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Abstract— Distributed compression is particularly attractive
for stereoscopic images since it avoids communication between
cameras. Since compression performance depends on exploit-
ing the redundancy between images, knowing the disparity is
important at the decoder. Unfortunately, distributed encoders
cannot calculate this disparity and communicate it. We consider
a toy problem, the compression of random dot stereograms,
and propose an Expectation Maximization algorithm to perform
unsupervised learning of disparity during the decoding proc-
edure. Our experiments show that this can achieve twice as
efficient compression compared to a system with no disparity
compensation and perform nearly as well as a system which
knows the disparity through an oracle.

I. INTRODUCTION

Colocated pixels from pairs of stereoscopic images are
strongly statistically dependent after compensation for dis-
parity induced by the geometry of the scene. Much of the
disparity between these images can be characterized as shifts
of foreground objects relative to the background. Assuming
that the disparity information and occlusions can be coded
compactly, joint lossless compression is much more efficient
than separate lossless encoding and decoding. Surprisingly,
distributed lossless encoding combined with joint decoding
can be just as efficient as the wholly joint system, according
to the Slepian-Wolf theorem [1]. Distributed compression
is preferred because it avoids communication between the
stereo cameras. The difficulty, however, lies in discovering and
exploiting the scene-dependent disparity at the decoder, while
keeping the transmission rate low.

A similar situation arises in low complexity Wyner-Ziv
encoding of video captured by a single camera [2] [3]. These
systems encode frames of video separately and decode them
jointly, so discovering the motion between successive frames
at the decoder is helpful. A very computationally burdensome
way to learn the motion is to run the decoding algorithm
with every motion realization [3]. Another approach requires
the encoder to transmit additional hashed information, so the
decoder can select a good motion configuration before running
the decoding algorithm [4]. Since the encoder transmits the
hashes at a constant rate, it wastes bits when the motion is
small. On the other hand, if there is too much change between
frames, the fixed-rate hash may be insufficient for reliable
motion search. Due to the drawbacks of excessive computation
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and difficulty of rate allocation for the hash, we use neither of
these approaches towards compression of stereoscopic images.

In Section II, we consider a toy version of the problem,
involving random dot stereograms, and propose a novel de-
coding algorithm, which learns disparity unsupervised. We
describe the algorithm formally within the framework of
Expectation Maximization (EM) [5] in Section III. Section IV
reports our simulation results.

II. RANDOM DOT STEREOGRAM COMPRESSION

In this paper, we consider the compression of pairs of binary
random dot stereograms [6]. Viewed stereoscopically as a
single image, they create an illusion of depth: a rectangle
appears on a different plane to the rest of the image. Although
compression of random dot stereograms may be considered an
academic problem with no immediate practical relevance, we
are intrigued by their properties and believe that their study
can yield important insights into distributed coding. Random
dot stereograms have well-defined statistical properties and
information theoretic bounds that can be computed easily.
Each image by itself resists compression, but substantial
savings are possible by exploiting the relative shift of the
content. Finally, since the images are binary, coding can be
performed on the pixel values directly.

For a pair of random dot stereograms X and Y , we specify
the depth illusion by disparity information D as described
below. We generate Y by copying X and horizontally shifting
a rectangular region. The uncovered area is filled randomly
and independent identically distributed (i.i.d.) binary noise is
added (modulo 2) to Y . Thus, D comprises the boundaries
of the shifted rectangle as well as the horizontal shift value.
Fig. 1 shows realizations of X and Y and their modulo 2 sums
under different shifts.

Our compression setup is shown in Fig. 2. Images X and
Y are encoded separately and decoded jointly. For simplicity,
we assume that Y is conventionally coded and is available
at the decoder. The challenge is to encode X efficiently in
the absence of Y so that it can be reliably decoded in the
presence of Y . The Slepian-Wolf theorem states that X can
be communicated losslessly to the decoder using R bits on
average as long as R > H(X|Y ) [1].

