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Abstract—In this paper, a general model-based framework
for multiview depth image enhancement is proposed. Depth im-
agery plays a pivotal role in emerging free-viewpoint television.
This technology requires high quality virtual view synthesis to
enable viewers to move freely in a dynamic real world scene.
Depth imagery of different viewpoints is used to synthesize an
arbitrary number of novel views. Usually, the depth imagery
is estimated individually by stereo-matching algorithms and,
hence, shows lack of inter-view consistency. This inconsistency
affects the quality of view synthesis negatively. This paper
enhances the inter-view consistency of multiview depth imagery
by using a variational Bayesian inference framework. First,
our approach classifies the color information in the multiview
color imagery. Second, using the resulting color clusters, we
classify the corresponding depth values in the multiview depth
imagery. Each clustered depth image is subject to further sub-
clustering. Finally, the resulting mean of the sub-clusters is
used to enhance the depth imagery at multiple viewpoints.
Experiments show that our approach improves the quality of
virtual views by up to 0.25 dB.

Keywords-Multiview video; depth enhancement; variational
Bayesian inference; Gaussian mixture model;

I. INTRODUCTION
Free-viewpoint television (FTV) will significantly change

our current television experience [1], [2]. FTV will enable
viewers to have a dynamic natural 3D-depth impression
while freely choosing their viewpoint of real world scenes.
This has been made possible by recent advances in electronic
display technology which permits viewing of scenes from a
range of perspectives [3]. Furthermore, the availability of
low-cost digital cameras enables us to record easily multi-
view video (MVV) for FTV. MVV is a set of videos recorded
by many video cameras that capture a dynamic natural
scene from many viewpoints simultaneously. To provide a
seamless transition among interactively selected viewpoints,
we are required to store or transmit an enormous amount
of MVV imagery [4]. In the future, the commercialization
of FTV will further increase the demands for high-capacity
multimedia transmission networks.
These requirements attracted many researcher in recent

years and, as a result, many compression techniques have
been proposed for MVV imagery [4], [5], [6]. As MVV
is the result of capturing the same dynamic natural scene

from various viewpoints, the imagery exhibits high inter-
view and temporal similarities. The Moving Picture Experts
Group (MPEG) proposed multiview video coding (MVC)
as an extension to the existing H.264/AVC compression
technology [7]. MVC exploits efficiently inherent similar-
ities in the MVV imagery for compression. The resulting
transmission cost for MVC is approximately proportional
to the number of display views [8]. Therefore, a large
number of views cannot be efficiently transmitted using
MVC. However, limited subsets of MVV imagery can be
transmitted to the receiver using existing networks. With
only a limited subset of the captured color information,
high quality view synthesis is not feasible [8]. However,
by utilizing the scene geometry information such as depth
maps, the quality can be improved significantly.
A depth map is a single channel gray scale image. Each

pixel in the depth map represents the shortest distance
between the corresponding object point and the given camera
plane. Usually, depth maps are compressed by existing
video codecs as they contain large smooth areas of constant
grey levels. Given small subset of MVV imagery and its
corresponding set of multiview depth images (MVD), an
arbitrary number of views can be synthesized by using
depth image based rendering (DIBR) [9]. The quality of
these synthesized views depends significantly on the consis-
tency of the MVD imagery. Usually, depth maps for differ-
ent viewpoints are estimated independently by establishing
stereo correspondences between nearby views only [10]. A
number of different approaches are used for efficient depth
estimation such as optimization via graph-cut [11], belief
propagation [12], [13], and modified plane sweeping with
segmentation [14]. Despite these optimizations, the resulting
depth information at different viewpoints usually lacks inter-
view consistency as shown in Fig. 1. This inconsistency
affects the quality of view synthesis negatively and, hence,
FTV users experience visual discomfort.
Many methods have been proposed to enhance the tem-

poral inconsistency in MVD imagery, for example by using
belief propagation [16], motion estimation [17] and by ex-
ploiting local temporal variations in the MVV imagery [18].
However, we addressed the inter-view inconsistency problem
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Figure 1. Inter-view inconsistency among estimated multiview depth maps
at different viewpoints for different multiview video imagery as provided
by [15]. The red circles mark the most prevailing inconsistent areas in depth
maps.

