
are shown in Section 5.

II. BACKGROUND

A. Quadratic Similarity Queries: Problem Statement

Given two n-dimensional real vectors x and y, the quadratic
similarity [1] between x and y is defined as d(x, y) = ‖x−y‖2,
where ‖·‖ denotes the Euclidean norm. Consider a database,
denoted by F , which contains N independent n-dimensional
real vectors x(i), i.e., F =

{
x(i)

}N
i=1

. The problem investi-
gated is to design quantization schemes on the database, and
algorithms which retrieve vectors from the database similar
(measured in quadratic similarity) to a given query vector
based on the quantized database.

We firstly describe the quantization scheme. The proposed
quantization scheme Q(·) partitions the database F into K
cells, denoted by T = {Ck, k = 1, ...,K}, where the indi-
vidual cells Ck satisfy ∪Kk=1Ck = F and Ck ∩ Ck′ = ∅ for
k 6= k′. Specifically, the quantization scheme Q(·) takes any
vector x as input, and outputs the index k of the cell the vector
belongs, i.e., Q(x) = k if x ∈ Ck. The index Q(x) is called
the signature of x. Given a quantization cell, let x̂ be the
centroid of the cell, all vectors in the cell are represented by
x̂.

Next, we describe the query and retrieval process. An n-
dimensional real vector y is given as the query. For the
retrieval process, the query function g takes the query y and
the signature Q(x) of each vector x from the database as input,
and outputs the decision no or maybe. The data items x with
output decision maybe should be retrieved by the scheme.
The vectors x and y are called D-similar if d(x, y) ≤ D.
A scheme is called D-admissible if we obtain g(Q(x),y) =
maybe for any pair of data item and query (x, y) which satisfies
d(x, y) ≤ D. In other words, a D-admissible scheme should
retrieve all D-similar vectors in the database for a given query
vector, such that no false negatives are produced. D is called
the similarity threshold.

Consider a probabilistic model for database and query.
Specifically, let PX and PY denote the distribution of database
vectors and query vectors respectively.The objective is to
design quantization schemes that minimize the probability of
the output maybe when averaging over database vectors X
and query vectors Y. According to [1], this probability is
calculated as
P {g(Q(X),Y) = maybe} = P {g(Q(X),Y) = maybe|d(X,Y) ≤ D}P {d(X,Y) ≤ D}

+ P {g(Q(X),Y) = maybe, d(X,Y > D)}
= P {d(X,Y) ≤ D}+ P (ε),

(1)
where the second equality follows from
P {g(Q(X),Y) = maybe|d(X,Y) ≤ D} = 1 by the require-
ment of D-admissible schemes. Hence, minimizing (1) is
equivalent to minimize the probability of false positives P (ε).
That is, the probability P {g(Q(X)),Y) = maybe} can be
used as a performance measure for the investigated schemes.
In the following, we use the abbreviation P {maybe}.

Note that the concept of D-similarity allows us to define
an expansion of a set by the distance D. Let A be a set of
vectors. Further, let

ΓD(A) , {y ∈ Rn : ∃x∈Ad(x, y) ≤ D} (2)

be the expansion of set A by the distance D [4]. Then the
probability P {maybe} can be written as

P {maybe} =

K∑
k=1

P {Q(X) = k}P
{

Y ∈ ΓD(Ck)
}
. (3)

B. Orthogonal Transforms

We seek a linear transformation to transform the data into
uncorrelated coefficients. We desire an orthogonal transform
because orthogonality preserves the Euclidean distance. We
choose the Karhunen-Loève Transform (KLT) because it is
the orthonormal transform that optimally decorrelates different
dimensions of a data vector and compacts energy into the
first few dimensions. In the following text, we give a brief
description of the KLT and its Euclidean distance conservation
property. We use bold characters x to denote vectors, and non-
bold characters x to denote one component of the vector x.

