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ABSTRACT

In this paper, we define volumetric depth confidence and pro-
pose a method to denoise this data by performing adaptive wavelet
thresholding using three dimensional (3D) wavelet transforms. The
depth information is relevant for emerging interactive multimedia
applications such as 3D TV and free-viewpoint television (FTV).
These emerging applications require high quality virtual view ren-
dering to enable viewers to move freely in a dynamic real world
scene. Depth information of a real world scene from different
viewpoints is used to render an arbitrary number of novel views.
Usually, depth estimates of 3D object points from different view-
points are inconsistent. This inconsistency of depth estimates af-
fects the quality of view rendering negatively. Based on the su-
perposition principle, we define a volumetric depth confidence de-
scription of the underlying geometry of natural 3D scenes by using
these inconsistent depth estimates from different viewpoints. Our
method denoises this noisy volumetric description, and with this,
we enhance the quality of view rendering by up to 0.45 dB when
compared to rendering with conventional MPEG depth maps.

Index Terms— Volumetric depth confidence, denoising, su-
perposition, discrete wavelet transforms, adaptive thresholding,
view rendering

1. INTRODUCTION

Advances in visual media technology have led to applications such
as three-dimensional television (3D-TV) and free-viewpoint tele-
vision (FTV) [1]. 3D TV aims to provide a natural 3D-depth im-
pression of dynamic 3D scenes, while FTV enables viewers to
dynamically choose their viewpoint of real world scenes. This is
realized by using an array of cameras which enable us to acquire
multiview imagery by capturing dynamic natural world scene from
multiple viewpoints simultaneously. In conventional multiview
systems, view rendering is required for smooth transitions among
captured views. Usually, view rendering uses multiple views and
depth maps acquired from different viewpoints. Each depth map
gives information about the shortest distance between the corre-
sponding camera plane and object points in the real world scene.
Usually, depth maps for chosen viewpoints are estimated by es-
tablishing stereo correspondences only between nearby views [2],
[3], [4], [5]. However, the estimated depth maps of different view-
points usually lack inter-view consistency [6]. This inconsistency
of depth estimates affects the quality of view rendering negatively
and, hence, FTV users experience visual discomfort.

The availability of highly consistent and accurate depth maps
of natural 3D scenes is relevant for enabling these emerging visual

media applications. Therefore, in order to have an unique and a
consistent description of the underlying geometry of the natural
3D scene, we first generate a noisy volumetric description of the
scene geometry by using inconsistent depth estimates from mul-
tiple viewpoints. In this description of the scene geometry, depth
estimates from multiple viewpoints are fused into a single vol-
ume. In [7] and [8], the fusion of depth estimates from multi-
ple viewpoints has been investigated for 3D model reconstruction
from video. However, our proposed fusion of depth estimates is
based on the superposition principle, where each voxel indicates
a 3D position of an object point and holds an additive confidence
value. The confidence value of each voxel is updated by depth
evidence from multiple viewpoints. Second, we perform a 3D
wavelet transform on the volumetric depth confidence. Third, we
denoise the volumetric confidence in the wavelet domain by using
adaptive thresholding. Finally, we improve the quality of virtual
view rendering by utilizing the denoised volumetric depth confi-
dence.

The remainder of this paper is organized as follows: Section
2 describes the concept of volumetric depth confidence and dis-
cusses briefly the effect of quantization. Section 3 presents our
3D wavelet thresholding method to denoise the volumetric depth
confidence. Section 4 discusses the obtained results.

2. SUPERPOSITION OF CONFIDENCE EVIDENCE

For a given natural scene, inconsistency is inherent among the in-
dividually estimated depth maps from multiple viewpoints due to
limitations of conventional stereo-matching algorithms. In order
to have a consistent description of scene geometry, i.e., depth in-
formation, of natural 3D scenes for emerging visual media ap-
plications, we uniquely describe the scene geometry by using in-
consistent depth estimates from multiple viewpoints. We generate
an unique volumetric description of the scene geometry by us-
ing depth estimates from multiple viewpoints, where each depth
estimate from a viewpoint contributes to a voxel in the volume
with a confidence value. Moreover, multiple depth estimates of
a 3D object point from multiple viewpoints are fused in the vol-
ume by superposition. In the following, we discuss the concept
of volumetric depth confidence and consider briefly the effect of
quantization.

