
Wyner-Ziv Coding of Video

with Unsupervised Motion Vector Learning

David Varodayan∗, David Chen, Markus Flierl and Bernd Girod

Max Planck Center for Visual Computing and Communication
Stanford University, Stanford, CA 94305, USA

Abstract

Distributed source coding theory has long promised a new method of encoding video that is much lower in
complexity than conventional methods. In the distributed framework, the decoder is tasked with exploiting the
redundancy of the video signal. Among the difficulties in realizing a practical codec has been the problem of
motion estimation at the decoder. In this paper, we propose a technique for unsupervised learning of forward
motion vectors during the decoding of a frame with reference to its previous reconstructed frame. The technique,
described for both pixel-domain and transform-domain coding, is an instance of the Expectation Maximization
algorithm. The performance of our transform-domain motion learning video codec improves as GOP size grows.
It is better than using motion-compensated temporal interpolation by 0.5 dB when GOP size is 2, and by even
more when GOP size is larger. It performs within about 0.25 dB of a codec that knows the motion vectors through
an oracle, but is hundreds of orders of magnitude less complex than a corresponding brute-force decoder motion
search approach would be.

Keywords: Wyner-Ziv video coding, Expectation Maximization

1. Introduction

Wyner-Ziv coding of video offers an alternative
to predictive video coding methods for applica-
tions requiring low-complexity encoding [1,2]. In
this paper, we limit the encoding complexity to a
level at which video frames can be encoded sep-
arately, not jointly. Separately encoded frames
can nevertheless be decoded jointly, since there is
no complexity constraint at the decoder. Specif-
ically, each Wyner-Ziv encoded frame can be de-
coded with reference to side information derived
from one or more already reconstructed frames.
The Slepian-Wolf [3] and Wyner-Ziv [4] theo-
retical results indicate that the penalty in per-
formance for separate (or distributed) encoding
should be small, but as a current survey paper
notes, “despite recent advances, distributed video

∗Corresponding author. Tel.: +1-650-724-3647. E-mail
address: varodayan@stanford.edu (D. Varodayan).

coding rate-distortion performance is not yet at
the level of predictive coding” [5].

One reason is that separate encoding of frames
precludes motion estimation at the encoder. The
decoder, instead, estimates the motion in order to
construct appropriately motion-compensated side
information. Three basic approaches for estimat-
ing motion at the decoder have been suggested.

1. Repeated decoding using side information
compensated by every possible motion field
was proposed in [2]. This method can
be employed in conjunction with blockwise
Slepian-Wolf coding/decoding. But it is
astronomical in computation for framewise
coding/decoding because of the vast num-
ber of motion field configurations.

2. Transmission of a sufficient fraction of
frames as keyframes (which are decoded
without reference to side information) en-



2 D. Varodayan, D. Chen, M. Flierl and B. Girod

ables motion-compensated temporal inter-
polation (MCTI) at the decoder [6,7]. This
penalizes coding efficiency significantly be-
cause keyframes incur a high encoding rate.

3. Supplementary transmission of robust hash
information about each block of an encoded
frame lets the decoder perform a rudimen-
tary motion search [8]. Since the encoder
transmits the hashes at a constant rate, it
wastes bits when the motion is small. On
the other hand, if there is too much change
between frames, the fixed-rate hash may be
insufficient for reliable motion search.

Each of these three methods suffers from ei-
ther excessive computational burden or the need
for a significant supplementary bitstream that is
decoded without reference to side information.
In this paper, we propose an alternative tech-
nique for the decoder to use only the Wyner-Ziv
bitstream of a frame to efficiently learn the for-
ward motion vectors with respect to the previ-
ous reconstructed frame. We have already ap-
plied this method to the closely related problem
of distributed compression of stereo images, in
which one encoded image is decoded with refer-
ence to side information derived from disparity-
compensated versions of the other image. Our
algorithm decodes the image while learning the
disparity field between the pair of images [9–13].

In Section 2, we develop the technique for pixel-
domain Wyner-Ziv video decoding that learns
forward motion vectors unsupervised. We de-
scribe the algorithm formally within the frame-
work of Expectation Maximization (EM) [14] in
Section 3. Section 4 extends the technique to
the transform domain to exploit the spatial re-
dundancy within frames. Section 5 reports sim-
ulation results for transform-domain Wyner-Ziv
video coding based on this technique for unsu-
pervised motion vector learning at the decoder.

