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ABSTRACT

High quality view synthesis is a prerequisite for futurestrgewpoint
television.
real world scene.
play a pivotal role when synthesizing an arbitrary numbenafel
views by using a subset of captured views and correspondaipthd
maps only. Usually, each depth map is estimated indivigiuay
stereo-matching algorithms and, hence, shows lack of-inésy
consistency. This inconsistency affects the quality ofwsynthe-
sis negatively. This paper enhances the inter-view carsigt of
multiview depth imagery. First, our approach classifies ¢blor
information in the multiview color imagery by modeling coleith
a mixture of Dirichlet distributions where the model paraene are
estimated in a Bayesian framework with variational infeenSec-
ond, using the resulting color clusters, we classify theasponding
depth values in the multiview depth imagery. Each clusteieuth
image is subject to further sub-clustering. Finally, theuléng

It will enable viewers to move freely in a dynami
Depth image based rendering algorithniis wi

age. Each pixel in the depth map represents the shorteandést
between the corresponding object point in the natural saedehe
given camera plane. Usually, depth maps are compresseddiy ex
ing video codecs as they contain large smooth areas of ctrngty
levels. Given a small subset of MVV imagery and its correspon
ing set of multiview depth images (MVD), an arbitrary numloér
views can be synthesized by using depth image based regdéfin
However, the quality of depth maps affects significantly goality

of view synthesis as well as coding.

Usually, depth maps are obtained by establishing steree-cor
spondences between two or more camera images at diffe@mt vi
points by a matching criterion[8]. The accuracy of the sienatch-
ing affects the resulting depth estimates. A number of dgtition
techniques are used to refine depth estimates, for examalph-g
cut [9], belief propagatiori [10], and modified plane swegpivith
segmentation [11]. Despite these optimizations, the tiegudlepth
maps at different viewpoints usually lack inter-view catency due

mean of each sub-cluster is used to enhance the depth imageryyq independent estimation as depicted in Elg. 1. Furthezpdepth

multiple viewpoints. Experiments show that our approacprives
the average quality of virtual views by up to 0.8 dB when coraga
to views synthesized by using conventionally estimatedtdem@ps.

Index Terms— Multiview video; depth map enhancement; vari-

ational Bayesian inference; Dirichlet mixture model.

1. INTRODUCTION

Consistent and precise geometry information on naturalexés
highly desirable for high-quality free-viewpoint teleids (FTV) [1].
Scene geometry information such as depth maps significaedlyce
the transmission requirements for the emerging FTV [2]. RATIV
enable viewers to experience a dynamic natural 3D-deptheisap
sion while freely choosing their viewpoint of real world ses. This
has been made possible by recent advances in autostereosedp
tiview display technology which permits viewing of scenesni a
range of perspectives for multiple viewers [3]. Howeveest mul-
tiview display require a high number of views at the recesigle
to have a seamless transition among interactively selesti@o
pairs and to maintain a high depth perceptioh [2]. This nexui
to capture, store, and transmit an enormous amount of ravitiv

video (MVV) [4]. MVV is a set of videos recorded by many video

cameras that capture a dynamic natural scene from many @iBtsp
simultaneously. In recent years, many compression teakaifave
been proposed for MVV imagery1[4].][5].[[6]. These compressi
schemes exploit efficiently the inherent inter-view and peral
similarities in the MVV imagery. But the resulting transsiin
cost is approximately proportional to the number of codesivei
Therefore, a large number of views cannot be efficientlysmaitted
using existing techniques. With only a limited subset oftaegd
color information, high quality FTV is not feasiblel[2].

The transmission efficiency can be improved significantlytdy

estimation does not exploit temporal coherence in viewsd, this
results in temporal inconsistency. These inconsisterafiest the
quality of view synthesis negatively.

Many methods have been proposed to enhance the temporal

inconsistency in MVD imagery, for example_[12], [13], and]1
Whereas|[15],[[16], and_[17] address the inter-view deptoimn
sistency problem. To enhance the inter-view depth comgigte
these methods warp multiple depth maps for spatial alighrfinem
various viewpoints to a common viewpoint before applying en
hancement algorithms. However, this warping causes edoes
to the discrete values in the depth maps and affects enhamtem
algorithms negatively [18].