2.1. Volumetric Depth Confidence

Consider that we capture a natural dynamic scene at multiple view-
points and that we have conventionally estimated depth maps at
viewpoints 1, . . . , N . Further, we assume that we know the cam-
era parameters at these N viewpoints. Next, in order to generate
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Figure 1. Confidence assignment to the voxel.

the volumetric depth confidence of the scene, we map each esti-
mated depth pixel di(x, y), i ∈ {1, . . . , N}, at image coordinates
(x, y) to a voxel v(X,Y, Z) in world coordinates by using per-
spective projection [9].

For each visible object point in the camera plane, we have a
corresponding depth pixel in the depth map. This depth value al-
lows us to determine the corresponding voxel in the volumetric
description. If a 3D object point is visible fromN viewpoints and
the corresponding depth information is consistent, we assign the
numberN to the confidence value of the corresponding voxel, i.e.,
v(X,Y, Z) = +N . Here, each mapped consistent depth pixel
from a viewpoint increments the confidence value of the corre-
sponding voxel by one. However, due to inconsistent depth map
estimates, the confidence value of a visible object point may vary
between +1 to +N . Specially, object points that are not visible
from all viewpoints will have lower confidence values. Object
points which are not visible in any of the given camera viewpoints
will be assigned a confidence value of zero. With that, depth con-
fidence information from any added camera viewpoint may be su-
perimposed with the volumetric depth confidence.

The transparent voxels between the camera planes and object
points are handled similarly. We trace rays from pixels in the cam-
era planes to the respective object points and decrement the con-
fidence value of transparent voxels that lie on the path of each
ray. With N available viewpoints, we can decrement the confi-
dence value of transparent voxels to −N , at most. Hence, the
confidence value of a transparent voxel can vary from −N to −1.
Fig. 1 shows the assignment of volumetric confidence values for
three camera views.

2.2. Impact of Depth Error

The noise in the volumetric confidence data of the scene geometry
is mainly due to the inconsistency in the estimated depth maps.
However, the error in estimating depth is bounded by quantization
in stereo imaging as explained in [10], [11]. Due to discretiza-
tion in the imaging system, each image point can suffer a quan-

tization error of up to ±1/2 pixel. That is, the left and right
depth maps can be in error by up to ±δ/2, where δ is the im-
age sampling interval. The disparity will therefore be in error by
up to ±δ. Further, the error due to quantization depends on the
baseline b of the stereo system, the common focal length of the
cameras f , and the minimum and maximum depth values in the
range of view znear and zfar. We assume for the depth z that
0 < znear ≤ |z| ≤ zfar < bf/δ. Now, we study the variance of
the quantization error as a function of these parameters. We use
the assumption in [10] and have for the depth error

Δz =
−z2Δd

bf + zΔd
(1)

and for the probability density function of the disparity error

fΔd(Δd) = δ+Δd
δ2

, −δ ≤ Δd ≤ 0

= δ−Δd
δ2

, 0 ≤ Δd ≤ δ.
(2)

With that, we have for the conditional expected absolute depth
error

E[|Δz||z] = 1
2δ2

[ 2bf
z
(bf − zδ) log(bf − zδ)−

2bf
z
(bf + zδ) log(bf + zδ) + 4bfδ log(bf) + 4bfδ],

(3)

and following similar lines, we obtain for the conditional expected
squared depth error

E[(Δz)2|z] ≈ 1
δ2
[δ2z2 + 3b2f2 log

(
b2f2

b2f2−δ2z2

)

−2bfzδ log
(

bf+δz
bf−δz

)
].

(4)

A numerical study will follow in the experimental section.