in [19] by testing evidence for depth consistency and by
using a single hard threshold for testing. In the follow-
up work [20], cluster adaptive thresholds are used for
consistency testing, which are based on the statistics of each
cluster. Recently [21] proposed content adaptive median
filtering for improving temporal and inter-view consistency
of depth maps by adapting to edges, motion and depth
range. The methods [19], [21], and [20] warp depth maps
from various viewpoints to a common viewpoint for spatial
alignment. However, this warping produces errors due to
the discrete values in depth maps and affects enhancement
algorithms negatively [22].
In this paper, we keep the view imagery and the cor-

responding depth maps at their respective viewpoints. The
objective of this paper is to propose and investigate a general

model-based framework for depth map enhancement. First,
the proposed framework uses variational Bayesian inference
to perform color classification in the view imagery. Second,
for each resulting color cluster, we classify the correspond-
ing depth values from multiple viewpoints. Finally, multiple
depth levels are clustered in individual sub-clusters for depth
enhancement at multiple viewpoints. The resulting improved
depth maps are utilized to enrich the FTV user experience
by synthesizing high-quality virtual views.
The remainder of this paper is organized as follows: In

Section II, we describe the proposed approach for MVD
image enhancement. Section III presents the objective and
subjective assessment of the proposed approach. Finally,
Section IV gives concluding remarks and future directions.

II. PROPOSED APPROACH

The proposed algorithm consists of mainly four steps:
(1) concatenation of view imagery, (2) multiview color
classification, (3) multiview depth classification, and (4)
multiview depth enhancement, as shown in Fig. 2. In rest
of this section, we will explain the individual steps of the
approach in detail.
To address the inconsistency problem in the estimated

MVD imagery at multiple viewpoints, we assume that
the MVV imagery of resolution H × W is independently
captured for a given natural dynamic scene using projective
cameras at N viewpoints. Usually, each captured view of the
scene is an image in YUV color space [23]. We transform
these views from YUV space to RGB color space [24]. This
is because, the probabilistic mixture models can efficiently
model pixel value distributions in the RGB space, even
if the RGB space is not independent from the luminance
in the capturing environment. In RGB space, a pixel in a
view vn ∈ RH×W×3, n ∈ {1, . . . , N}, is described by a
vector which comprises three primary color channels, red
(r), green (g), and blue (b), i.e., vn(p, q) = [r, g, b]T , where
p ∈ {1, . . . , H}, q ∈ {1, . . . ,W} and T represents the
transpose operation. Here, each color component can take
values between 0 and 255.

A. Concatenation of View Imagery

The captured MVV imagery of the scene has inherent
inter-view similarity. In order to have a unique model for
the captured natural scene, we first exploit the inter-view
similarity by concatenating views from N viewpoints to a
single view v ∈ RH×NW×3,

v = [v1, . . . ,vN ], (1)

as shown in Fig. 3(a). For simplicity, we transform

v ∈ RH×NW×3 �−→ v ∈ R3×M , (2)

where
v = [v1, . . . ,vM ], (3)
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Figure 2. Block diagram of the proposed approach.

with M = HWN . Each vm,m ∈ {1, . . . ,M}, is a point in
a 3-dimensional space comprising the intensities of the r, g,
and b color channels.

B. Multiview Color Classification
In this section, we discuss the proposed approach of color

classification for the captured MVV imagery. We begin our
discussion by considering the problem of identifying clusters
of data points v in a multidimensional space. The goal is to
partition the data set into K clusters, where we shall assume
that the value of K is unknown.
Intuitively, a cluster comprises a group of data points

whose inter-point distances are small compared with the
distances to points outside of the cluster. Let μk, where
k = 1, . . . ,K denote a prototype associated with the kth

cluster. We shall assign data points to clusters, as well as
a set of vectors {μk}, such that the sum of the squares
of the distances of each data point to its closest vector
μk becomes minimum. In other words, the problem that
we are dealing with can be considered as image segmen-
tation. As mentioned by [25], the goal of segmentation
is to partition an image into regions each of which has
a reasonably homogeneous visual appearance or which
corresponds to objects or parts of objects. The K-means
algorithm can be considered as one approach for image
segmentation. However, this approach suffers from two main
drawbacks: 1) it does not consider spatial proximity of
different pixels; 2) the number of clusters K has to be
known [26]. Alternatively, one may consider a Gaussian
mixture model (GMM) for the segmentation task. GMMs
are a valuable statistical tool for modeling densities. They
are flexible enough to approximate any given density with
high accuracy, and, in addition, they can be interpreted as a

(a) Concatenation of color images. (b) Concatenation of depth images.