2. Pixel-domain Technique for Forward Motion
Vector Learning at the Decoder

2.1. Overview

Consider the luminance components of two
consecutive video frames, quantized to bit depth

LDPC
Encoder

LDPC
Decoder

rate control

S θ

Probability
Model

ψ

X X

Y

(a)

LDPC
Encoder

LDPC
Decoder

rate control

Probability
Model

S θ

Motion
Oracle

ψ

X X

Y

(b)

ψ

LDPC
Encoder

LDPC
Decoder

rate control

Probability
Model

S θ

Motion
Estimator

X

Y

X

(c)

Fig. 1. Coding X with respect to Y with (a) zero motion,
(b) a motion oracle, and (c) unsupervised forward motion
vector learning

d, where d > 1. Let X be the quantized lumi-
nance frame to be encoded, and Y the previous
quantized luminance frame available at the de-
coder. Denote by M the forward motion vector
field that relates X to Y . The challenge is to en-
code X efficiently in the absence of Y so that it
can be reliably decoded in the presence of Y .

Fig. 1 depicts three compression systems that
can be applied to this problem. The encoder of
all three systems is identical. It computes the
syndrome S of X with respect to a low-density
parity-check (LDPC) code, as in [15]. Our imple-
mentation uses a rate-adaptive LDPC accumulate
code [16,17] to facilitate rate control using a feed-



Wyner-Ziv Coding of Video with Unsupervised Motion Vector Learning 3

Syndrome
Nodes

Bit
Nodes

Symbol
Nodes

log
β1

1 − β1

log
β2

1 − β2 log
β3

1 − β3

log
α2

1 − α2

log
α3

1 − α3
log

α1

1 − α1

θpixelψpixel

Fig. 2. Belief propagation decoding graph of the joint bitplane LDPC decoder

back channel. This permits the encoder to send
additional syndrome bits, at the request of the
decoder if the reconstruction of X is inconsistent
with S. The three systems differ in decoding.

The baseline system in Fig. 1(a) performs de-
coding of X with respect to the colocated pixels
of Y ; in other words, with zero motion. Initially,
the LDPC decoder determines the soft estimate
θ (statistical estimate of X) with soft side infor-
mation ψ by applying a probability model to the
colocated pixels of Y . It then refines these es-
timates using S via an iterative belief propaga-
tion algorithm. In regions where motion exists
between X and Y , this scheme performs poorly.

For comparison, Fig. 1(b) shows an impracti-
cal decoder endowed with a motion oracle. The
oracle informs the probability model which pixels
of Y should be used for the side information ψ
during LDPC decoding.

Finally, Fig. 1(c) depicts a practical decoder
that learns the forward motion field M via EM.
In place of the motion oracle, a motion estima-
tor maintains an a posteriori probability distri-
bution on M , by comparing Y and the soft es-
timate θ of X from the LDPC decoder. Every
iteration of LDPC decoding sends the motion es-
timator a current soft estimate θ in order to refine
the distribution on M . In return, the probabil-
ity model updates the side information ψ for the
LDPC decoder by blending information from the

pixels of Y according to the refined distribution
on M . A formal EM treatment of this algorithm
is provided in Section 3.

2.2. Joint Bitplane LDPC Decoding

For the motion estimator in Fig. 1(c) to up-
date the probability distribution on the motion
field M accurately, it should compare Y to the
soft estimate θ over all d bitplanes at once. The
consequence for the LDPC decoder is that it too
must decode all d bitplanes of X at once, unlike
the LDPC decoder of [15].

We propose joint bitplane LDPC decoding to
model and exploit the redundancy across the d
bits that represent a pixel, using the belief prop-
agation decoding graph shown in Fig. 2. Like the
LDPC decoder of [15], it decodes X at bit nodes
subject to constraints set at syndrome nodes, by
propagating log likelihood ratios(a) of the bit be-
liefs along the edges of the graph. The difference
is that the side information ψ no longer supplies
log likelihood ratios to the bit nodes directly, but
instead feeds new nodes, called symbol nodes. As
depicted in Fig. 2, each symbol node (one per
pixel) collects ψpixel together with log likelihood
ratios log αg

1−αg
from each bit node g ∈ {1, . . . , d}

(a)The log likelihood ratio is the logarithm of the ratio of
the likelihood of a certain bit being 1 to the likelihood of
it being 0.