Fig. 3 depicts three compression systems that can be applied
to this problem. The baseline system in Fig. 3(a) is due to [7]
and performs compression of X with respect to the colocated
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Fig. 1. (a) Source image X (b) Source image Y (c) Sum of X and Y modulo
2 (d) Sum of X and Y modulo 2 (shifted to realign the shifted rectangle)
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Fig. 2. Distributed compression: separate encoding and joint decoding

pixels of Y without disparity compensation. The encoder
computes the syndrome S (of length R bits) of X with respect
to a low-density parity-check (LDPC) code [8]. The decoder
initially estimates X statistically using the colocated pixels of
Y and refines these estimates using S via an iterative belief
propagation algorithm. When disparity is introduced between
X and Y , this scheme performs badly because the estimates
of X are poor in the shifted region. For comparison, Fig. 3(b)
shows an impractical scheme in which the decoder is endowed
with a disparity oracle. The oracle informs the decoder which
pixels of Y should be used to inform the estimates of the
pixels of X during LDPC decoding. Finally, Fig. 3(c) depicts
our proposed practical decoder that learns disparity D via EM.
In place of the disparity oracle, a disparity estimator maintains
an a posteriori probability distribution on D. Every iteration
of LDPC decoding sends the disparity estimator a soft estimate
of X (denoted by θ) in order to refine the distribution on D. In
return, the disparity estimator updates the side information ψ
for the LDPC decoder by blending information from the pixels
of Y according to the refined distribution on D. The following
section formalizes the process in terms of EM.
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Fig. 3. (Distributed compression with (a) no disparity compensation, (b) a
disparity oracle, and (c) unsupervised learning of disparity D via EM

III. EXPECTATION MAXIMIZATION ALGORITHM

A. Model

Let X be a binary image of size m-by-n, in which pixels
X(i, j) form an i.i.d. equiprobable Bernoulli random process.
Let L be the random horizontal shift variable with |L| ≤ l,
where l� n is its maximum possible magnitude. Define also
random indices M1 ≤ M2 and N1 ≤ N2 to be the vertical
and horizontal boundaries of the disparity region, respectively.
Thus, D is the 5-tuple (L,M1,M2, N1, N2). Let R and Z
be (M2 − M1 + 1)-by-(N2 − N1 + 1) and m-by-n binary
images, respectively, where R(i, j) and Z(i, j) form i.i.d.
Bernoulli random processes with P{R(i, j) = 1} = 0.5 and
P{Z(i, j) = 1} = ε ≤ 0.5. Generate the image Y as follows
using R to fill in the uncovered area and Z as modulo 2
additive noise. Notice that the pixels Y (i, j) form an i.i.d.
equiprobable Bernoulli random process.

Y := X

Y (M1 : M2, N1 : N2) := R

Y (M1 : M2, N1 + L : N2 + L) := X(M1 : M2, N1 : N2)
Y := Y ⊕ Z

We model the decoder’s a posteriori probability distribution
of source X based on parameters θ as

Pap{X} = P{X; θ}
=

∏
i,j

θ(i, j)1[X(i,j)=1] + (1− θ(i, j))1[X(i,j)=0]



where θ(i, j) = Pap{X(i, j) = 1} is a soft estimate of X(i, j)
and 1[.] denotes the indicator function.

Although this is meant to be a toy model, the restriction
that the shift L be small and in one dimension is reasonable
for a pair of closely-spaced cameras.

B. Problem
The decoder aims to calculate the a posteriori probability
distribution of the disparity D,

Pap{D} := P{D|Y, S; θ}
∝ P{D}P{Y, S|D; θ},

with the second step by Bayes’ Law. The form of this
expression suggests an iterative EM solution. The E-step
updates the disparity distribution with reference to the source
model parameters, while the M-step updates the source model
parameters with reference to the disparity distribution.

C. E-step Algorithm
The E-step update (before renormalization) is written as

P (t+1)
ap {D} := P (t)

ap {D}P{Y, S|D; θ(t+1)}.

But this operation is expensive due to the large number of
possible values of D. We simplify in two ways. First, we
ignore knowledge of the syndrome S since it is exploited in the
M-step of LDPC decoding. Second, we permit the estimation
of the horizontal shift L on a block-by-block basis only. For a
specified blocksize k, every k-by-k block of θ is compared to
the colocated block of Y as well as all those shifted between
−l and l pixels horizontally. For a block θu,v with top left
pixel located at (u, v), the distribution on the shift Lu,v is
updated as below and normalized:

P (t+1)
ap {Lu,v} := P (t)

ap {Lu,v}P{Yu,v+Lu,v
|Lu,v; θ(t+1)

u,v },

where Yu,v+Lu,v
is the k-by-k block of Y with top left pixel

at (u, v + Lu,v). Note that P{Yu,v+Lu,v
|Lu,v; θu,v} is the

probability of observing Yu,v+Lu,v
given that it was generated

through shift Lu,v from Xu,v as parameterized by θu,v . This
procedure, shown in the left hand side of Fig. 4, occurs in the
disparity estimator of Fig. 3(c).

