
Distributed Grayscale Stereo Image Coding
with Unsupervised Learning of Disparity

David Varodayan, Aditya Mavlankar, Markus Flierl and Bernd Girod
Max Planck Center for Visual Computing and Communication

Stanford University, Stanford, CA 94305
Email: {varodayan, maditya, mflierl, bgirod}@stanford.edu

Abstract

Distributed compression is particularly attractive for stereo images since it avoids communica-
tion between cameras. Since compression performance depends on exploiting the redundancy
between images, knowing the disparity is important at the decoder. Unfortunately, distributed
encoders cannot calculate this disparity and communicate it. We consider the compression
of grayscale stereo images, and develop an Expectation Maximization algorithm to perform
unsupervised learning of disparity during the decoding procedure. Towards this, we devise a
novel method for joint bitplane distributed source coding of grayscale images. Our experiments
with both natural and synthetic 8-bit images show that the unsupervised disparity learning
algorithm outperforms a system which does no disparity compensation by between 1 and more
than 3 bits/pixel and performs nearly as well as a system which knows the disparity through
an oracle.

I. INTRODUCTION

Colocated pixels from pairs of stereo images are strongly statistically dependent after
compensation for disparity induced by the geometry of the scene. Much of the disparity
between these images can be characterized as shifts of foreground objects relative to
the background. Assuming that the disparity information and occlusions can be coded
compactly, joint compression is much more efficient than separate encoding and decoding.
Surprisingly, distributed lossless encoding combined with joint decoding can be just as
efficient as the wholly joint system, according to the Slepian-Wolf theorem [1]. Distributed
compression is preferred because it avoids communication between the stereo cameras.
The difficulty, however, lies in discovering and exploiting the scene-dependent disparity
at the decoder, while keeping the transmission rate low.

A similar situation arises in low-complexity Wyner-Ziv encoding of video captured
by a single camera [2] [3] [4]. These systems encode frames of video separately and
decode them jointly, so discovering the motion between successive frames at the decoder
is helpful. A very computationally burdensome way to learn the motion is to run the
decoding algorithm with every motion realization [3]. Another approach requires the
encoder to transmit additional hash information, so the decoder can perform suitable
motion compensation before running the decoding algorithm [5]. Since the encoder
transmits the hashes at a constant rate, it wastes bits when the motion is small. On
the other hand, if there is too much change between frames, the fixed-rate hash may be
insufficient for reliable motion search. Due to the drawbacks of excessive computation
and difficulty of rate allocation for the hash, we use neither of these approaches towards
compression of stereo images.
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Fig. 1. (a) Source image X (8-bit 72-by-88 pixels), (b) horizontal disparity legend, (c)-(f) source images Y (8-bit
72-by-88 pixels) with respective 8-by-8 block-wise horizontal disparity fields D of X with respect to Y

In Section II, we review our unsupervised disparity learning algorithm [6] for dis-
tributed lossless compression of pairs of binary random dot stereograms [7]. In Section III,
we extend the system to distributed lossless compression of grayscale natural stereo
images. Note that, in this work, we only exploit pixel-wise redundancy between stereo
images and not the spatial redundancy within a single image; that is the topic of future
work. We then describe the algorithm formally within the framework of Expectation
Maximization (EM) [8] in Section IV. Section V reports our simulation results for natural
and synthetic images.

II. BACKGROUND

The relationship between a pair of stereo images X and Y in terms of their disparity D
is illustrated in Fig. 1. A sample source image X is depicted in Fig. 1(a). Fig. 1(c)-(f)
show four realizations of source image Y taken from different viewpoints [9]. For each
pair, the respective block-wise horizontal disparity field D indicates which 8-by-8 block
of Y (among candidates shifted up to 5 pixels horizontally) best matches each 8-by-
8 block of X (in terms of mean square error). These stereo image pairs, when viewed
stereoscopically, create an illusion of depth: various parts of the scene appear on different
planes, according to the value of the disparity field in those parts.