4 D. Varodayan, D. Chen, M. Flierl and B. Girod

associated with that pixel. After local computa-
tion, the symbol node sends log likelihood ratios
log βg

1−βg
to each of those bit nodes.

In the case of Fig. 2, d = 3 so the side infor-
mation distribution is 8-valued. We use a Gray
mapping for reasons described in [13]:

ψpixel = (p000, p001, p011, p010, p110, p111, p101, p100)

The log likelihood ratio sent to the bit nodes
are computed via the sum-product algorithm [18].
For example, for Bit Node 2,

log
β2

1− β2

= log

∑
a=0,1
c=0,1

pa1cα
a
1(1− α1)1−aαc

3(1− α3)1−c

∑
a=0,1
c=0,1

pa0cα
a
1(1− α1)1−aαc

3(1− α3)1−c
.

This formula begins by multiplying the elements
pabc of ψpixel by elements of the binary distribu-
tions (α1, 1 − α1) and (α3, 1 − α3) according to
the values of the first bit a and third bit c, re-
spectively, of their indices. These products are
summed in two groups according to the value of
the second bit b, before the log likelihood ratio
is taken. In calculating log β2

1−β2
, we avoid using

(α2, 1 − α2) to prevent recycling information to
bit node 2. Calculations of log β1

1−β1
and log β3

1−β3
follow analogously by shuffling the roles of the
first, second and third bits of the index.

The bit nodes forward the log likelihood ra-
tios log βg

1−βg
to the syndrome nodes, which apply

LDPC syndrome decoding rules [15] to reply to
the bit nodes. These in turn update the log like-
lihood ratios log αg

1−αg
, sent to the symbol nodes.

Finally, the symbol nodes compute the output
soft estimate θpixel by multiplying the elements
of ψpixel by elements of all three updated distri-
butions (α1, 1−α1), (α2, 1−α2) and (α3, 1−α3)
according to the values of the first, second and
third bits, respectively. After inverse Gray map-
ping and normalization,

θpixel = (q000, q001, q011, q010, q110, q111, q101, q100),

where qabc ∝ pabcα
a
1(1− α1)1−aαb

2(1− α2)1−b

αc
3(1− α3)1−c.

3. Expectation Maximization Algorithm

3.1. Model

Let X and Y be consecutive luminance frames
of video, with X related to Y through a forward
motion field M . The residual of X with respect
to motion-compensated Y is treated as indepen-
dent Laplacian noise Z. We model the decoder’s
a posteriori probability distribution of source X
based on parameter θ as

Papp{X} ≡ P{X; θ}

=
∏
i,j

θ(i, j,X(i, j)),

where θ(i, j, w) = Papp{X(i, j) = w} defines a
soft estimate of X(i, j) over luminance values w ∈
{0, . . . , 2d − 1}.

3.2. Problem

The decoder aims to calculate the a posteriori
probability distribution of the motion M ,

Papp{M} ≡ P{M |Y, S; θ}
∝ P{M}P{Y, S|M ; θ},

with the second step by Bayes’ Law. The form
of this expression suggests an iterative EM so-
lution. The E-step updates the motion field
distribution with reference to the source model
parameters, while the M-step updates the source
model parameters with reference to the motion
field distribution. Note that P{M |Y, S; θ} is the
probability of observing motion M given that it
relates X (as parameterized by θ) to Y , and also
given S. We elaborate on P{Y, S|M ; θ} below.

3.3. E-step Algorithm

The E-step updates the estimated distribution
on M and before renormalization is written as

P (t)
app{M} := P (t−1)

app {M}P{Y, S|M ; θ(t−1)}.

But this operation is expensive due to the large
number of possible values of M . We simplify in
two ways. First, we ignore the syndrome S since
it is exploited in the M-step (LDPC decoding).
Second, we permit the estimation of the motion



Wyner-Ziv Coding of Video with Unsupervised Motion Vector Learning 5

weights

estimate 
motion pmf 
per block

motion 
pmf

θ

k

k

ψ

X
Soft Matching

Y Y

Fig. 3. E-step motion estimator (left) and probability model (right)

field M with block-by-block motion vectors Mu,v.
For a specified blocksize k, every k-by-k block of
θ(t−1) is compared to the colocated block of Y
as well as all those in a fixed motion search range
around it. For a block θ(t−1)

u,v with top left pixel lo-
cated at (u, v), the distribution on the shift Mu,v

is updated as below and normalized:

P (t)
app{Mu,v}

:= P (t−1)
app {Mu,v}P{Y(u,v)+Mu,v

|Mu,v; θ(t−1)
u,v },

where Y(u,v)+Mu,v
is the k-by-k block of Y with

top left pixel at ((u, v) + Mu,v). Note that
P{Y(u,v)+Mu,v

|Mu,v; θ(t−1)
u,v } is the probability of

observing Y(u,v)+Mu,v
given that it was generated

through vector Mu,v from Xu,v as parameterized
by θ

(t−1)
u,v . This procedure, shown in the left of

Fig. 3, occurs in the motion estimator.

3.4. M-step Algorithm

The M-step updates the soft estimate θ by
maximizing the likelihood of Y and syndrome S.

θ(t)

:= arg max
Θ

P{Y, S; Θ}

= arg max
Θ

∑
m

P (t)
app{M = m}P{Y, S|M = m; Θ},

where the summation is over all configurations
m of the motion field. True maximization is in-
tractable, so we approximate by generating soft
side information ψ(t), followed by an iteration of
joint bitplane LDPC decoding to yield θ(t).

The blockwise a posteriori distribution of the
motion P

(t)
app{Mu,v} weights the estimates from

each of the blocks Y(u,v)+Mu,v
, which are then



6 D. Varodayan, D. Chen, M. Flierl and B. Girod

summed into soft side information ψ(t)
u,v, as shown

in the probability model step in the right of Fig. 3.
More generally, the probability that the blended
side information has value w at pixel (i, j) is

ψ(t)(i, j, w)

=
∑
m

P (t)
app{M = m}P{X(i, j) = w|M = m,Y }

=
∑
m

P (t)
app{M = m}pZ(w − Ym(i, j)),

where pZ(z) is the probability mass function of
the independent additive noise Z, and Ym is
the previous reconstructed frame compensated
through motion configuration m.

The joint bitplane LDPC iteration, shown in
Fig. 2, begins at the symbols nodes. Here, the soft
side information ψ(t) is combined with log likeli-
hood ratios of α(t−1)

g from the previous iteration
to produce log likelihood ratios of β(t)

g , according
to the computation in Section 2.2. The symbol
nodes send these ratios to the bit nodes, which
forward them to the syndrome nodes. Following
the LDPC syndrome decoding rules in [15], the
syndrome nodes reply to the bit nodes, which in
turn reply to the symbol nodes with the current
iteration of log likelihood ratios of α(t)

g . Finally,
the symbol nodes produce the next soft estimate
of the source X, which before normalization over
w ∈ {0, . . . , 2d − 1} is computed as

θ(t)(i, j, w)

:= ψ(t)(i, j, w)
d∏

g=1

(
α(t)

g

)1[wg=1]
(
1− α(t)

g

)1[wg=0] ,

where wg denotes the gth bit in the Gray map-
ping of luminance value w and 1[.] denotes the
indicator function.

3.5. Termination

Iterating between the E-step and the M-step in
this way learns the forward motion vectors at the
granularity of k-by-k blocks. The decoding algo-
rithm terminates successfully when the hard es-
timates X̂(i, j) = arg maxw θ(i, j, w) yield a syn-
drome equal to S.

4. Transform-domain Technique for Forward Mo-
tion Vector Learning at the Decoder

The pixel-domain technique for motion vector
learning, in Section 2, exploits temporal redun-
dancy, but not spatial redundancy. Extending
the technique into the transform domain enables
greater compression. We now change notation: X
and Y are unquantized frames, and X̂ and Ŷ their
reconstructions after quantization in the trans-
form domain. The goal is to encode the frame X,
in order to reconstruct X̂ with side information
derived from the previous reconstructed frame Ŷ .