Figure 3. Example of image concatenation of two viewpoints.

soft clustering solution. Thus, they have been widely used in
both supervised and unsupervised learning, and have been
extensively studied and applied in several domains. One way
of making a GMM is the maximum likelihood where the
expectation-maximization (EM) [27] algorithm is used to
find the maximum likelihood solutions. The EM algorithm
for Gaussian mixtures is similar to the K-means algorithm,
where the K-means algorithm performs a hard assignment
of data points to clusters, in which each data point is
associated uniquely with one cluster. In general, the EM
algorithm makes a soft assignment based on the posterior
probabilities. There are two main problems associated with
the maximum likelihood EM-based framework applied to
GMM: 1) it sufferers from singularities when one of the
Gaussian components collapses onto a specific data point.
In this case, the log likelihood function goes to infinity; 2)
it sufferers from over-fitting and, similar to the K-means
algorithm, the number of components K has to be known.
A fully Bayesian approach has been proposed in [28],

where the number of components is treated as a random
variable, and the reversible jump Markov chain Monte Carlo
method is used for sampling. However, this method is
computationally demanding. To deal with the intractable
integrations appearing in the Bayesian approach, the use of a
variational approximation [29], [30], [26] has been proposed
that yields an iterative method similar to the formulation of
EM. This general optimization method is called Variational
Bayes (VB) and has been used in a number of recent works.
1) Variational Mixture of Gaussians: A detail deriva-

tion of variational mixture of Gaussians can be found
in [26]. Here, we only provide a summary of this approach.
Let v denote a set of M independent observations, i.e.,
v = {v1, . . . ,vM}, where each observation vm,m ∈
{1, . . . ,M} is a D-dimensional feature vector (D = 3)
comprising the intensities of the r, g and b color channels in
real space RD. Associated with every observation vm, there
is a corresponding latent variable zm = [zm1, . . . , zmK ]T

consisting of a 1-of-K binary vector with elements zmk for
k = 1, . . . ,K . Now, let p(vm) denote a mixture with K

Gaussian components

p(vm) =

K∑
k=1

τk N (vm | μk,Λk), (4)

where τk, μk, and Λk represent the mixture weight, the
mean value, and the precision of the kth component.
A Bayesian mixture model is obtained by imposing priors



on the parameters of the model. Typically, conjugate priors
are used such that the prior and posterior will have the same
functional form and, hence, optimization procedures can be
carried out in an iterative manner. Therefore, a Dirichlet
prior distribution is introduced over the mixing coefficients;
and a Gaussian-Wishart distribution is introduced over μ
and Λ governing the mean and precision of the Gaussian
components.
Bayesian model selection is obtained through maximiza-

tion of the marginal likelihood. The variational approxima-
tion of the VB method suggests the maximization of a lower
bound of the logarithmic marginal likelihood. A notable
property of the method is that during maximization of the
lower bound, if some of the components fall in the same
region of the data space, then there is a strong tendency
in the model to eliminate the redundant components, once
the data in this region is sufficiently explained by fewer
components.
The learning task in the VB approach consists of the opti-

mization of the variational distribution of the latent variables
and component parameters. Based on the optimized solution
provided by variational inference [30], optimization of the
posterior distribution of latent variables can be obtained by
taking the expectation of terms involving latent variables
in the joint distribution with respect to the component
parameters. This leads to a set of responsibilities rmk which
tell how responsible the kth component is for modeling
of vm. Similarly, optimization of the posterior distribution
of component parameters can be obtained by taking the
expectation of terms involving component parameters in the
joint distribution with respect to the latent variables.
In summary, the algorithm starts with the initialization of

the hyper-parameters characterizing the parameter distribu-
tions. In the next step, the current distribution over the model
parameters is used to evaluate the responsibilities which is
a result of the optimization of the posterior distribution of
latent variables. Later, these responsibilities are used for the
optimization of the variational posterior distribution over
component parameters and provide the update for the hyper-
parameters. This procedure continues until convergence.
Let R = [r1, . . . , rM ] denote the responsibility matrix,

where rm = [rm1, . . . , rmK ]T, and let w = [w1, . . . ,wK ]T

denote the weight mixture, where wk =
∑N

m=1 rmk. We
need to keep clusters with certain weights by which data can
be sufficiently explained. The corresponding cluster indices
can be obtained by