1) Karhunen-Loève Transform: The Karhunen-Loève
transform (KLT) is a type of orthogonal transform that
depends on the covariance matrix of the data. Let x̃ ∈ Rn be
a real random vector of n dimensions, Φ be the eigenmatrix
of the covariance matrix Rx̃ of x̃. Since the covariance
matrix is symmetric, its eigenmatrix Φ is orthonormal
ΦΦT = I . We use the transpose of the eigenmatrix ΦT

as the KLT of x̃ which gives uncorrelated coefficients
E{xxT } = E{ΦT x̃(ΦT x̃)T }=ΦTRx̃Φ = Λ, where Λ is a
diagonal matrix with diagonal entries as the eigenvalues of
the covariance matrix Rx̃.

2) Euclidean Distance Conservation: The Euclidean dis-
tance between two vectors in the original vector space is
x̃1and x̃2 is ‖x̃1 − x̃2‖22 = ‖x̃1‖2 + ‖x̃2‖2 − 2〈x̃1, x̃2〉. Due
to the energy conservation property of orthogonal transforms,
the vector length in the transform domain is the same as in
the original space. Then the Euclidean distance between two
vectors is only determined by their inner product 〈x̃1, x̃2〉. Let



x1 and x2 be the corresponding vectors in transform domain.
Eqn. 4 shows that the inner product between two vectors
in the original vector space is the same as in the transform
domain. Hence, the Euclidean distance between two vectors
is preserved through the orthogonal transform.

〈x1, x2〉 = xT1 x2
= (Φx̃1)T (Φx̃2)

= x̃T1 ΦTΦx̃2

= x̃T1 x̃2
= 〈x̃1, x̃2〉 (4)

III. SIMILARITY QUERIES IN TRANSFORM DOMAIN

In the original space, let a query visit a quantization cell
and the query y is compared to the centroid x̂ of the cell to
decide whether y and the data items associated with the cell
are similar or not. The Euclidean distance follows the triangle
inequality and is used as the similarity measure. The decision
rule Eqn. 5 guarantees that the system will not produce any
false negatives as required for D-admissible systems

g(Q(x), y) =

{
maybe d(y, x̂) ≤ d∗(x, x̂) +D;

no otherwise.
(5)

Similarity queries in the transform domain should retrieve
all the true positive data items that are retrieved in the
original space under the same similarity threshold D. Due
to the Euclidean distance conservation property of the KL
transform, the original as well as the transform domain share
the same similarity measure. Therefore, Eqn. 5 still applies in
the transform domain. Specifically, we discuss two schemes
that handle the similarity queries in the transform domain.

A. Vector-based Similarity Queries

For the vector-based approach, we directly compare query
vectors against database centroid vectors of the cells in the
transform domain. Since the KLT is an orthogonal transform,
the transform partitions the space into parallelepipeds. To
approximate the similarity of parallelepiped cells d∗(x, x̂),
we simply sum up the similarities d∗(xi, x̂i) of uncorrelated
transform coefficients. This forms an upper bound for the true
cell similarity, d∗(x, x̂) ≤

∑n
i=1 d

∗(xi, x̂i). Then the vector-
based decision rule is given as

g(Q(x), y) =

{
maybe d(y, x̂) ≤

∑n
i=1 d

∗(xi, x̂i) +D;

no otherwise
(6)

Fig. 2 shows that the similarity approximation of paral-
lelepiped cells results in larger sphere-shaped cells. While the
larger approximated cell similarity guarantees that the sys-
tem remains D-admissible, the interstices created by packed
spheres degrade the performance.

B. Component-based Similarity Queries

For the component-based approach, transform coefficients
are quantized separately and each component forms a distinct

Fig. 2: Spherical cells approximated by the cor-
responding parallelepiped cells. The approximated
cell similarity is much larger than the original cell
similarity.
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Fig. 3: Vector-based similarity query (sphere) and
component-based similarity query (square).

Di-admissible system, where Di ≤ D. For multivariate
Gaussian data, the transform coefficients are statistically inde-
pendent. To guarantee that the whole system is D-admissible,
each component should also constitute a D-admissible system,
that is Di = D. That is, the shape of the query changes
from hypersphere in the origin domain to hypercube with edge
length Di in the transform domain. See Fig. 3.