3. 3D WAVELET DENOISING

Wavelet denoising attempts to remove the noise present in the
signal while preserving the signal characteristics, regardless of
its frequency content. However, denoising is heavily dependent
on the thresholding parameter. Using a small threshold may re-
sult in ineffective denoising, while a large threshold may yield a
smooth output which lacks necessary detail and has blurs and ar-
tifacts. Adaptive thresholding improves upon the wavelet thresh-
olding performance by allowing additional local information of
the signal to be incorporated into the algorithm [12]. Wavelet de-
noising is mainly used for three reasons: (1) noise is spread out
equally among all the coefficients; (2) it creates a sparse signal,
and (3) the signal coefficients are clearly distinguished from the
noisy coefficients. Denoising involves taking the discrete wavelet
transform (DWT) of the signal, setting an optimum threshold for
the coefficients and taking the inverse to get back the denoised
signal.

The concept of the wavelet denoising can be explained by as-
suming that the input data g is given by

g = s+ n, (5)

where s is the uncorrupted signal and n the additive noise. Let
W (·) and W−1(·) denote the forward and inverse wavelet trans-
form operators. Let D(·, θ) denote the denoising operator with
threshold θ. We intend to denoise g to recover ŝ as an estimate of
s. The procedure can be summed up in three steps:

1. c = W (g)



2. ĉ = D(c, θ)

3. ŝ = W−1(ĉ)

In this paper, we use both manual and adaptive thresholds for
denoising the volumetric depth confidence. Manual thresholds are
set by trial and error and are the same for all the sub-bands. How-
ever, adaptive thresholds are set separately based on the respective
sub-band.

3.1. Adaptive Thresholding

To find the optimum adaptive threshold θ for denoising, we use a
method known as SURE Shrink [13]. Let μ = (μ1, μ2, . . . , μl)
be a length l vector and c be multivariate normal observations with
mean vector μ. Using the results from [14] and [15], we have

SURE(θ; c) = l − 2|{i : |ci| < θ}|+
∑
j

min(|cj |, θ)2. (6)

For every observed noisy coefficient vector c in a sub-band, we
obtain the SURE threshold θS by minimizing SURE(θ; c).

θS = argminθSURE(θ; c) (7)

3.2. View Rendering

To evaluate the performance of the proposed methods, we render
a virtual view by utilizing the denoised volumetric depth confi-
dence. For rendering, we first obtain three depth maps at left,
center, and right viewpoints from the denoised volumetric depth
description by using perspective projection [9] [16]. If multiple
object points with volumetric depth confidence values correspond
to a same depth pixel, we use the one which is closer to the camera
in order to obtain the depth map. This is because the depth pixel
values describe the shortest distance between the camera plane
and the object points. Second, we warp the left view and the right
view to the center viewpoint by using the depth map of the center
viewpoint [17]. Thus, we obtain two warped version of the cen-
tral view, one from the right view and the other from the left view,
respectively.

We use both of these warped versions of the central view to
render the final central view. These warped versions of the cen-
tral view are used to handle occlusion. For example, if a pixel is
occluded in one of the warped views, we use the pixel informa-
tion from the other warped view. Furthermore, we consider depth
maps from various viewpoints, as obtained from the denoised vol-
umetric depth confidence, to tackle occlusion more efficiently. For
each object point, we compare the depth pixel value of the left,
center, and right depth maps. If the difference between them is
below a certain threshold, these depth values are consider to be
consistent and averaging of warped pixel intensities is feasible. If
only one of the left and the right depth values is close to the cen-
tral depth value, we keep only the corresponding depth value and
pixel intensity. Increasing the number of reference views is likely
to decrease occlusion areas. However, occlusions cannot be ruled
out completely. If some holes remain, we use a 3×3median filter
to fill isolated intensity pixels.

4. RESULTS

To evaluate the proposed methods, we assess the quality of the
rendered virtual views. We measure the objective image quality
of the rendered view at a given viewpoint by means of the Peak

Signal-to-Noise Ratio (PSNR)with respect to the captured view of
a real camera at the same viewpoint. We use two standard Motion
Picture Expert Group (MPEG) multiview video test sets, News-
paper, and Dancer [18]. For each of test set, we generate a volu-
metric depth confidence by utilizing estimated depth information
from three different viewpoints, where the voxel confidence can
have values between −3 and +3.

