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ABSTRACT

The scoring function is a central component in mobile visual
search. In this paper, we propose an embedded 3D geom-
etry score for mobile 3D visual search (M3DVS). In con-
trast to conventional mobile visual search, M3DVS uses not
only the visual appearance of query objects, but utilizes also
the underlying 3D geometry. The proposed scoring func-
tion interprets visual search as a process that reduces uncer-
tainty among candidate objects when observing a query. For
M3DVS, the uncertainty is reduced by both appearance-based
visual similarity and 3D geometric similarity. For the lat-
ter, we give an algorithm for estimating the query-dependent
threshold for geometric similarity. In contrast to visual simi-
larity, the threshold for geometric similarity is relative due to
the constraints of image-based 3D reconstruction. The exper-
imental results show that the embedded 3D geometry score
improves the recall-datarate performance when compared to
a conventional visual score or 3D geometry-based re-ranking.

1. INTRODUCTION

Mobile 3D visual search introduces the concept of 3D geo-
metric information into the search problem [1] [2] [3]. It im-
proves the search results by assessing the actual 3D geometry
when compared to conventional appearance-based 2D image
methods. Specifically, it addresses scenarios in which differ-
ent real 3D objects appear similar in captured images. For
example, consider the case where a poster shows a picture of
areal 3D object.

Recently there are a number of works which has remark-
able improvements in reducing the size of image feature data
and in reducing the computation footprint in searching pro-
cess for mobile visual search [4] [5] [6]. For the design of
scoring function, the authors of [7] introduced a co-indexing
scheme that incorporates the image similarities based on lo-
cal features and semantic attributes as the ranking criteria. [8]
proposed a bi-layer graph structure for querying multi-modal
data. In this work, we discuss how to combine the geomet-
ric information with the visual appearance of the object. We
introduce an embedded 3D geometry score that improves the
recall-datarate performance of the mobile search system.

For a given query, the rank of a retrieved object can be de-
termined by its visual appearance and geometric layout sim-
ilarity. Conventional mobile visual search evaluates the geo-
metric information of the object in the geometric consistency
check (GCC) step of the retrieval pipeline [9] [10] [11] [12].
The GCC serves either as a separate re-ranking of the short
list of objects obtained from visual descriptor matching or as
a rejection rule for outliers. Hence, the final ranking does
not reflect all information of the object that can be obtained
through search. In this paper, we take a different perspective
to look on this problem. Inspired by the work of [13] which
gives an explanation of the relation between term-frequency
and inverse document-frequency (#f-idf) and mutual informa-
tion, we propose to use the mutual information between query
and candidate objects to determine an embedded 3D geome-
try score for ranking. With that, we interpret visual search as a
process that reduces the uncertainty among candidate objects
when observing a query. Before observing a query, we have
no prior preference over candidate objects. Hence, the can-
didate objects on the server are equally likely to be retrieved.
After observing a query, the updated object distribution con-
ditioned on the query is obtained. The resulting mutual infor-
mation between query and candidate objects will lead to the
proposed embedded 3D geometry score.

For the mobile 3D visual search system, we build on our
previous work [1]. We construct scalable multi-view vocabu-
lary trees based on multi-view image features [2] [14]. More-
over, multi-view imagery is used to obtain the 3D geometric
information of an object [15].

The paper is organized as follows: Section 2 summarizes
the 3D feature correspondences. Section 3 discusses the geo-
metric similarity parameters. Section 4 introduces the visual-
geometric score. Section 5 discusses our experimental results.

2. 3D FEATURE CORRESPONDENCES

Using the Bag-of-Words model, let O = {o1,...,0x} be
the set of candidate objects with size |O] = K. Let V =
{v1,...,up} be the set of visual words created by the vo-
cabulary tree, and let Q@ = {qu,...,qn } be the set of query
descriptors of size N. Each query descriptor g; is a con-
catenation of an appearance-based multi-view descriptor v;



and a 3D location g; such that ¢; = <UZ:>, where, for ex-

1
ample, v; € R'?8 is a SIFT-based [16] multi-view descriptor
associated with the 3D location g; € R3.

For correctly matched feature pairs, the 3D world coordi-
nate of object points w,, in the database can be obtained by the
seven parameter Helmert transformation [17] of the 3D world
coordinate of query points E; according to

w, = n(g;) = kg, + 1, (1)
where k is the scale parameter in R*, ® the rotation matrix in
R3,and t the translation parameter in R3. The estimation of
multiple parameters is time consuming and makes real-time
applications impossible. There are several proposals to accel-
erate the geometric consistency check step. For image-based
retrieval, [18] estimates parameters such as scale or orienta-
tion of local descriptors to reduce the computation. In 3D
space, however, we consider the 3D misalignment between
correspondences ||g; — walla = ||€(g,0)|]2 = d(g,0) to as-
sess the 3D geometric similarity. Note that the 3D misalign-
ment depends on the Helmert transformation between two 3D
coordinate systems, but it is independent of the absolute lo-
cation of individual points in 3D space. For details on how
to determine the relative 3D world coordinates, please see our
previous work [1,3].