Fig. 4 shows the transform-domain system.
The lossless part (demarcated by a dotted line) is
identical to the pixel-domain system of Fig. 1(c),
except that it operates on quantized coefficient in-
dices. At the encoder, the frameX is transformed
by a k-by-k discrete cosine transform (DCT),
where k matches the blocksize of the motion esti-
mator block. The transform coefficients are then
quantized into indices before entering the lossless
system. At the decoder, the pixels of Ŷ are not
used directly because the lossless system works
in the transform domain. Instead, Ŷ is subjected
to an overcomplete k-by-k DCT, which computes
the transform of all k-by-k blocks at all integer
pixel shifts. In this way, the transform coeffi-
cients of every motion candidate of Ŷ are avail-
able in the motion estimator for comparison with
the soft estimate θ of the coefficient indices of
X, and in the probability model for blending of
the side information ψ. Finally, the coefficient
indices of X, recovered from the lossless system,
are reconstructed to the centers of their quantiza-
tion bins and inverse transformed into the recon-
structed frame X̂. We use central reconstruction
to avoid introducing blockwise variations in X̂,
so that its overcomplete transform can be used
directly for decoding the next frame. It may be
worthwhile to create two reconstructions: a cen-
tral reconstruction for decoding and a more so-
phisticated reconstruction for viewing.

An important reason for operating the lossless
system entirely in the transform domain is that
the soft estimate θ of the coefficient indices of X
cannot easily be inverse transformed into a soft
estimate in the pixel domain.



Wyner-Ziv Coding of Video with Unsupervised Motion Vector Learning 7

rate control

Transform LDPC
EncoderQuantizer LDPC

Decoder
Recon-
struction

Inverse
Transform

Motion
Estimator

Probability
Model

Overcomplete
Transform

θ

ψ

Fig. 4. Transform-domain technique with the lossless system demarcated by the dotted line

5. Simulation Results

We build a Wyner-Ziv video codec using the
transform-domain technique for forward motion
vector learning at the decoder described in Sec-
tion 4. The codec divides a video sequence into
separate groups of pictures (GOPs) with constant
GOP size. The first frame of a GOP is coded as
a keyframe, decoded without reference to side in-
formation. The subsequent frames of a GOP are
coded according to Fig. 4 using the previous re-
constructed frame as decoder reference. Our ex-
periments use 96 frames of two video sequences,
Foreman and Carphone, at QCIF resolution and
at 15 Hz frame rate.

Our codec uses blocksize k = 8 for the DCT,
the motion estimator and the probability model.
For the latter two blocks, the motion search range
is ±10 pixels horizontally and vertically. The EM
algorithm at the decoder is initialized with a good
value for the variance of the Laplacian noise Z,
and experimentally-chosen distributions for mo-
tion vectors Mu,v:

P (0)
app{Mu,v} :=

 ( 3
4 )2, if Mu,v = (0, 0)

3
4 ·

1
80 , if Mu,v = (0, ∗), (∗, 0)

( 1
80 )2, otherwise.

After 50 iterations of EM, if the reconstructed X̂
still does not satisfy the syndrome condition, the
decoder requests additional syndrome bits from
the encoder via a feedback channel. This rate
control is facilitated by using a regular degree 3
LDPC accumulate code of length 50688 bits [16]
as a platform for joint bitplane LDPC decoding
with bit depth d = 8. At these settings, ex-
actly 6336 transform coefficients can be Wyner-
Ziv coded at a time. Hence, we divide each QCIF-
sized Wyner-Ziv frame into four quadrants and
code each quadrant separately using the corre-
sponding quadrant of the previous reconstructed
frame as decoder reference. Source code for a
C++ implementation of this codec is available
for download [19].

5.1. Investigation of Motion Learning Codec
Parameters

We study the influence of GOP size and quan-
tization strategy on the rate-distortion (RD) per-
formance of the motion learning codec. Figs. 5
and 6 compare the RD curves for motion learn-
ing with varying GOP size, for Foreman and Car-
phone, respectively. Here, we constrain the quan-
tization matrix to be a scaled version of the one
in Annex K of the JPEG standard [20] with scal-
ing factors Q = 0.5, 1, 2 and 4. These results



8 D. Varodayan, D. Chen, M. Flierl and B. Girod

100 200 300 400 500 600
28

29

30

31

32

33

34

35

36

rate (kbps)

P
S

N
R

 (
dB

)

 

 

GOP size = 96
GOP size = 8
GOP size = 4
GOP size = 2

Fig. 5. RD curves for different GOP sizes for Foreman

show that RD performance improves as GOP size
increases, as would be desired in a video codec.
Note that Wyner-Ziv codecs that do motion esti-
mation via MCTI from keyframes generally show
the opposite trend [7].