In the query process, the i-th component of the query
transform coefficient yi searches the quantization intervals of
the corresponding component under the similarity threshold
D. Then we have the component-based decision rule as

g(qi(xi), yi) =

{
maybe d(yi, x̂i) ≤ d∗(xi, x̂i) +D;

no otherwise,
(7)

where qi is the quantizer and x̂i the quantization centroid of
the i-th component. The database vectors are labeled as maybe
if and only if all its transform coefficients are determined as
maybe.

IV. PROPOSED ENCODING-RETRIEVAL SCHEMES

The compression is performed in the transform domain.
Assume that we have a database with N vectors X =
{x̃1, x̃2, . . . , x̃N}, where x̃i ∈ Rn. After performing the KLT
on the data set, the n transform coefficients are then quantized
by n distinct scalar quantizers. Each transform coefficient
generates a sub-codebook Ci. Then one data vector is encoded
as the concatenation of its encoded transform coefficients
Q(x) = [q1(x1), q2(x2), ..., qn(xn)]. The complete codebook
is obtained by the Cartesian product of component codebooks
T = C1 × C2 × · · · × Cn.



A. Vector-based Scheme

The vector-based retrieval scheme performs exhaustive
search on the database. The codeword of a cell is the con-
catenation of the component centroids x̂ = [x̂1, x̂2, . . . , x̂n].
Guided by the decision rule Eqn. 6, the query retrieves the
data items that are associated with the cells labeled as maybe.

The vector-based retrieval scheme requires k1 × k2 . . . ×
kn distance calculations for one query, where ki stands for
the number of quantization intervals for the i-th component.
Therefore, the computational costs of the vector-based scheme
grows exponentially with the dimension of the data vector.
Hence, the vector-based scheme is infeasible for applications
with high dimensional data vectors.

B. Component-based Scheme

1) Bit allocation: The KLT compacts the signal energy
into a few components. Hence it is reasonable to assign
different rates to the components based on their corresponded
component variance. For multivariate Gaussian signals, the
components are statistically independent. We formulate the bit
allocation problem to minimize the overall P{maybe} as

min

M∏
i=1

Pi

s.t.
1

M

M∑
i=1

Ri ≤ R,

(8)

where Ri is the rate for i-th component, and Pi is P{maybe}
of the i-th component.

We use the theoretical identification rate for Gaussian
sources to assign component rates. According to [1], the
identification rate for the case that query and database have
the same Gaussian distribution with finite second moment σ2

is

RID(D,PX , PY ) =

{
log( 2σ2

2σ2−D ) for 0 ≤ D < 2σ2

∞ for D ≥ 2σ2

(9)

Eqn. 9 shows that if the similarity threshold D is larger than
2σ2, then X and Y are inherently D-similar. In this case,
P{maybe} converges to 1. Therefore, we assign 0 bits to
the components which similarity threshold D is larger than
twice of their variance. For the case 0 ≤ D < 2σ2

i , we
explore the relation between rate and component variance as
shown in Eqn. 9. Specifically, we set a base rate Rbase to the
component with the largest eigenvalue λbase. Then the rate
assigned to the i-th component is depended on the ratio of two
component identification rates. In this sense, the component
rate is determined by both component variance and similarity
threshold D. Since the component variances are equal to the
corresponding eigenvalues of the covariance matrix, we can
summarize the bit allocation scheme for transform coefficients
as

Ri =

{
Rbase − log λbase(2λi−D)

λi(2λbase−D) for 0 ≤ D < 2λi

0 for D ≥ 2λi
(10)
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Fig. 4: Component-based retrieval scheme.

2) Component-based Retrieval: The component-based re-
trieval scheme is shown in Fig. 4. We use the KLT as
obtained from the database data to transform the query into the
transform domain. For each component, we follow the decision
rule Eqn. 7 and retrieve indices that are labeled as maybe. Let
R(yi) denote the retrieved index set of the i-th component. In
this way, the total indices that should be retrieved are obtained
by the Cartesian product of the retrieved component index sets
R(y) = R(y1)×R(y2)× · · · × R(yn).

3) C-tree Structure: The component-based scheme requires
only k1 + k2 + . . .+ kn one-dimension distance calculations.
The major computational cost is the scanning of the combina-
tions of the retrieved component index set. This computational
cost is exponential in the number of bits. Hence, we propose
a tree-structured codebook on the product codes, namely C-
trees, to avoid the scanning of codewords that are not assigned
to database items. C-trees iteratively split the data space based
on the vector components.