From the study of the depth error for the Newspaper test data
with δ = 1, b = 92.68, and f = 2929.49, as described in Sec-
tion 2.2, we find the conditional expected values of the absolute
error for the depth range from zmin = −2715.18 to zmax =
−9050.60 to be E[|Δz||z] = 9.04 and E[|Δz||z] = 100.59, re-
spectively. The resulting conditional standard deviations for the
depth range zmin = −2715.18 to zmax = −9050.60 are 6.40
and 71.20, respectively. This analysis confirms that the depth er-
ror due to quantization has less effect for points that are close to
the camera plane when compared to points that are farther away.
Hence, to represent the depth in the volumetric data, we have cho-
sen a uniform quantization between zero and 255 in a ν domain
with the relation

z =
1

ν
255

[
1

zmin
− 1

zmax

]
+ 1

zmax

. (8)

We denoise the noisy volumetric depth confidence of the scene
geometry by using both manual and adaptive thresholds. As de-
scribed in the Section 3.2, we render the virtual view for the cen-
tral viewpoint using left and right views with projected central
depth maps. The depth maps at the central viewpoint are cal-
culated by projecting voxel points with highest confidence value
from the denoised volumetric description onto the central camera
plane. The results in terms of PSNR are presented in Table 1.
We see that for manual thresholding, the best results are obtained
with the db3 filter. Therefore, we choose the db3 filter for adap-
tive thresholding. Adaptive thresholding improves marginally the
objective quality for Dancer. However, for Newspaper, adaptive
thresholding improves the objective quality by up to 0.45 dB when
compared to rendering with MPEG depth maps only, and 0.24 dB
when compared to using the noisy volumetric data. The insignif-
icant improvement for Dancer is due to the fact that its synthetic
geometry description is very consistent and that any quantization
error can be neglected.

Furthermore, we study the effect of increasing the voxel con-
fidence range on denoising and, hence, on virtual view rendering.
We generate a volumetric depth confidence for Newspaper by uti-
lizing estimated depth maps from 7 different viewpoints, where
voxel confidence values range between−7 and+7. Table 2 shows
that an increase in voxel confidence range will improve the objec-
tive quality of the rendered views. We notice an improvement even
without denoising the volumetric depth confidence. This is be-
cause the depth map at the central viewpoint is calculated by pro-
jecting voxel points with highest confidence value onto the central
camera plane.

Fig. 2 shows rendered central views for subjective evaluation.
The visual quality of the rendered virtual view is improved by us-
ing the noisy volumetric depth confidence in the range [-7,+7] and
by using the denoised volumetric depth confidence. Furthermore,
visual quality improves with increasing voxel confidence range.



(a) Original. (b) With MPEG depth maps. (c) With noisy depth volume. (d) With denoised volume.

Figure 2. Rendered views of Newspaper.
Table 1. Objective quality of rendered views with confidence [-3, 3].

Filter Best Rendered Virtual View [dB]
Threshold Dancer Newspaper

No denoising - 38.87 31.84
db1 0.01 38.70 31.33
db2 1.4 38.71 31.42
db3 1.2 38.72 31.43
db3 Adaptive 38.87 32.08
db4 1 38.64 31.38

Table 2. Voxel confidence and objective quality of rendered views.
Used Depth Voxel Confidence Range
Data [-3, +3] [dB] [-7, +7] [dB]

MPEG Depth Maps 31.63 32.04
Noisy Volume 31.84 32.33

Denoised Vol. (db3, adpt.) 32.08 32.32
5. CONCLUSIONS

This paper discusses volumetric depth confidence, outlines meth-
ods to denoise this type of volumetric data and, hence, improves
the quality of virtual view rendering. Confidence information from
additional camera views can be incorporated by superposition.
Further, we use 3D wavelets and adaptive thresholding to denoise
our volumetric depth confidence. Finally, experimental results
show the advantage of volumetric depth confidence as well as
the improvement in rendering quality by increasing the confidence
range and by 3D wavelet denoising.
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