The compression setup used both in [6] for the binary case and the current paper
is shown in Fig. 2. Images X and Y are encoded separately and decoded jointly. For
simplicity, we assume that Y is conventionally coded and is available at the decoder. The
challenge is to encode X efficiently in the absence of Y so that it can be reliably decoded
in the presence of Y . The Slepian-Wolf theorem states that X can be communicated
losslessly to the decoder using R bits on average as long as R > H(X|Y ) [1].

We now review the binary case, where coding was performed on the pixel values of X
directly [6]. Fig. 3 depicts three compression systems that can be applied to the binary
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Fig. 2. Distributed compression: separate encoding and joint decoding

random dot stereogram problem. The baseline system in Fig. 3(a) is due to [10] and
performs compression of X with respect to the colocated pixels of Y without disparity
compensation. The encoder computes the syndrome S (of length R bits) of X with
respect to a low-density parity-check (LDPC) code [11]. The decoder initially estimates
X statistically using the colocated pixels of Y and refines these estimates using S via
an iterative belief propagation algorithm. When disparity is introduced between X and
Y , this scheme performs badly because the estimates of X are poor in shifted regions.
For comparison, Fig. 3(b) shows an impractical scheme in which the decoder is endowed
with a disparity oracle. The oracle informs the decoder which pixels of Y should be
used to inform the estimates of the pixels of X during LDPC decoding. Finally, Fig. 3(c)
depicts the practical decoder of [6] that learns disparity D via EM. In place of the
disparity oracle, a disparity estimator maintains an a posteriori probability distribution
on D. Every iteration of LDPC decoding sends the disparity estimator a soft estimate
of X (denoted by θ) in order to refine the distribution on D. In return, the disparity
estimator updates the side information ψ for the LDPC decoder by blending information
from the pixels of Y according to the refined distribution on D. A formal EM treatment
of this algorithm for the case of binary random dot stereograms is included in [6].

III. DISTRIBUTED COMPRESSION OF GRAYSCALE STEREO IMAGES

For grayscale pairs X and Y , the compression systems of Fig. 3(a) and (b) may be applied
to each bitplane of X separately, which are then used as additional side information for the
decoding of subsequent bitplanes [4] [12]. Unfortunately, conditional bitplane distributed
source coding of this type cannot be applied with the disparity learning decoder of
Fig. 3(c) because efficient disparity estimation requires the intermediate soft estimate θ
to be calculated using all bitplanes at once. A possible alternative is to perform symbol
encoding and decoding using LDPC codes in a high-order Galois field. Instead, in order
to leverage the better understanding of binary LDPC codes, we devise a novel joint
bitplane distributed source coding scheme and apply it to all three systems in Fig. 3. In
joint bitplane distributed source coding, all bitplanes are encoded and decoded together,
permitting the computation of θ over gray levels.

The joint bitplane LDPC encoder is simply the LDPC encoder of [10] applied to the bit
representation of X . The belief propagation decoding graph of the joint bitplane LDPC
decoder is shown in Fig. 4. Like the LDPC decoder of [10], it decodes X at bit nodes
subject to constraints set at syndrome nodes, by propagating log likelihood ratios of the
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Fig. 3. Distributed compression for stereo images with (a) no disparity compensation, (b) a disparity oracle, and (c)
unsupervised learning of disparity D via EM

bit beliefs along the edges of the graph. (Note that a log likelihood ratio is the logarithm
of the ratio of the likelihood of a certain bit being 1 to the likelihood of it being 0.) The
difference is that the soft side information ψ no longer supplies log likelihood ratios to
the bit nodes directly, but instead feeds the new symbol nodes. As depicted in Fig. 4,
each symbol node (one per pixel) aggregates ψpixel together with log likelihood ratios
log αg

1−αg
for g ∈ {1, . . . , b} from each bit node associated with that pixel. After local

computation, the symbol node sends log likelihood ratios log βh

1−βh
for h ∈ {1, . . . , b} to

each of those bit nodes and outputs a soft estimate θpixel of the pixel.
In the case of Fig. 4, b = 3 so the side information distribution is 8-valued, say,

ψpixel = (p000, p001, p010, p011, p100, p101, p110, p111).