Fig. 7 compares quantization with scaled ver-
sions of the JPEG Annex K matrix versus quanti-
zation with flat matrices, for Foreman with GOP
size of 8. That the flat matrices are often infe-
rior in RD performance runs counter to experi-
ence with predictive coding. This suggests that
overweighting the lower frequency coefficient in-
dices in the motion estimator (as in the JPEG
quantizer) can benefit motion learning overall.

In the subsequent results, we fix the GOP size
to different values, but vary the quantization ma-
trix as the JPEG Annex K matrix scaled by
Q = 0.5, 1, 2 and 4.

5.2. GOP Size 2 Motion Learning, MCTI and
Motion Oracle Codecs

If the GOP size is 2, keyframes alternate with
Wyner-Ziv frames. We compare Wyner-Ziv video
codecs that decode the Wyner-Ziv frames in three
different ways: with forward motion vector learn-
ing, with MCTI between keyframes, and with
a motion oracle. We employ the bidirectional
MCTI method in [6] with horizontal and verti-
cal search range of ±20 pixels. The motion ora-
cle knows the forward motion vectors up to hor-
izontal and vertical search range of ±10 pixels,
that minimize the blockwise mean square error

0 100 200 300 400 500
28

30

32

34

36

38

rate (kbps)

P
S

N
R

 (
dB

)

 

 

GOP size = 96
GOP size = 8
GOP size = 4
GOP size = 2

Fig. 6. RD curves for different GOP sizes for Carphone

100 200 300 400 500
28

29

30

31

32

33

34

35

36

rate (kbps)

P
S

N
R

 (
dB

)

 

 

motion learning (JPEG matrix)
motion learning (flat matrix)

Fig. 7. RD curves for different quantization for Foreman

between X and Ŷ . Figs. 8 and 9 show the RD
curves for the three Wyner-Ziv codecs as well as
the one for motion JPEG intra coding, for Fore-
man and Carphone, respectively. At GOP size
of 2, motion learning provides about 0.5 dB gain
over MCTI, even though it only learns motion
vectors in the forward direction, and suffers less
than 0.2 dB loss versus motion oracle decoding.

5.3. GOP Size 8 Motion Learning, Zero Motion
and Motion Oracle Codecs

AS GOP size increases, the performance of the
motion learning codec improves (as shown in Sec-
tion 5.1), but the performance of MCTI codecs
degrades significantly [7]. So, for GOP size of
8, we replace the MCTI codec with a zero mo-



Wyner-Ziv Coding of Video with Unsupervised Motion Vector Learning 9

100 200 300 400 500 600
28

29

30

31

32

33

34

35

36

rate (kbps)

P
S

N
R

 (
dB

)

 

 

motion oracle
motion learning
MCTI
intra (JPEG)

Fig. 8. RD curves for motion learning, MCTI and motion
oracle codecs for Foreman with GOP size of 2

100 200 300 400 500
28

30

32

34

36

38

rate (kbps)

P
S

N
R

 (
dB

)

 

 

motion oracle
motion learning
MCTI
intra (JPEG)

Fig. 9. RD curves for motion learning, MCTI and motion
oracle codecs for Carphone with GOP size of 2

tion codec. Figs. 10 and 11 show the RD curves
for motion learning, zero motion and motion or-
acle Wyner-Ziv codecs and motion JPEG intra
coding, for Foreman and Carphone, respectively.
Observe that motion learning can offer up to 2
dB gain over zero motion decoding, while only
suffering about 0.25 dB loss compared to motion
oracle decoding, for Foreman.

5.4. GOP Size 96 Traces for Motion Learning,
Zero Motion and Motion Oracle Codecs

Fig. 12 plots traces of the rate and PSNR for
the motion learning, zero motion, motion ora-
cle and motion JPEG systems, for Foreman with

100 200 300 400 500 600 700
28

29

30

31

32

33

34

35

36

rate (kbps)

P
S

N
R

 (
dB

)

 

 

motion oracle
motion learning
zero motion
intra (JPEG)

Fig. 10. RD curves for motion learning, zero motion and
motion oracle codecs for Foreman with GOP size of 8

100 200 300 400 500
28

30

32

34

36

38

rate (kbps)

P
S

N
R

 (
dB

)

 

 

motion oracle
motion learning
zero motion
intra (JPEG)

Fig. 11. RD curves for motion learning, zero motion and
motion oracle codecs for Carphone with GOP size of 8

GOP size of 96 and quantization scaling factor
Q = 1. These traces reflect the fact that all four
systems produce identical reconstructed video,
but at different rates. In particular, the zero mo-
tion codec suffers rate fluctuation in accordance
with the amount of motion in each frame. Mo-
tion learning reduces the bitrate significantly and
makes it less dependent on the motion.

