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ABSTRACT
This paper briefly presents and evaluates recent advances in sta-
tistical methods for improving inter-view inconsistency in mul-
tiview depth imagery. View synthesis is vital in free-viewpoint
television in order to allow viewers to move freely in a dynamic
scene. Here, depth image-based rendering plays a pivotal role by
synthesizing an arbitrary number of novel views by using a subset
of captured views and corresponding depth maps only. Usually,
each depth map is estimated individually at different viewpoints
by stereo matching and, hence, shows lack of inter-view consis-
tency. This lack of consistency affects the quality of view synthe-
sis negatively. This paper discusses two different approaches to
enhance the inter-view depth consistency. The first one uses gen-
erative models based on multiview color and depth classification
to assign a probabilistic weight to each depth pixel. The weighted
depth pixels are utilized to enhance depth maps. The second one
performs inter-view consistency testing in depth difference space
to enhance the depth maps at multiple viewpoints. We compara-
tively evaluate these two methods and discuss their pros and cons
for future work.

Index Terms— Multiview depth maps, depth map enhance-
ment, inter-view consistency, variational Bayesian inference.

1. INTRODUCTION

Free-viewpoint television (FTV) is an emerging visual media ap-
plication that will allow viewers to have a dynamic natural depth
impression while freely choosing their viewpoint to watch the tele-
cast of real world scenes [1]. FTV is able to display a large number
of views from a range of different perspectives to have a seam-
less free-view experience of natural 3-D scenes. The availability
of low-cost digital cameras permits us to record easily multiview
video (MVV) for FTV. MVV is a set of videos recorded by an
array of video cameras that capture a dynamic natural scene from
many viewpoints simultaneously. However, this entails a demand
for high camera density around the natural scene and a need of
high storage and transmission capacity for the vast amount of cap-
tured imagery at multiple viewpoints [2]. These requirements may
be greatly reduced by using geometry information of 3-D scenes,
for example, depth maps [2]. The reason is that given a small
set of MVV and its corresponding set of multiview depth (MVD)
maps, an arbitrary number of views can be generated by using
depth image-based rendering (DIBR) [3].

Depth maps are quantized gray scale images where each pixel
in the depth map represents the shortest distance between the cor-
responding object point in 3-D world and the given camera plane.
The gray value zero represents the farthest object points and the
largest value the closest. The estimation of depth maps by using
camera captured images of natural dynamic scenes is a challeng-
ing task. For example, stereo matching algorithms obtain depth
maps by accurately establishing stereo correspondences between
two or more images captured at different viewpoints with the help

of a matching criterion. The accuracy of stereo matching and the
resulting depth estimates are affected by many physical factors as
mention in [4]. Although, a number of optimization techniques
are used to refine depth estimates [4], the depth maps usually lack
temporal consistency, since depth estimation does not exploit tem-
poral similarities among neighbouring frames. This results in tem-
poral inconsistency and flickering. Many methods have been pro-
posed to repair temporal inconsistencies in MVD imagery (e.g.,
[5]).

To obtain overall geometry information about a natural scene,
depth maps may be independently estimated using stereo match-
ing at multiple viewpoints. Consequently, the resulting depth maps
at different viewpoints normally lack inter-view consistency. For
example, the depth value of a unique 3D point is the same in all
depth maps for a 1D-parallel camera array setting, but located at
different positions in the maps. Therefore, depth observations at
different viewpoints should be consistent, and related areas in dif-
ferent viewpoints should show the same depth values, but shifted.
In the 1D-parallel camera array setting, all optical centers of the
cameras are parallel to each other and all corresponding rotation
matrices are identical. DIBR based view synthesis may use multi-
ple views from different viewpoints and their corresponding depth
maps. Hence, inter-view depth inconsistencies affect the quality
of synthesized views negatively, and FTV users feel the resulting
visual discomfort. The inter-view depth consistency is also critical
for FTV data representations (e.g. [6]).