D. M-step Algorithm
The M-step updates the model parameters θ by maximizing
the likelihood of Y and the syndrome S.

θ(t+1) := arg max
θ
P{Y, S; θ(t)}

= arg max
θ

∑
d

P (t)
ap {D = d}P{Y, S|D = d; θ(t)}

True maximization is intractable, so we approximate it with
an iteration of LDPC decoding. The LDPC decoder’s side
information ψu,v is created by blending estimates from each
of the blocks Yu,v+Lu,v

according to P (t)
ap {Lu,v}, as shown in

the right hand side of Fig. 4. More generally, this is

ψ(i, j) =
∑

d

P (t)
ap {D = d}P{X(i, j) = 1|D = d, Y }

= E
(t)
D

[
(1− ε)1[Y (i,j+D)=1] + ε1[Y (i,j+D)=0]

]
.
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Fig. 4. E-step disparity estimation (left) and side information blending (right)

E. Termination

Iterating between the E-step and the M-step in this way
provides a coarse profile of the disparity, limited by the
granularity of k-by-k blocks. Once several contiguous blocks
agree upon a value for L, we refine the estimate of D by
estimating the disparity region boundaries {M1,M2, N1, N2}.
For simplicity, instead of maintaining probability distributions,
we estimate a single value for each boundary variable and
refine it at every iteration. This improves the quality of
the compensation of side information. The decoding algo-
rithm terminates successfully when the thresholded estimates
X̂(i, j) = 1[θ(i,j)>0.5] yield syndrome equal to S.

IV. SIMULATION RESULTS

For our simulations, we select the following constants: image
height m = 72, image width n = 88, maximum horizontal
shift l = 5, blocksize k = 8. The camera noise parameter
ε = P{Z(i, j) = 1} ranges between 0.01 and 0.11. The
distributions of Lu,v are initialized to

P (0)
ap {Lu,v} :=

{
0.75, if Lu,v = 0;
0.025, if Lu,v 6= 0.

Rate control is implemented using rate-adaptive regular
degree 3 LDPC accumulate codes of length 6336 bits [9].
After 150 decoding iterations, if X̂ still does not satisfy the
syndrome condition, the decoder requests additional incremen-
tal transmission from the encoder via a feedback channel.

Figs. 5 and 6 show the compression performance of the
systems in Fig. 3 and the Slepian-Wolf bound for different
levels of additive noise, when the disparity region has size 32-
by-32 pixels and the shift L is 1 and 5, respectively. For the
proposed scheme, we show results when the disparity region
is aligned with the 8-by-8 block grid (best case) and when it
is offset from the grid by 4 pixels horizontally and vertically
(worst case). Fig. 7 shows the performance when the disparity
shift L varies uniformly over −5 ≤ L ≤ 5.
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Fig. 5. Rate (in bit/pixel) required to communicate X for the different
systems shown in Fig. 3 when learning the disparity shift L = 1.
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Fig. 6. Rate (in bit/pixel) required to communicate X for the different
systems shown in Fig. 3 when learning the disparity shift L = 5.

Figs. 5 and 6 demonstrate that a larger shift L moves all
the rate curves and the Slepian-Wolf bound upward, since
it uncovers a larger region of the source image X , but the
performance gaps stay approximately constant. The results
in Fig. 7 show that unsupervised learning of disparity can
achieve performance twice as good as the system that allows
no disparity compensation, for a 32-by-32 disparity region in a
72-by-88 image. Moreover, it only incurs a small performance
loss with respect to the impractical oracle-assisted scheme. The
further gap to the Slepian-Wolf bound is due to the inefficiency
of short length regular LDPC codes.

To illustrate the progress of the unsupervised learning
decoding algorithm, we show how the disparity probability
distribution evolves for a sample 8-by-8 block in Fig. 8.

V. CONCLUSIONS

We address the problem of distributed stereoscopic compres-
sion with disparity learning at the decoder. For distributed
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Fig. 7. Rate (in bit/pixel) required to communicate X for the different
systems shown in Fig. 3, for disparity shift uniform over −5 ≤ L ≤ 5.
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Fig. 8. Evolution of a disparity probability distribution for a sample 8-by-8
block with true disparity shift L = 5.

compression of random dot stereograms, we develop an it-
erative EM algorithm that alternates between updating the
disparity distribution and the source model. We show that
unsupervised learning of disparity is a practical method that
can achieve twice as efficient compression compared to a
system that does not compensate for disparity.
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