Fig. 13 traces statistics of the learned motion
vectors. The motion learning error refers to the
Euclidean distances between the learned motion
vectors and those known by the motion oracle,
and the probability of learned motion vector re-
flects the confidence in the learned values. Thus,



10 D. Varodayan, D. Chen, M. Flierl and B. Girod

0 8 16 24 32 40 48 56 64 72 80 88 96
100

200

300

400

500

600

frame

ra
te

 (
kb

ps
)

0 8 16 24 32 40 48 56 64 72 80 88 96
32

32.5

33

33.5

34

frame

P
S

N
R

 (
dB

)

 

 
motion oracle
motion learning
zero motion
intra (JPEG)

Fig. 12. Rate and PSNR traces for motion learning, zero
motion and motion oracle codecs for Foreman with Q = 1

part of the small rate penalty incurred by motion
learning with respect to the motion oracle codec
is due to minor inaccuracies in learning of the
motion vectors.

5.5. Decoding Complexity

We now discuss the complexity of Wyner-Ziv
decoding, as a function of the number of candi-
dates per motion vector. Consider the cost per
EM iteration of decoding a quadrant of a QCIF
resolution frame, as in our implementation.

The motion oracle decoder simply knows the
best configuration of motion vectors, and need
not perform motion search. With respect to num-
ber of motion candidates per motion vector, it has
fixed cost, Foracle. The cost of the motion learn-

8 16 24 32 40 48 56 64 72 80 88 96
0

1

2

3

4

frame

m
ot

io
n 

le
ar

ni
ng

 e
rr

or

 

 

mean
standard deviation

8 16 24 32 40 48 56 64 72 80 88 96
0

0.2

0.4

0.6

0.8

1

frame

pr
ob

ab
ili

ty
 o

f m
os

t l
ik

el
y 

m
ot

io
n

 

 

mean
standard deviation

Fig. 13. Statistics of learned motion vectors for Foreman
with Q = 1 and GOP size of 48

ing decoder has both a fixed term and a marginal
term (per motion candidate),

Flearning +Mlearning × (# motion candidates).

Average duration per EM iteration, for the mo-
tion oracle decoder and motion learning decoders
with different numbers of motion candidates, is
tabulated below.

Wyner-Ziv Decoder Duration per
(# motion candidates) EM Iteration
Motion Oracle 0.26 seconds
Motion Learning (112) 0.72 seconds
Motion Learning (212) 1.99 seconds

According to these measurements, the fixed costs
are roughly consistent:

Foracle = 0.26 seconds
Flearning = 0.24 seconds
Mlearning = 0.004 seconds



Wyner-Ziv Coding of Video with Unsupervised Motion Vector Learning 11

By way of comparison, consider a practical
brute-force Wyner-Ziv decoder based on the mo-
tion oracle decoder. Instead of knowing the best
configuration of motion vectors, it runs decoding
with all possible combinations. There are 99 mo-
tion vectors per QCIF quadrant when blocksize
k = 8. With 212 candidates per motion vector,
the number of configurations is (212)99. This scal-
ing factor makes the brute-force approach hun-
dreds of orders of magnitude more complex than
the motion learning Wyner-Ziv decoder.

6. Conclusions

In this paper, we have introduced a new tech-
nique for performing motion estimation at the
Wyner-Ziv video decoder. The method applies an
EM algorithm for unsupervised learning of mo-
tion vectors, and we have described it in both
the pixel and transform domains. Our transform-
domain Wyner-Ziv video codec demonstrates the
favorable property that increasing the GOP size
improves overall RD performance. This contrasts
with Wyner-Ziv codecs that use MCTI for motion
estimation [7]. The motion learning codec is su-
perior to a comparable MCTI codec by 0.5 dB at
GOP size of 2, and by several dB at larger GOP
sizes. It remains within 0.25 dB of the perfor-
mance of an impractical motion oracle Wyner-Ziv
codec, while its decoding complexity is hundreds
of orders of magnitude less than a similar brute-
force approach.

References

[1] B. Girod, A. Aaron, S. Rane, D. Rebollo-Monedero,
Distributed video coding, Proceedings IEEE 93 (1)
(2005) 71–83.