We assume that the correspondences follow a global trans-
formation between two 3D coordinate systems for correctly
matched objects. Further, we model the distribution of the 3D
error for correct matches by the Gaussian probability density
function.
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We assume that the components e,, v € {z,y, z}, of the 3D
error € are i.i.d. with mean p,,v € {x,y,z}. Thatis, the
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covariance matrix is diagonal ¥ = o2 (g ! tl)) and the mean

3D error is fi. Hence, the distribution of the 3D error can be
factorized as
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And the 3D error follows a Nakagami distribution.

Fig. 1 illustrates an example of 3D feature correspon-
dences for a correctly matched object and the histogram of
3D misalignment. Note the distribution of the 3D misalign-
ment.
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3. GEOMETRIC SIMILARITY PARAMETERS

We exploit the observation that the 3D error of correctly
matched objects follows a distribution of small variance when
compared to the wide distribution of object points in the 3D

coordinate space. Further, we exploit the best-feature-first
policy for sending the query descriptors to the server [3].
This allows us to use the first part of query descriptor se-
quence as the training sequence 1'. This first part holds the
most robust descriptors and permits us to estimate the 3D
geometric parameters of the 3D misalignment robustly. Note,
due to the constraints of image-based 3D reconstruction,
these parameters depend on both the given query and the
available objects.

In order to cope with the outliers and a small sample size
problem, we use the robust statistic estimator median absolute
deviation (MAD) [19] .

MAD; (x;) = ¢ - median,; (| x; — median;(z;) |), (4)

where c is a constant factor that depends on the distribution
of the data x;.

We estimate the median and MAD of the 3D misalign-
ment distance d;; := d(g;, 0;) for objects whose number of
visual matches exceeds a threshold 7. We use the reciprocal
of the MAD and multiply with the constant C' to obtain the ge-
ometric similarity threshold ©; for each object j = 1,..., K.
The constant factor C' is used to control the precision of pa-
rameters and is found empirically. The subsequent matching
will check the geometric misalignment with respect to each
object. Objects that exceed the geometric similarity thresh-
old will be rejected. Note that due to the threshold 7, not all
the candidate objects will have sufficient geometric similarity.
Note that descriptors which indicate visual similarity without
corresponding geometric similarity are less discriminative.

Algorithm 1 3D Geometric Error Estimation

Initialize: Set the distance vector {d;;} = 0 for i =
1,...,7T and for all objects 5 =1, ..., K.
do Update the distance vector by matching the incoming of
descriptors of length 7" against the vocabulary tree;
for all o; € O do

if |[My(g; € T'|oj)| > J then

mj < Mediani(dij)

end if
end for
2. Output ©; and m, forj=1,... K.

4. AN EMBEDDED 3D GEOMETRY SCORE

After obtaining 3D geometric parameters from the training se-
quence, we can formulate the embedded 3D geometry score
as the mutual information between query and candidate ob-
jects.

K
I(0;V,G) =) ¢, )
j=1



(a) 3D correspondences for a correctly matched object. Blue points are the 3D
coordinates of the query object. Red points are the 3D coordinates of the visually

matched object. The links between points show the 3D misalignment.
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(b) Histogram of 3D misalignment as obtained from (a).

Fig. 1. Example of 3D misalignment.

where V' is the set of visual descriptors and G the set of 3D
locations of feature points. c; is the embedded 3D geometry
score of the object 0;.

Before observing any queries, we have no prior preference
over candidate objects. Hence, we assume the candidates are
equally likely, P(o;) = % for all o; € O. So the entropy of
Ois

H(0)=~ ) P(oj)logsP(0;)

()jEO
1 1 (6)
= —K 3-loga ()
= log K

We assume the process of quantizing one query descriptor
q; into a visual word v;, i.e., ¢; — wv; is equivalent to the
event of random selecting a visual word from the whole set
of visual words. The probability of selecting specific visual

word is P(v;,0;) =

%, where f;; is the frequency of v;

associated with object 0;. And F' is the total frequency of all
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visual words in the whole set of objects. Note that the query
distribution is proportional to the visual word frequency in
the set of objects is very a strong assumption. However, this
assumption is actually embedded in the heuristics of the tf-idf
which performs well in practice.

When a g; is quantized to a visual word v;, we can ob-
tain the knowledge that only a subset of objects M, (v;|O) =
M, () is associated with the matched visual word v;. The
number of objects in the subset is | M, (i)| = K;, where K; =
> o L(ny,(0) = 1). ny(o) is the number of visual words as-
sociated with an object, and 1 is the indicator function. The

1
probability of candidate objects becomes P(o;|v;) = T
Hence, the conditional entropy of O given v; is ’
H(Olvi)=— > P(oj|vi)logaP(0;|v:)
0j eM, (’L)
(7

1 1
K logy(—
’Kilog2(Ki)

log2 K;

Objects not associated with the matched visual words have
zero probability. Hence, they do not contribute to the condi-
tional entropy.