{i}∈K = max
k

w ≥ 0.1 max(w), (5)

where I = {1, . . . , i, . . . , I} and I ≤ K . Intuitively, the set
I includes indices of clusters which represent certain colors.
It is notable that we do not need a very fine classification of
the colors. Hence, in (5) we introduced a threshold which
is data independent. The clusters which are rejected in the

thresholding procedure include either none or few members
which should be reassigned to their nearest clusters. Let
{l}∈K\I denote the index of the lth cluster which is not
in the set of I . A set of such indices are denoted by
L = {1, . . . , l, . . . , L}. The reassigning members of the
clusters in the set L to the nearest clusters in the set I
can be done by calculating the distances of their cluster
prototypes {μl} to their closest cluster prototypes {μi} so
that the absolute value of the distance becomes minimum.
Members of the ith cluster are shown as Y(i) which can

be extracted from the observation set v as,

Y(i) = {y
(i)
1 , . . . ,y

(i)
M }, (6)

y(i)
m = M(i)

m vm (7)

where we have defined

M(i)
m =

{
1, if rmi > rmj , ∀j �= i (j, i ∈ {1, . . . ,K});
0, otherwise.

(8)

C. Multiview Depth Classification

For each view vn, we assume that the associated per-
pixel depth map dn ∈ RH×W exists. Each pixel in the
depth map dn has a discrete value, where the value zero
represents the farthest point and 255 the closest. In order to
enhance inter-view consistency, we concatenate depth maps
from N viewpoints to a single depth d ∈ RH×NW ,

d = [d1, . . . ,dN ], (9)

as shown in Fig. 3(b). Again, for simplicity, we consider the
following mapping

d ∈ RH×NW �−→ d ∈ R1×M , (10)

where
d = [d1, . . . ,dM ], (11)

is such that for each color pixel vm,m ∈ {1, . . . ,M}, we
have an associated depth value dm ∈ {0, . . . , 255}. We
therefore utilize this per-pixel depth value association with
color values by using M

(i)
m in order to obtain members of

the ith depth cluster, X(i),

X(i) = {x
(i)
1 , . . . ,x

(i)
M }, (12)

x(i)
m = M(i)

m dm. (13)

Figure 4 shows such color clusters and associated depth
clusters for concatenated color images and depth maps
from two viewpoints, respectively. Note that this approach
efficiently clusters similar color pixels from multiple view-
points without making any specific assumptions about the
illumination.



D. Multiview Depth Image Enhancement

The members of the cluster Y(i) are similar colors,
whereas members of the cluster X(i) are different depth
values. This is because a foreground and a background object
point can have a similar color, but foreground object points
have different depth values compared to background object
points. Furthermore, if an object point with a given color
is visible from N viewpoints, this point should have the
same depth value in all N depth maps. However, such points
usually have different depth values in the cluster X(i) due to
the inconsistency across multiple viewpoints. This motivates
us to consider further sub-clustering of each X(i), where
the variance of each sub-cluster reflects the inconsistency in
depth values from various viewpoints. Here, we apply the
K-means algorithm for the purpose of sub-clustering. The
K-means clustering algorithm is computationally fast and,
hence, a good choice for this sub-clustering procedure. We
may use again the Bayesian mixture model of Gaussians
in order to perform this sub-clustering stage. This will
result in a more accurate clustering, but it will entail a
higher computational complexity. The K-means assigns the
mean of each sub-cluster to depth pixels which fall into the
specified depth sub-cluster, irrespective of the originating
viewpoints.