The construction of C-trees involves training and enroll
steps. In the training step, the component codebooks of the
first m principle components are generated independently. The
size of each component codebook ki = 2Ri is determined
by the bit allocation. After the training step, we enroll the
database items into the C-tree with trained component code-
books. We start from the first principle component with the
highest eigenvalue. That is, the data items are assigned to
their corresponding cells by the nearest neighbor selection on
their first principle component. Then the process is recursively
applied to each cell of the remaining components that are
ordered by their corresponding eigenvalues. The descending
divisions are only defined by the data items that belong to the
parent cell. The enroll step is completed after all the database
items are assigned to the leaf nodes. In this sense, the data that
is labeled with the associated leaf node index can be stored
separately from the tree.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We test our proposed schemes on both synthetic data and
real data from image descriptors. For the synthetic data, we
use N = 105 random vectors generated from a 2-dimensional
Gaussian source with correlation coefficient ρ = 0.6. For the
real data, we extract the first 24 dimensions of one million
SIFT image descriptors from the SIFT1M dataset [6].

To make sure that we have the ground truth for the experi-
ment, we sample M vectors directly from the database and use
them as queries. P{maybe} is regarded as the performance



measure of the scheme. The lower P{maybe}, the better.
Given a single query, P{maybe|y} is estimated by

P̂ {maybe|y} =

∑
k∈R(y)

|Ck|

N
, (11)

where the retrieval process R(y) outputs the indices of the
retrieved nodes. |Ck| is the number of data items associated
with the node k. Finally, P{maybe} is obtained by averaging
over all M queries

P̂{maybe} =
1

M

M∑
i=1

P̂{maybe|y}. (12)

B. Results

We compare P{maybe} for the two transform-based
schemes and the non-transform product codes. Full-search
vector quantization serves as the baseline method. We test all
four schemes on the synthetic data. We omit the test of the
vector-based scheme on the SIFT1M data due to the extremely
high computational cost of its exhaustive search. Further, as
shown for the synthetic data, its performance is worse than
the component-based scheme.

Figs. 5 and 6 show the results of two-dimensional Gaussian
and SIFT1M data, respectively. We can make three observa-
tions from the results. First, full-complexity unstructured clus-
tering has the best performance for two-dimensional Gaussian
data due to its space-filling advantages [7]. However, the com-
plexity for full search is O(NnK+1 logN) with K clusters,
N data samples, and n-dimensional vectors. The complexity
grows exponentially as data rate and volume increase. On the
other hand, the product codes use scalar components and the
complete codebook is generated by the Cartesian product of
component codebooks. Hence, the computational complexity
is limited and product codes are more practical. Second,
among the transform-based schemes, the component-based
scheme performs better than the vector-based scheme. The
reason is that the vector-based scheme uses an approximate
cell similarity which can be much higher than the true cell
similarity in the decision rule. This increases the false positive
errors of the scheme significantly. Third, the component-based
scheme with KLT has better performance than the component-
based scheme without KLT (non-transform scheme). This is
due to the efficient bit allocation among individual component
systems. The advantage of the component-based scheme with
KLT is more obvious for the SIFT1M dataset.

VI. CONCLUSIONS

We explore transform-based compression schemes for
quadratic similarity queries. For that, we consider orthonor-
mal transforms that preserve the Euclidean distance. We
compare vector-based and component-based approaches. We
give component-based decision rules for quadratic similarity
queries. We also propose a bit allocation solution for our com-
ponent systems. Our experiments show that the component-
based scheme with KLT shows good performance for handling
high-dimensional data while maintaining a low complexity.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
R/bits

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

P{
m

ay
be

}

component-based
vector-based
component-based w/o KLT
full-complexity queries

Fig. 5: Results for two-dimensional Gaussian data with σ2 = 1
and ρ = 0.6.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
R/bits

10-5

10-4

10-3

10-2

10-1

P{
m
ay
be
}

component-based
non-transform
full-search
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