With recent MPEG activities on 3D video [7], the problem
of inter-view depth inconsistency has become an active research
topic (e.g., [8, 9]). In [10, 11], inter-view depth consistency test-
ing (IVDCT) of MVD imagery is described, where the resulting
consistency information is utilized to improve the quality of view
synthesis. The framework in [12, 13] exploits the conditional de-
pendency between color and depth pixels to enhance the inter-
view depth consistency. The framework exploits the dependency
through color and depth classification of the MVV imagery by
utilizing a generative model where the model parameters are esti-
mated in a Bayesian framework by variational inference (VI) [14].
In this paper, we briefly describe the recent improvements of the
IVDCT as presented in [10, 11], and that of the probabilistic frame-
work as presented in [13]. We also present a comparative experi-
mental study between the two enhancement methods. This allows
us to discuss the benefits and limitations of the specific algorithms.

In the following, we outline the inference-based framework in
Section 2 and the IVDCTmethod in Section 3. Section 4 discusses
the comparative experimental results. Conclusions are given in
Section 5.

2. PROBABILISTIC INTER-VIEW DEPTH
ENHANCEMENT

Our goal is to improve the inter-view consistency among depth
maps at multiple viewpoints, and with that, to enhance the quality
of FTV. For this, we proposed in earlier work a general model-
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based framework in [12, 13] which improves depth maps at their
respective viewpoints by utilizing the color information from in
the corresponding view imagery. The idea to improve stereo match-
ing results by using color information has been investigated by
many researchers (e.g., [15, 16]). Our initial framework [12] con-
sists of two steps: multiview color classification and multiview
depth classification. First, the framework performs a color clas-
sification of the concatenated view imagery by utilizing a gen-
erative model based on a Gaussian mixture model (GMM). The
model parameters are estimated in a Bayesian framework by varia-
tional inference (VI) [14]. Second, for each resulting color cluster,
we classify the corresponding depth values from multiple view-
points. Finally, multiple depth levels are assigned to individual
sub-clusters for depth enhancement at multiple viewpoints. In
[13], we improve the performance of [12] by utilizing VI for Dirich-
let mixture models (VI-DMM) to perform color classification in
the xyz chromaticity space of the view imagery, and by using
mean-shift clustering for depth subclassification. The choice of
the Dirichlet distribution is motivated by two facts. First, a nor-
malized vector in the xyz chromaticity space has nonnegative el-
ements and its l1 norm equals to one. These properties fit the
definition of the Dirichlet distribution nicely [14, 17]. Second, VI-
DMM reduces the model complexity significantly when compared
to VI-GMM. The choice of xyz chromaticity space also makes the
procedure insensitive to the absolute luminance.

Although, VI-DMM reduces model complexity, high compu-
tational demand is still a concern in [13]. Therefore, in contrast
to [12, 13], we use the concept of superpixels instead of image pix-
els for the color classification step [18]. A superpixel is a group
of perceptually meaningful and homogeneous neighboring image
pixels [19]. Superpixels capture image redundancy and help to
reduce the number of feature vectors for color classification. The
use of superpixels also reduces significantly the overall computa-
tional complexity of the framework, when compared to [12, 13].
This allows us to propose a fully probabilistic multiview depth en-
hancement method in [18], where depth subclassification is also
performed by VI-GMM, which is not supported in [12, 13].

With Bayesian inference to model learning, we use both our
prior knowledge (by assigning proper prior distributions) and given
data to estimate the posterior. In our work, Bayesian learning is
carried out using variational inference. As we learn the model in a
fully Bayesian inference, we have a set of posterior probabilities,
also known as responsibilities. They determine the contribution of
data points when explaining the current data. The use of the fully
Bayesian inference for depth sub-clustering provides us a way to
gain insight about the inter-view depth inconsistencies at multiple
viewpoints. At a later stage, it helps us to improve consistency
by using the resulting responsibilities as probabilistic weights for
depth pixels.