Using most-significant-bit first notation, we choose the log likelihood ratio sent to bit
node 2 (for example) to be

log
β2

1− β2

= log
p010(1− α1)(1− α3) + p011(1− α1)α3 + p110α1(1− α3) + p111α1α3

p000(1− α1)(1− α3) + p001(1− α1)α3 + p100α1(1− α3) + p101α1α3

.

This formula begins by multiplying the elements of ψpixel by elements of the binary
distributions (α1, 1−α1) and (α3, 1−α3) according to the values of the first and third bits,
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Fig. 4. Belief propagation decoding graph of the joint bitplane LDPC decoder

respectively, of their indices. Then these products are summed in two groups according
to the value of the second bit, before the log likelihood ratio is taken. For this calculation
of log β2

1−β2
, we avoid using (α2, 1− α2) to prevent recycling information to bit node 2.

The calculation of log β1

1−β1
and log β3

1−β3
follow analogously by shuffling the roles of the

first, second and third bits of the index. Similarly, we compute the output soft estimate
θpixel by multiplying the elements of ψpixel by elements of all three binary distributions
(α1, 1 − α1), (α2, 1 − α2) and (α3, 1 − α3) according to the values of the first, second
and third bits, respectively, of their indices. After normalization,

θpixel = (q000, q001, q010, q011, q100, q101, q110, q111)

q000 ∝ p000(1− α1)(1− α2)(1− α3)

q001 ∝ p001(1− α1)(1− α2)α3

q010 ∝ p010(1− α1)α2(1− α3)

q011 ∝ p011(1− α1)α2α3

q100 ∝ p100α1(1− α2)(1− α3)

q101 ∝ p101α1(1− α2)α3

q110 ∝ p110α1α2(1− α3)

q111 ∝ p111α1α2α3

With these modifications, we extend distributed lossless compression of binary ran-
dom dot stereogram to grayscale stereo images, by replacing the LDPC encoder and
decoder blocks in Fig. 3 by the joint bitplane LDPC encoder and decoder described here.
Section IV presents a formal EM treatment of the proposed disparity learning system.

IV. EXPECTATION MAXIMIZATION ALGORITHM

A. Model
Let Y be a b-bit grayscale image of size m-by-n. Let D represent an m-by-n horizontal
disparity field with |D(i, j)| ≤ l, where l � n is the maximum possible magnitude.



Then X is also a b-bit grayscale image of size m-by-n, disparity-compensated from Y
through disparity D with independent Laplacian noise Z added. We model the decoder’s
a posteriori probability distribution of source X based on parameters θ as

Papp{X} = P{X; θ}
=

∏
i,j

θ(i, j,X(i, j))

where θ(i, j, w) = Papp{X(i, j) = w} defines a soft estimate of X(i, j) over gray values
w ∈ {0, . . . , 2b − 1}. The restriction that the disparity field D have small maximum
magnitude and be in one dimension is reasonable for a pair of closely-spaced cameras.

B. Problem
The decoder aims to calculate the a posteriori probability distribution of the disparity D,

Papp{D} := P{D|Y, S; θ}
∝ P{D}P{Y, S|D; θ},

with the second step by Bayes’ Law. The form of this expression suggests an iterative
EM solution. The E-step updates the disparity field distribution with reference to the
source model parameters, while the M-step updates the source model parameters with
reference to the disparity field distribution.

C. E-step Algorithm
The E-step updates the estimated distribution on D and before renormalization is written
as

P (t+1)
app {D} := P (t)

app{D}P{Y, S|D; θ(t+1)}.