In [19], we propose a general model-based framework fortdept
map enhancement. First, the framework performs a colosiflas
cation of the view imagery by making a generative model based
a mixture of Gaussian distributions. The model parameteres-
timated by variational Bayesian inference. Next, for eagsulting
color cluster, we classify the corresponding depth valtms imulti-
ple viewpoints. Finally, multiple depth levels are assijteindivid-
ual sub-clusters for depth enhancement at multiple viemtpoiThe
resulting improved depth maps are utilized to enrich the RiEer
experience by synthesizing high-quality virtual views. clontrast
to [19], this paper uses variational Bayesian inferenceDioich-
let mixture models (VBDMM) to perform color classificatiomthe
view imagery [[20]. As the vector of image pixels has nonniggat
elements and is bounded, it can be efficiently modeled biziuig
non-Gaussian distributions such as the Dirichlet distidou[21]].
Moreover, VBDMM reduces the model complexity significantly

The paper is organized as follows: Secfibn 2 describes oubMV
image enhancement framework. Secfibn 3 presents our exgetial

lizing depth maps. A depth map is a single channel gray soale i assessment. The conclusions are summarized in SEttion 4.
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classification is to partition the image into regions eactvioich has
a reasonably homogeneous visual appearance or which pones
to objects or parts of objects. By assuming the chromatspgce is
partitioned intoK clusters, the pixels of the captured MVV imagery
can be classified int& clusters. The best classification should pro-
vide a high intra-cluster similarity and a low inter-cluss@milarity.

By considering the spatial proximity, statistical modeds de

Fig. 1. Example of inter-view inconsistency among estimatedtuept applied to classify the MVV imagery efficiently. As the pixatc-

maps at three viewpoints for Newspaper M\[V[22]. The redlesc
mark prominent inconsistent areas in the depth maps.
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Fig. 2. Block diagram of the proposed approach.
2. MULTIVIEW DEPTH ENHANCEMENT FRAMEWORK

The proposed algorithm is summarized in ig. 2. We assunté¢htba
MVV imagery of resolutiond x W is independently captured for
a given natural dynamic scene using projective cameras aew-
points. Usually, each captured view of the scene is an imayéM
color space([23]. To make the procedure insensitive to tle®-ab
lut luminance, we use the chromatic color representatidh @so
known as the pure color space. We transform these views fidw Y
space to the chromatic color space. In this space, the bjptimary
colors are denoted h¥(, Y, andZ, respectively. The chromaticity
of a pixel in viewv,, € RF>*W>3 n ¢ {1,..., N}, is described
by a vector of three coefficients, i.&,(p,q) = [z, v, 2]*, whose
entries sum to one. The chromaticity coefficients are deﬁm 5],

B X B Z 1)
T X+Y+Z T X+Y+Z

7y:X+Y+Z7

2.1. Concatenation of View Imagery

tor in the chromaticity space has nonnegative elementshnduie
bounded by the intervd0, 1] and sum to one, it is obvious that the
pixel vectors are not Gaussian distributed. For such, weutiiine
non-Gaussian distributions to efficiently model the datf.[Based
on the pixel vector’s properties, a natural and reasondiéce is
to assume that the pixel vectors of each cluster are Ditiahie
tributed [27]. Hence, we use a Dirichlet mixture model (DMid)
capture the underlying distribution of all clusters. THasone pixel
Vm, its probability density function (PDF) can be expressed by

K

(Fm) = Y _ mDir (Tm;ux) ,
k=1

(4)

where K is the number of mixture components (clusters),rep-
resents the weighting factor of thd" mixture component, and;,
denotes the parameter vector in #i&mixture componen{[28]. For
a singleL-dimensional Dirichlet distribution, the PDF is

r (ZLL+11 Ulk) Lt1
Dir (Von;u) = ————2 [[ /%", we >0,  (5)
| | e ) 11:[1 :
wherel (-) is the gamma function as defined by
I'(2) :/ t* e dt. (6)
0

If the number of cluster& is known in advance, the Expectation
Maximization (EM) algorithm[[2B] can be used to fit a DMM with
K mixture components to the pixel vectors. However, the nurabe
components (clusters) is in general unknown and should bsech
empirically by the used algorithm.