After obtaining the color clusters for a given multiview im-
age set, we exploit the conditional dependency between color and
depth. For this, depth images from the given viewpoints are con-
catenated to a single depth map. This single concatenated depth
map is such that for each color pixel there is an associated depth
value. Therefore, the structure of the color clusters can be imposed
on the depth pixels. However, the resulting depth pixel partition
does not lead to homogeneous depth clusters. The members of
a given color cluster have similar colors, whereas the members
of an imposed depth cluster may have distinct depth values. For
example, as foreground and background object points may have
similar colors, foreground object points have different depth val-
ues when compared to background object points. An object point
with a given color which is visible from all viewpoints should have

the same depth value in all depth maps. However, such points
usually have different depth values in the imposed cluster due to
inter-view inconsistencies. This ambiguity is the motivation for
the further sub-clustering of each imposed depth cluster.

Our main assumption is that the inconsistent depth values for
an observed object point at multiple viewpoints will be assigned
lower responsibilities when compared to consistent ones. Further,
to capture the inter-view relation of depth pixels, we emphasize
their positions as well. For this, we propose a feature vector which
consists of the depth pixel value and its location information from
the corresponding viewpoint. As the discrete location values in
the feature vector are sampled from a continuous distribution with
quantization noise, we model the feature vector by a mixture of
multivariate Gaussian distributions where the model parameters
are estimated by Bayesian inference [14]. This gives a respon-
sibility value for each depth pixel. It is basically the probabil-
ity that the associated depth value is generated from the specified
depth cluster. Thus, we assign each depth pixel to a depth sub-
cluster which gives the largest probability. Finally, we replace
the depth values in each depth sub-cluster by the corresponding
responsibility-weighted mean. Here, we use the largest respon-
sibility of the depth pixel. Note that the arithmetic mean of all
depth values within a sub-cluster would be more sensitive to depth
inconsistency and noise.

3. INTER-VIEW DEPTH CONSISTENCY TESTING AND
ENHANCEMENT

In the previous section, we used a probabilistic model for the depth
values. For this approach, we design a special statistical test to as-
sess the consistency among the inter-view depth values. For given
k viewpoints, we first create the k depth hypotheses by warping
depth maps from k viewpoints to a single viewpoint, say the prin-
cipal viewpoint p. We use 3D warping [3] to achieve spatial align-
ment. For every principal pixel in the principal viewpoint image,
we define a loop difference vectorΔ by using all k depth hypothe-
ses as

Δ = [Δ12,Δ23, . . . ,Δk1]
T
∈ R

k
, (1)

whereΔij = d̂p(i;x, y)− d̂p(j;x, y) is the inter-view depth dif-
ference between warped depth values d̂p(i;x, y) and d̂p(j; x, y)
at the viewpoint p from view i and j respectively, where i, j =
1, . . . , k. Note, Δ satisfies the zero-sum constraint, 1T

Δ = 0,
for any principal pixel. Here 1 is the k-dimensional vector with
each element equal to one. With that, we can define the energy of
the loop difference vector

Ek(Δ) = Δ
T
Δ. (2)

This loop energy captures the individual inter-view depth differ-
ences. It is only zero if all k inter-view depth differences are zero.

Now, we test the inter-view depth consistency with respect to
an inter-view consistency threshold ϑ. If Ek(Δ) ≤ ϑ, we accept
all associated k depth hypotheses as consistent at the principal
pixel. Subsequently, we assume that all the corresponding depth
pixels have a consistent description and relate to the same object
point in 3-D world. Using this information and the perspective
projection, the corresponding depth values in the reference depth
maps can be used to determine an improved depth estimate. More-
over, if Ek(Δ) = 0, all the depth hypotheses are assumed to be
perfectly consistent. Otherwise, if Ek(Δ) > ϑ, we reject all k
depth hypotheses and assume that we do not have a consistent
depth representation of the associated 3-D point.