But this operation is expensive due to the large number of possible values of D. We
simplify in two ways. First, we ignore knowledge of the syndrome S since it is exploited
in the M-step of LDPC decoding. Second, we permit the estimation of the horizontal
disparity field D as block-by-block disparity shifts Lu,v. For a specified blocksize k,
every k-by-k block of θ is compared to the colocated block of Y as well as all those
shifted between −l and l pixels horizontally. For a block θu,v with top left pixel located
at (u, v), the distribution on the shift Lu,v is updated as below and normalized:

P (t+1)
app {Lu,v} := P (t)

app{Lu,v}P{Yu,v+Lu,v |Lu,v; θ
(t+1)
u,v },

where Yu,v+Lu,v is the k-by-k block of Y with top left pixel at (u, v + Lu,v). Note that
P{Yu,v+Lu,v |Lu,v; θu,v} is the probability of observing Yu,v+Lu,v given that it was generated
through shift Lu,v from Xu,v as parameterized by θu,v. This procedure, shown in the left
hand side of Fig. 5, occurs in the disparity estimator.
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Fig. 5. E-step disparity field estimation (left) and side information blending (right)

D. M-step Algorithm
The M-step updates the model parameters θ by maximizing the likelihood of Y and the
syndrome S.

θ(t+1) := arg max
θ
P{Y, S; θ(t)}

= arg max
θ

∑
d

P (t)
app{D = d}P{Y, S|D = d; θ(t)}

True maximization is intractable, so we approximate it with an iteration of joint bitplane
LDPC decoding, introduced in Section III. The joint bitplane LDPC decoder’s input
side information ψu,v is created by blending estimates from each of the blocks Yu,v+Lu,v

according to P
(t)
app{Lu,v}, as shown in the right hand side of Fig. 5. More generally, the

probability that the blended side information has value w at pixel (i, j) is

ψ(i, j, w) =
∑

d

P (t)
app{D = d}P{X(i, j) = w|D = d, Y }

=
∑

d

P (t)
app{D = d}pZ(w − Y (i, j + d)),

where pZ(z) is the probability mass function of the independent additive noise Z. The
symbol nodes in the joint bitplane LDPC decoder combine this side information distribu-
tion with incoming log likelihood ratios log αg

1−αg
for g ∈ {1, . . . , b} from their connected

bit nodes. They send log likelihood ratios log βh

1−βh
for h ∈ {1, . . . , b} to their connected



bit nodes, according to

log
βh

1− βh

= log

∑
w:wb[h]=1 ψ(i, j, w)

∏
g 6=h(αg1[wb[g]=1] + (1− αg)1[wb[g]=0])∑

w:wb[h]=0 ψ(i, j, w)
∏

g 6=h(αg1[wb[g]=1] + (1− αg)1[wb[g]=0])
,

where wb[h] denotes the hth most-significant-bit in the binary representation of gray
value w and 1[.] denotes the indicator function. The symbol nodes also produce the next
soft estimate of the source X , which before normalization over w ∈ {0, . . . , 2b − 1} is
computed as

θ(t+1)(i, j, w) := ψ(i, j, w)
b∏

g=1

(αg1[wb[g]=1] + (1− αg)1[wb[g]=0]).

E. Termination
Iterating between the E-step and the M-step in this way provides a profile of the disparity
at the granularity of k-by-k blocks. The decoding algorithm terminates successfully when
the hard estimates X̂(i, j) = arg maxw θ(i, j, w) yield a syndrome equal to S.

V. SIMULATION RESULTS

We compare the performance of the joint bitplane systems in Fig. 3 and the Slepian-Wolf
bound H(X|Y ) for both natural and synthetic grayscale stereo images, using constants:
image height m = 72, image width n = 88, number of bitplanes b = 8, maximum
horizontal shift l = 5, blocksize k = 8. Rate control is implemented by using rate-adaptive
regular degree 3 LDPC accumulate codes of length 50688 bits [13] as a platform for the
joint bitplane systems. In these experiments, the decoder is provided with a good value for
the variance of the Laplacian noise Z. After 150 decoding iterations, if X̂ still does not
satisfy the syndrome condition, the decoder requests additional incremental transmission
from the encoder via a feedback channel. For the disparity learning algorithm, the
distributions of Lu,v are initialized to

P (0)
app{Lu,v} :=

{
0.75, if Lu,v = 0;
0.025, if Lu,v 6= 0.