An alternative way of learning the number of clusters is te em
ploy the Bayesian framework to estimate the DMM, as the Bayes
method can determine the number of mixture components attom
ically from the data. A fully Bayesian DMM approach is propds
in [20], in which the variational Bayesian (VB) method [28)] 2vas
applied to deal with the intractable integration expressippearing
in the Bayesian approach. With the extended factorizedoappe-
tion approach[[30], an analytically tractable solution vaasived.
This general optimization method has been used in a number of

To have a unique model for the captured natural scene, we firgecent works. With the Bayesian approach, the mixture misdel

exploit this inherent inter-view similarity of the MVV imagy
by concatenating views fronV viewpoints to a single view ¢
RH><NW><3

@

v =|[vi,...,VN].

For simplicity, we transform

GRHXNWXS R3><M

—V E s (3)
wherev = [v1,...,Vum], with M = HWN. Eachv,,,m €
{1,..., M}, is a point in chromaticity space with the chromaticity
coefficients;, y, andz.

2.2. Multiview Color Classification

In this section, we classify the color pixels of the captu#dV im-
agery in the chromaticity space. As mentioned_in [26], thal @b

initialized by a relatively large number of mixture compateK.
After convergence, the mixture components with extremetals
weights will be discarded from the model and oilynixture com-
ponents (clusters) are kept afterwards as
I={i:m >}, )
wherel = {1,...,4,...,1} andl < K. In this paper, we choose
empirically the threshold a8 = 0.01. The remainingl clusters
are of significant weight and explain the underlying datéiciently.
Hence, the most efficient number of mixture components et}
is learned by the model itself after the algorithm has coyeer
LetR = [r1,...,rn] denote the responsibility matrix in the
Bayesian estimatiof [20], whers, = [r1,...,7m1]” . Each ele-
mentr,,; represents the probability that, is generated from th&’
cluster. Thus, we assign each pixel to the component (cjustéch
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Fig. 3. Example of color and corresponding depth classificatisnlts.

gives the largest probability. Members of tifecluster are denoted 2.4. Multiview Depth Image Enhancement

by Y which can be extracted from the observationsets

YO ={y® .y, ®)
vy = MY ¥, )

with the definition

M(Z): 17 if Tml>7‘m]7vz7é.7 (Z7.7€{177[})a
m 0, otherwise.
(10)

2.3. Multiview Depth Classification

The members of the clust® ) have similar colors, whereas mem-
bers of the clusteX(? may have different depth values. This is
because a foreground and a background object point can tsve a
ilar color, but foreground object points have different tthepalues
compared to background object points. As we assume 1D ghrall
camera arrangements, an object point with a given color lwisic
visible from N viewpoints should have the same depth value in all
N depth maps. However, such points usually have differenthdep
values in the clusteX ¥ due to the inconsistency across multiple
viewpoints. This motivates us to consider further sub+elisg of
eachX (?, where the variance of each sub-cluster reflects the incon-

For each view,,, we assume that the associated per-pixel depth mapiStency of depth values at various viewpoints. Here, weyahe
d, € R"*W exists. Each pixel in the depth map, has a discrete mean-shift algorithm for the purpose of sub-clustering] [B$tead

value, where the value zero represents the farthest pain2 the
closest. In order to enhance inter-view consistency, weaimmate
depth maps fronV viewpoints to a single depih ¢ R7>*NW

d=[d,...,dn]. (11)
Again, for simplicity, we consider the following mapping
de R s deRVM, (12)

whered = [di, ..., da] is such that for each color pix&l,,, m €
{1,..., M}, we have an associated depth valye € {0, ..., 255}.
We therefore utilize this per-pixel depth value assocratioth the
color values by usingMﬁfL) in order to obtain members of th&
depth clusteX (),

XW = (=", %), (13)
x® =MD Q,,. (14)

Fig.[3 shows such color clusters and associated depth Euste
concatenated color images and depth maps, respectively.

of K-means as used in [19]. TH€-means clustering algorithm is
computationally fast but it suffers from two main drawbacks it
does not consider the spatial proximity of different pixaisl 2) it
requires a good guess for the number of actually presentectus
Therefore, an incorrect guess of the number of actual cstay
lead to erroneoug&’-means clustering results. However, mean-shift
clustering does not require prior knowledge of the numberlad-
ters[32], and hence, is a good choice for this sub-clusigrinblem.
We may use again the Bayesian mixture model of non-Gaussian i
order to perform this sub-clustering stage. This would ltasua
more accurate clustering, but it would also entail a higlenguta-
tional complexity. Finally, we assigns the mean of each dubter

to all depth pixels which fall into the specified depth substér, ir-
respective of the originating viewpoint.