In contrast to [10, 11], to select ϑ with a desired consistency
quality, we consider a basic error event where only one depth hy-
pothesis out of all available depth hypotheses is erroneous. For
such events, all the depth hypotheses are equal to the true depth
value dp(x, y) at the principal pixel, except the depth hypothesis
from one viewpoint, say l, d̂p(l;x, y) = dp(x, y) + μ, where μ is
the deviation from the true depth. The vector for a such event is
ΔI = [0, . . . , 0,−μ, μ, 0, . . . , 0]T ∈ R

k. With

ϑ ≡ Ek(ΔI) = 2μ2
∀ k, (3)

we only allow the least possible error.
As each principal pixel has an associated energy Ek(Δ), the

testing gives the inter-view consistency information across multi-
ple viewpoints. If the test fails with available k depth hypotheses,
we repeat the consistency analysis and test with (k − 1) out of k
available depth hypotheses. However, there are k ways to select
(k − 1) out of k available depth hypotheses and to define the cor-
responding k unique loop difference vectors of dimension (k−1).
We therefore perform k consistency checks and test with k differ-
ent depth difference vectors. If multiple tests out of k tests with
threshold ϑ are successful, then we accept only the test with the
lowest energy. If all k test with (k − 1) depth hypotheses fail, we
repeat the process of consistency analysis and testing again with a
reduced number of depth hypotheses until the desired consistency
is achieved with k ≥ 2. When all tests fail, we mark the associ-
ated principal pixel by a mask that allows other techniques, such
as [20], to decide the best depth value.

To have inter-view consistent depth maps across k viewpoints,
IVDCT is first utilized to obtain inter-view consistency informa-
tion at viewpoint p which coincides with one of the reference
viewpoints, i.e., p = i, where i = 1, . . . , k. Next, the resulting
consistency information at i is used to update the depth pixel at
p. By updating, we mean that we replace the previous depth pixel
value at i by a new improved depth value. It is determined by aver-
aging the chosen depth hypotheses as obtained by consistency in-
formation. However, if the viewpoints are irregularly spaced, the
depth value is updated by weighted baseline averaging of the cho-
sen depth hypotheses. The enhanced depth values are then used
to update the corresponding depth map value in the viewpoint i.
A similar procedure is applied to update the depth maps at each
viewpoint. The resulting depth maps show improved inter-view
consistency across all the viewpoints. The resulting depth pixel
value at i is then used as an improved input when testing the next
viewpoint. We repeat this process until each viewpoint satisfies
our stopping criterion which is the difference between the loop
energies from recent iterations. When the loop energy does not
change anymore with further iterations, we stop the process. This
gives the MVD imagery with improved inter-view consistency.

The fundamental approach of this work is to consider a cer-
tain set of depth differences, and not the absolute depth values.
We consider the loop difference vector as evidence. Due to the
zero-sum constraint, the autocorrelation matrix of the evidence is
singular. With the threshold constraint (i.e. the constraint on the
variance), we are able to find a subspace of the evidence in which
the zero-sum constraint is satisfied at a lower variance.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The FTV user will enjoy either camera captured views or virtual
views at a time. Depth images are employed for generating novel
virtual views by DIBR at viewpoints where real cameras are miss-
ing. Therefore, the quality of depth images has direct impact on

the view synthesis. Hence, the performance of both depth en-
hancement algorithms is assessed through the effect on the ob-
jective quality of virtual views. In the experiments, we use four
MVV data sets and the corresponding estimated MVD imagery
of as provided by MPEG [7]: Newspaper, Lovebird1, Balloons,
and Kendo. Each evaluation experiment for the proposed scheme
mainly consists of two steps: (1) improvement of depth maps at
multiple viewpoints using one of the proposed enhancement meth-
ods and (2) virtual view synthesis with the help of the improved
depth maps. For the latter, the MPEG view synthesis reference
software (VSRS) is employed [21]. The VSRS is a DIBR ap-
proach which takes two views, left and right, to render a view at
a given intermediate viewpoint by using the two corresponding
depth images and camera parameters. The virtual views are gen-
erated by using the 1D parallel synthesis mode of VSRS 3.5 with
half-pel precision.