Table I compares the compression bit-rates of the joint bitplane systems and the
pixel-wise Slepian-Wolf bounds for the combinations of natural stereo images X and
Y in Fig. 1. The system that learns disparity unsupervised outperforms the system that
allows no disparity compensation by between 1 and more than 3 bits/pixel for these
stereo images. As the average magnitude of the disparity field grows, the rate for no
compensation increases but the rate for unsupervised learning is robust and closely follows
the rate for the oracle-assisted scheme. Fig. 6 shows a sample evolution of disparity
probability distribution for an 8-by-8 block.

We also perform simulations with synthetic grayscale random dot stereograms, which
have well-defined statistics and easy-to-compute bounds. Each image by itself resists
compression, but substantial savings are possible by exploiting the disparity field. A pair
X and Y has disparity field D constant in some rectangular region and equal to zero
elsewhere. Fig. 7 shows realizations of X and Y (with D equal to 5 in a 32-by-32 region
and zero elsewhere) and their log absolute differences under relative shifts of 0 and -5.

Fig. 8 shows the compression performance for 8-bit random dot stereograms and a
lower bound on H(X|Y ). The entropy H(Z) of the additive Laplacian noise ranges



Side information image Y Fig. 1(c) Fig. 1(d) Fig. 1(e) Fig. 1(f)
Pixel-wise H(X|Y ) (bits/pixel) 3.93 3.88 3.84 3.91
Oracle-assisted rate (bits/pixel) 4.48 4.48 4.48 4.48
Unsupervised rate (bits/pixel) 4.48 4.48 4.48 4.61

No compensation rate (bits/pixel) 5.58 6.06 7.51 8

TABLE I

BIT-RATE OF X (IN BITS/PIXEL) WITH Y IN FIG. 1 FOR JOINT BITPLANE SYSTEMS IN FIG. 3.
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Fig. 6. Evolution of a disparity probability distribution for a sample 8-by-8 block with true disparity value Lu,v = 5.

from 0.8 to 4 bits/pixel. The disparity field D takes a constant value drawn uniformly
from {−5, . . . , 5} in a 32-by-32 pixel region; elsewhere D = 0. For the proposed
disparity learning scheme, we show results when the 32-by-32 disparity region is aligned
with the 8-by-8 block grid (best case) and when it is offset from the grid by 4 pixels
horizontally and vertically (worst case). These results show that best case unsupervised
learning of disparity can save 2 bits/pixel compared to the system that allows no disparity
compensation for this setup. Moreover, it incurs negligible performance loss with respect
to the impractical oracle-assisted scheme because, in the best case, the 8-by-8 decoder
granularity matches the effective granularity of the oracle. This gap being relatively
smaller than the gap in the binary case [6] is due to more data being used in the grayscale
case to learn the same disparity field. The further gap from the oracle-assisted scheme to
the lower bound on H(X|Y ) is due to the inefficiency of moderate length LDPC codes.

VI. CONCLUSIONS

We extend the iterative EM algorithm [6] for distributed lossless stereo image compression
with disparity learning at the decoder to the case of grayscale stereo images, by inventing
a method for joint bitplane distributed source coding. For natural 8-bit stereo images,
our proposed scheme demonstrates compression savings of between 1 and more than 3
bits/pixel compared to a system that does no disparity compensation, and performs only

(a) (b) (c) (d)

Fig. 7. (a) Source image X (b) Source image Y (c) Log absolute difference of X and Y (d) Log absolute difference
of X and Y (shifted to realign the rectangular nonzero disparity region)
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Fig. 8. Rate (in bits/pixel) required to communicate grayscale random dot stereogram X for the joint bitplane systems
shown in Fig. 3, for learning D constant drawn uniformly {−5, . . . , 5} in a 32-by-32 region, and D = 0 elsewhere.

negligibly worse than an oracle-assisted scheme. Simulations with synthetic grayscale
random dot stereograms confirm these findings, especially in the best case, where decoder
granularity matches the effective oracle granularity. In future work, we intend to extend
the system to exploit spatial redundancy within stereo images as well.
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