3. EXPERIMENTAL RESULTS

The Moving Picture Experts Group (MPEG) uses the view sygithe
reference software (VSRS) for view synthesis|[3B].| [34]udes a
DIBR approach to synthesize a virtual view at an arbitratgrime-
diate viewpoint by using two reference views, left and righe two
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(a) Original.  (b) MPEG. (c) [19]. (d) Proposed.

Fig. 4. Selected regions of synthesized virtual views of the test s

Table 1. Objective quality of the synthesized virtual views
VSRS 3.5 [dB]

Test Input | Virtual | MPEG | VBGMM VBDMM
Sequence | Views | View Depth | +K-Means | +Mean-Shift
(@) Depth (b) Depth (c)

Lovebirdl 6,8 7 28.50 28.68 29.04
Balloons 3,5 4 35.69 35.93 36.02
Newspaper 4,6 5 32.00 32.10 32.11
Kendo 3,5 4 36.54 36.72 39.35
Poznan Street 3,5 4 35.56 35.58 35.72

corresponding reference depth maps, and camera paramétezs
proposed algorithm is evaluated in two steps. First, thehdip-
agery at two viewpoints is improved by choosing a large nuralbe
mixture componentd<, for exampleK = 100. For this, we con-
catenate only two views and the two corresponding depth raaps
input to our algorithm. Second, a virtual view for a givenwpmint
is synthesized by VSRS 3.5 using the improved depth mapsykive s
thesize these virtual views by using the 1D parallel synthemde
with half-pel precision. Further, we measure the objectjuality
of the synthesized views in terms of the peak signal-toencédio
(PSNR) with respect to the captured view of a real cameraeat th
same viewpoint.

Table[d shows a comparison of the luminance signal Y-PSNR
(in dB) of the virtual views as synthesized by VSRS 3.5 with th
help of (a) MPEG depth maps, (b) enhanced depth maps from
VBGMM [I9], and (c) enhanced depth maps from the proposed
VBDMM approach. The presented enhancement algorithm offer
average improvements of up to 0.8 dB. The improvement inityual
depends on the input reference depth maps at various vietgpoi
For the Balloons test data, the mean quality and standardta®v
of ten experiments with different initialization 85.86 + 0.09 dB.
This compares to 35.69 dB when using MPEG depth maps. In Ta-
ble[d the best results are presented. Hig. 4 shows that opoged
depth enhancement algorithm noticeably improves the Vipual-
ity of virtual views when compared to using MPEG depth maps.
Specially, artifacts around the edges in synthesized aliniews
have been significantly reduced. This demonstrates théegiig of
our multiview depth imagery enhancement algorithm. Heitde a
promising algorithm for improving the visual quality of FTV

Besides improving the quality of FTV, VBDMM introduces less
model complexity than the VBGMM approach. When modeling a
D-dimensional vector by a VBDMM withl mixture components,
the number of free parameterssis = I(D + 2) — 1. The number
of free parameters for the VBGMM with diagonal covariancdnra
issg = I(2D + 1) — 1. Thus, by measuring the model complexity
in terms of the number of free parameters, the VBDMM requires
smaller model complexity than the VBGMM with the same iditia
number of mixture components.

4. CONCLUSIONS

We have proposed a MVD image enhancement algorithm that im-
proves inter-view depth consistency. With that, we are ablen-
hance the visual quality of FTV. The presented algorithmaiseal
on multiview color classification by variational Bayesiarierence
for Dirichlet mixture models. It uses the resulting colousters to
classify depth values from various viewpoints. Here, aprel as-
sociation between depth and color has been exploited focltse

guences as generated by VSRS 3.5 using (b) MPEG depth maps, @fication. Both objective and subjective results dematstthe ad-

improved depth maps frorh [19], and (d) enhanced depth maps fr
the proposed VBDMM+Mean-shift-based algorithm for a dethi
comparison. Full resolution synthesized virtual views arailable
at http://lwww.ee.kth.se/ prara/research/icassp.zip

vantage of the presented algorithm. Furthermore, our agprbas
potential to improve temporal depth consistency by comaieg
temporally successive frames from multiple viewpoints.
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