Due to computational complexity, we restrict our enhance-
ment algorithms to use depth maps from only three viewpoints
and one time instance (i.e., single frame). Our probabilistic depth
enhancement algorithm starts with a specified number of super-
pixels. The number of superpixels in all experiments is fixed to
225000 superpixels for each concatenated three-view imagery. In
our IVDCT experiments, μ is defined to be directly proportional
to the standard deviation of Δij and an additional factor. This
factor is based on the number of available depth hypotheses. Ta-
ble 1 shows a comparison of PSNR values (in dB) for the syn-
thesized virtual views as generated by VSRS 3.5 when using (a)
MPEG depth maps (MPEG/D), (b) IVDCT enhanced depth maps
(IVDCT/ED) [22], and (c) enhanced depth maps as obtained by
the probabilistic depth enhancement framework (PROMDE/ED)
[18].

In general, both enhancement algorithms offer improvements
in the quality of view synthesis when compared to conventional
MPEG depth maps. However, the improvement in quality is likely
to increase with an increasing number of reference viewpoints
used for the testing. It also depends on the quality of the input
reference depth maps at various viewpoints. Moreover, the objec-
tive improvement in the quality of view synthesis offered by both
depth enhancement methods over MPEG depth maps is scene-
dependent. The probabilistic framework gives the best quality for
Kendo, but is inferior for Newspaper when compared to IVDCT.
This is mainly due to the color classification results as achieved
by VI-DMM in xyz chromaticity space. For the other sequences,
the objective performance of both depth enhancement methods is
similar.

One drawback of our probabilistic framework is the compu-
tational complexity of Bayesian learning in order to obtain proba-
bilistic weights for depth enhancement. On the other hand, IVDCT
is a pixel-based statistical approach which allows to test and im-
prove the inter-view depth consistency in real time. The compu-
tational complexity and memory usage of the consistency testing
algorithm is significantly lower. The quality of view synthesis is
also limited by the choice of the rendering algorithm. In particular,
VSRS 3.5 can not fully exploit our consistency information.

5. CONCLUSIONS

We described and compared two different inter-view depth en-
hancement algorithms for multiview depth imagery. The first is
a probabilistic approach which exploits the inherent inter-view
similarity in multiview imagery through color classification and
Bayesian learning. The resulting probabilistic weights from the
learning of depth models are then used to repair the input depth



Table 1. Comparison of objective quality of the synthesized virtual views using depth maps as enhanced by IVDCT and PROMDE.
Test Input (Virtual) Views VSRS 3.5 [dB]

Sequence VSRS IVDCT PROMDE (a) MPEG/D (b) IVDCT/ED (c) PROMDE/ED
Kendo 3, (4), 5 1, 3, 5 1, 3, 5 36.5 37.0 38.0
Balloons 3, (4), 5 1, 3, 5 1, 3, 5 35.7 36.0 36.0
Lovebird1 6, (7), 8 4, 6, 8 4, 6, 8 28.5 29.0 29.1
Newspaper 4, (5), 6 2, 4, 6 2, 4, 6 32.3 33.2 32.6

imagery. The second improves the inter-view depth consistency
by testingmultiple depth hypotheses from various viewpoints. With
the improved depth consistency, we are able to enhance the visual
experience of FTV. Experimental results demonstrate the effec-
tiveness of both depth enhancement methods. However, for FTV
scenarios which require computationally inexpensive depth en-
hancement, inter-view consistency testing offers advantages. MVD
imagery with more reliable and inter-view consistent depth values
is offered by the probabilistic depth enhancement framework. But
this approach comes with high computational cost. Selecting the
feature vector elements for depth sub-clustering is still challeng-
ing and an open problem. The probabilistic framework has poten-
tial to improve temporal depth coherence by concatenating tempo-
rally successive frames. On the other hand, the use of the resulting
inter-view consistency information from IVDCT is not limited to
depth consistency enhancement. It can also be used to improve the
quality of view synthesis by selecting reliable color pixels from
the view imagery [10, 11]. Future research could combine the ad-
vantages of inter-view consistency testing and probabilistic depth
enhancement.
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