The subset of M, (i) can be further narrowed down by
considering the geometric constraint mg and g

[wé — g; = moll2 < 0

®)

where wg are the 3D world coordinates of the objects O
in the subset M, (7). In this way, only objects that satisfy the
geometric similarity threshold will remain in the set. Hence,
the number of objects in the subset M, (¢) is reduced.

After using the geometric similarity threshold, the subset
of objects with respect to the query ¢; becomes M, (v;, g;|0) =
M, (7) with size | M, ()| = L;; K; > L;. The probability of

candidate objects becomes P(o;|v;, ;) = T Hence, the

entropy of candidate objects O conditioned on both matched

visual words and 3D locations is
H(Olv;, g;) = logzL; )

Fig. 2 shows the relations between sets of objects with visual
and geometric constraints.

Finally, the expected mutual information between objects
and both query descriptors is

1(0;V,G) =H(0) — H(O|V,G)
= Zp(vi, 9:)(H(O) — H(Olv;, g:))

K N 3
:zj:zi:@jloggi

(10)
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From (11) we see that, the term I is similar to the inverse
i

document frequency term. The ﬁ-j is corresponds to the term



Fig. 2. The black dots represent objects in the server. The
triangle represents one query descriptor. The figure illustrates
that the visual and geometric constraints narrow down the ob-
jects associated with the query descriptor.

frequency term which is an estimation of the occurrence prob-
ability of a geometry-embedded word. The total frequency of
all words F' is a constant factor. The embedded 3D geometry
score c; for a single object o; is

N
~ K
C; = Zfijlong' (11)
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Fig. 3. The pipeline of the embedded 3D geometry score.

5. EXPERIMENTAL RESULTS

5.1. Dataset and Setup

We evaluate our embedded 3D geometry score for the multi-
view image dataset Stockholm Buildings' which comprises 50
buildings of that city. The server holds 254 images of the 50
buildings. At least 2 views have been recorded for each build-
ing. The client may use up to 100 additional test images of
the 50 buildings. We acquired server images using a Cannon
IXUS50 digital camera at a resolution of 2592 x 1944 pixels.
Two sets of test images have been recorded using the Cannon
camera and a SONY Xperia Z2 mobile at different viewpoints
and times of a year so as to have lighting and viewpoint varia-
tions compared to the server images. An Android app can be
downloaded from the project website? for online testing.

http://people.kth.se/~haopeng/sthlmbuildings/
’http://people.kth.se/~haopeng/M3DVS/index.html
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Fig. 4. Comparison of the recall-datarate between different
scoring schemes.

The vocabulary tree we use at the server is constructed
using hierarchical multiview features. We set D = 5 for the
number of the tree levels and K = 8 for the branches. the
total storage of the vocabulary tree is 23.5MB compared to the
5.3GB original view by view feature database and the 400MB
multi-view feature database. The recall-datarate is used to
evaluate the relationship between retrieval performance and
the datarate that a client sends to the server. The recall is
considered successful, only if the correct object appears on
the top of the ranking. The datarate is the average size of the
query sent to the server.

5.2. Comparison of Scoring Functions

We test our proposed geometry-embedded score with our
previous geometry-based re-reranking method and the con-
ventional visual score. The geometry-based re-reranking
method evaluates the appearance and geometric separately.
We test retrieval performance on datarate that vary from 3.0
KB/query to 12.2 KB/query. The experimental results in Fig.
3 show that the recall rate increases as the data rate increases.
The scores considering geometric information have better
performance than the original visual score as expected. The
proposed embedded 3D geometry score improves the recall-
datarate in general, except at the lowest rate which is due
to the short length of the used training sequence. The recall
using the embedded 3D geometry score can reach over 90%
at a lower datarate.

Fig. 4 shows examples of the ranking results using the
embedded 3D geometry score. The image on the left is the
query image, and the five images on the right show the top-



ranked objects in decreasing order from left to right. We ob-
serve that the retrieved objects share both visual and geomet-
ric similarities to the query.

6. CONCLUSIONS

We introduced an embedded 3D geometry score to reflect
both visual appearance and underlying geometry of objects
in the ranking score. We show that with the estimated geo-
metric parameters, the scoring can be derived from the mu-
tual information between query and candidate objects. The
retrieval performance is improved when compared to our pre-
vious geometry-based re-ranking result. The datarate can be
further reduced by applying local feature descriptor compres-
sion as standardized in MPEG-CDVS [20].
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Fig. 5. Examples of ranking results using the embedded 3D geometry score.