[2] R. Puri, K. Ramchandran, PRISM: A new robust
video coding architecture based on distributed com-
pression principles, in: Proc. Allerton Conf. Com-
mun., Contr. and Comput., Allerton, IL, 2002.

[3] D. Slepian, J. K. Wolf, Noiseless coding of corre-
lated information sources, IEEE Trans. Inform. The-
ory 19 (4) (1973) 471–480.

[4] A. D. Wyner, J. Ziv, The rate-distortion function for
source coding with side information at the decoder,
IEEE Trans. Inform. Theory 22 (1) (1976) 1–10.

[5] C. Guillemot, F. Pereira, L. Torres, T. Ebrahimi,
R. Leonardi, J. Ostermann, Distributed monoview
and multiview video coding, IEEE Signal Proc. Mag-
azine 24 (5) (2007) 67–76.

[6] A. Aaron, R. Zhang, B. Girod, Wyner-Ziv coding of
motion video, in: Proc. Asilomar Conf. on Signals,
Syst., Comput., Pacific Grove, CA, 2002.

[7] F. Pereira, J. Ascenso, C. Brites, Studying the GOP
size impact on the performance of a feedback channel-
based Wyner-Ziv video codec, in: Proc. IEEE Pacific
Rim Symp. on Image and Video Technol., Santiago,
Chile, 2007.

[8] A. Aaron, S. Rane, B. Girod, Wyner-Ziv video coding
with hash-based motion compensation at the receiver,
in: Proc. IEEE Internat. Conf. Image Processing, Sin-
gapore, 2004.

[9] D. Varodayan, A. Mavlankar, M. Flierl, B. Girod,
Distributed coding of random dot stereograms with
unsupervised learning of disparity, in: Proc. IEEE In-
ternat. Workshop Multimedia Signal Processing, Vic-
toria, BC, Canada, 2006.

[10] D. Varodayan, A. Mavlankar, M. Flierl, B. Girod,
Distributed grayscale stereo image coding with un-
supervised learning of disparity, in: Proc. IEEE Data
Compression Conf., Snowbird, UT, 2007.

[11] D. Varodayan, Y.-C. Lin, A. Mavlankar, M. Flierl,
B. Girod, Wyner-Ziv coding of stereo images with
unsupervised learning of disparity, in: Proc. Picture
Coding Symp., Lisbon, Portugal, 2007.

[12] D. Chen, D. Varodayan, M. Flierl, B. Girod, Dis-
tributed stereo image coding with improved disparity
and noise estimation, in: Proc. IEEE Internat. Conf.
Acoustic, Speech and Signal Processing, Las Vegas,
NV, 2008.

[13] D. Chen, D. Varodayan, M. Flierl, B. Girod, Wyner-
Ziv coding of multiview images with unsupervised
learning of disparity and Gray code, in: Proc. IEEE
Internat. Conf. Image Processing, San Diego, CA,
2008, submitted.

[14] A. Dempster, N. Laird, D. Rubin, Maximum likeli-
hood from incomplete data via the EM algorithm, J.
Royal Stat. Soc., Series B 39 (1) (1977) 1–38.

[15] A. Liveris, Z. Xiong, C. Georghiades, Compression
of binary sources with side information at the de-
coder using LDPC codes, IEEE Commun. Lett. 6 (10)
(2002) 440–442.

[16] D. Varodayan, A. Aaron, B. Girod, Rate-adaptive dis-
tributed source coding using low-density parity-check
codes, in: Proc. Asilomar Conf. on Signals, Syst.,
Comput., Pacific Grove, CA, 2005.

[17] D. Varodayan, A. Aaron, B. Girod, Rate-adaptive
codes for distributed source coding, EURASIP Signal
Processing J. 86 (11) (2006) 3123–3130.

[18] F. R. Kschischang, B. J. Frey, H.-A. Loeliger, Factor
graphs and the sum-product algorithm, IEEE Trans.
Inform. Theory 47 (2) (2001) 498–519.

[19] D. Chen, D. Varodayan, Unsupervised Learning of
Motion for Distributed Video Coding (2008).
URL msw3.stanford.edu/~dchen/software.html

[20] ITU-T, I. JTC1, Digital compression and coding of
continuous-tone still images, ISO/IEC 10918-1 —
ITU-T Recommendation T.81 (JPEG).