III. EXPERIMENTAL RESULTS

MPEG uses the view synthesis reference software (VSRS)
for view synthesis, which is an DIBR approach for synthe-
sizing virtual views [31], [32]. The VSRS uses two reference
views, left and right, to synthesizes a virtual view at an
arbitrary intermediate viewpoint by using the two corre-
sponding reference depth maps and camera parameters. To
evaluate the proposed algorithm, we compare the subjective
and objective quality of the virtual views as synthesized by
VSRS 3.5 with the help of MPEG provided depth maps and
improved depth maps from our approach.
First, the depth imagery from two viewpoints is improved

by utilizing the proposed approach with K = 100. For this,
we concatenated only two views and the two corresponding
depth maps as input to our algorithm. Second, a virtual view
for a given viewpoint is synthesized by VSRS 3.5 using the
improved depth maps. We synthesize these virtual views by
using the 1D parallel synthesis mode with half-pel precision.

A. Objective Results

We measure the objective quality of the synthesized views
in terms of the peak signal-to-noise ratio (PSNR) with
respect to the captured view from a real camera at the same
viewpoint. For this evaluation, we use five MVV test sets and
the corresponding depth maps as provided by MPEG [15].
Table I shows a comparison of the luminance signal Y-PSNR
(in dB) of the synthesized virtual view by VSRS 3.5 using
(a) MPEG provided depth maps and (b) enhanced depth

Table I
OBJECTIVE QUALITY OF THE SYNTHESIZED VIRTUAL VIEWS

Test Input Virtual VSRS 3.5 [dB]
Sequence Views View MPEG Depth Improved Depth
Newspaper 4-6 5 31.98 32.10
Kendo 3-5 4 36.54 36.72

Poznan Street 3-5 4 35.56 35.58
Lovebird1 6-8 7 28.50 28.68
Balloons 3-5 4 35.68 35.93

maps by the proposed algorithm. The presented enhance-
ment algorithm offers improvements of up to 0.25 dB. The
improvement in quality depends on the input reference depth
maps from various viewpoints. The proposed algorithm is
not very sensitive to the initialization for color classification.
For the Balloons test data, the mean quality ± standard
deviation of ten experiments with different initialization is
35.836± 0.068 dB. This compares to 35.68 dB when using
MPEG depth maps. For experiments, the number of sub-
clusters is manually fixed to 12. Table I, best results are
presented.

B. Subjective Results

The visual quality of virtual view synthesis is notice-
ably improved by using the enhanced MVD imagery. The
proposed algorithm efficiently reduces the artifacts, spe-
cially around the edges of the synthesized virtual views.
Fig. 5 shows synthesized virtual views for the five test
sequences, Newspaper, Kendo, Poznan Street, Lovebird1,
and Balloons, respectively. For the Newspaper sequence,
the blue sweater and the background are well synthesized
by our proposed depth enhancement. We noticeably reduce
the artifacts around the Kendo hakama and the trouser of
the spectator. The visual quality of the synthesized Poznan
street view improves, specially around the edges, as shown in
Fig. 5. Artifacts around the hair and around the red jeogori
sleeve of the man have been reduced for Lovebird1. For
Balloons, the artifacts around the balloon boundaries are
efficiently suppressed with the proposed enhancement. This
demonstrates the efficiency of our enhancement algorithm
for MVD imagery and, hence, this is a promising algorithm
for improving the visual experience of FTV users.

IV. CONCLUSION AND FUTURE WORK

We proposed a MVD image enhancement algorithm that
improves inter-view depth consistency and, hence, that is
able to enhance the visual experience of FTV users. The pre-
sented algorithm is based on multiview color classification
by a variational Bayesian approach and uses resulting color
clusters to classify depth values from various viewpoints.
Here, per-pixel associations between depth and color have
been exploited for the classification. Both objective and
subjective results demonstrate the effectiveness of the pre-
sented algorithm. The proposed framework has the potential
to address temporal depth inconsistencies by considering
temporal views and depth maps from multiple viewpoints.



(a) An example of the mean vector of the color clusters, where I = 35.

(b) Color Cluster 21. (c) Depth Cluster 21.

(d) Color Cluster 23. (e) Depth Cluster 23.

(f) Color Cluster 31. (g) Depth Cluster 31.

(h) Color Cluster 35. (i) Depth Cluster 35.

Figure 4. Color and corresponding depth classification results.

An interesting avenue for future research is to apply our
algorithm on a block-by-block basis. The motivation behind
a block-by-block algorithm is to decrease the time for
computation. Furthermore, we would like to consider other
mixture models for efficient and fast color classification,
such as Beta mixture models.
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