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ABSTRACT

The purpose of the work is to produce jointly coded

frames for efficient video coding. We use motion-adaptive

transforms in the temporal domain to generate the temporal

subbands. The motion information is used to form graphs for

transform construction. In our previous work, the motion-

adaptive transform allows only one reference pixel to be the

lowband coefficient. In this paper, we extend the motion-

adaptive transform such that it permits multiple references

and produces multiple lowband coefficients, which can be

used in the case of bidirectional or multihypothesis mo-

tion estimation. The multi-reference motion-adaptive trans-

form (MRMAT) is always orthonormal, thus, the energy

is preserved by the transform. We compare MRMAT and

the motion-compensated orthogonal transform (MCOT) [1],

while HEVC intra coding is used to encode the temporal

subbands. The experimental results show that MRMAT out-

performs MCOT by about 0.6dB.

Index Terms— Motion-adaptive transform, motion-

inherited graph, subspace constraint

1. INTRODUCTION

Transforms are widely used in today’s data compression tech-

niques such as High Efficiency Video Coding (HEVC) as an

important tool for signal decorrelation [2]. For videos with

both spatial and temporal correlation, the transforms, espe-

cially the discrete cosine transform (DCT), are commonly

applied to the spatial domain to reduce the spatial redun-

dancy. For temporal correlation, the standard approach is to

use motion-compensated prediction.

Instead of using closed-loop prediction, we focus on

temporal transforms that operate in an open-loop fashion.

Due to the complexity of motion fields, the well-known

motion-compensated lifting [3] struggles with unconnected,

connected, and multi-connected pixels when performing the

update step. To address this shortcoming, [4] and [5] propose

This work has been supported in part by the Swedish Research Council
under the grant 2011-5841.

modified update operators to be used in the lifting scheme.

On the other hand, the class of motion-compensated orthog-

onal transforms (MCOT) does not use the lifting scheme. It

is designed to process a sequence of pictures in a hierarchical

way, while maintaining strict orthogonality for any motion

field [1, 6].

To further investigate the temporal orthonormal trans-

forms in energy compaction and coding, the idea of graph-

based signal processing is helpful. For example, the graph

can be used in multiresolution signal analysis [7–9]. It is also

shown that the eigenvector matrix of a graph matrix is able to

capture different frequencies of graph signals, e.g., [10–12].

For compression, a lifting scheme based on a graph for video

coding is considered in [13] and the graph Laplacian eigenba-

sis is used in depth video coding [14]. Both techniques give

promising results by considering the graph information. In

addition, the work in [15] provides an analysis for the optimal

case of using the graph Laplacian eigenbasis.

For our work, the compression performance is relevant.

The transforms in [16] are constructed using the Laplacian

eigenbasis of vertex-weighted graphs. The transform using

the graph information gives an improved energy compaction

result. For our motion-adaptive transforms, each transform

outputs an energy-compacted lowband coefficient and a num-

ber of highband coefficients. However, this is limiting, since

in practice there can be more than one reference pixel as in

bidirectional and multihypothesis motion estimation. In this

paper, we aim at extending the motion-adaptive transform

such that it creates multiple lowband coefficients with the help

of graphs.

The paper is organized as follows: Sec. 2 summarizes

the motion-adaptive transforms with single reference. Sec.

3 constructs the multi-reference motion-adaptive transforms.

Sec. 4 provides the experimental results.

2. MOTION-ADAPTIVE TRANSFORM

2.1. Scale Factors Accommodating Energy Compaction

The scale factors are used to track the energy compaction of

lowband coefficients under the assumption of ideal motion
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[1]. Let x = [x1, x2, . . . , xn]
T be a vector of intensity values

connected by motion estimation. Ideal motion assumes that

x1 = x2 = · · · = xn = x′, i.e., these n pixels are with

equal intensity x′. Let T be an n × n transform matrix, and

y = [y1, y2, . . . , yn]
T the output. We have

y = T Tx, (1)

where y1 is considered to be the lowband coefficient and

y2, . . . , yn the highband coefficients.

In the following, a small example with two coefficients

and a Haar transform is used to illustrate the use of scale fac-

tors. If we compact the energy of x1 and x2 into one lowband

coefficient y1, i.e.,
[
y1
y2

]
=

1√
2

[
1 1
1 −1

] [
x1

x2

]
=

[√
2x′

0

]
, (2)

the output of the lowband coefficient y1 =
√
2x′ becomes a

scaled x′ with a factor
√
2.

Let the scale counter mi (i = 1, . . . , n) be the number

of pixels that are compacted to the ith lowband coefficients.

The original intensity values x1, . . . , xn have scale counters

of zero. The scale factor ci is determined by ci =
√
mi + 1,

representing the compacted energy of the ith lowband coeffi-

cient. The scale factors of the original intensities are all ones,

since the original scale counters are all zeros.

From the example in (2), the scale counter of y1 is 1 as

one pixel energy is compacted to y1, and no scale counter is

associated with y2 as y2 is a highband coefficient. The scale

factor of y1 is
√
2, which is the same as the factor of x′ in

(2). Similarly, if we compact the energy of n pixels of x to

one lowband coefficient, the scale counter of this lowband co-

efficient will be n − 1, and the corresponding scale factor is√
n. The scale counters and the scale factors are only deter-

mined by the motion information. They do not require extra

information to be encoded.

2.2. Subspace Constraint for Motion-Adaptive Trans-

form

Now, let us consider x as a vector consisting of n lowband

coefficients connected under ideal motion assumption. These

n lowband coefficients can be expressed by an original in-

tensity x′ with n scale factors c1, . . . , cn, respectively, i.e.,

x = [x1, x2, . . . , xn]
T = [c1x

′, c2x
′, . . . , cnx

′]T = x′c,

where c = [c1, c2, . . . , cn]
T is the vector of scale factors.

We construct an orthonormal transform matrix T that per-

fectly compacts the energy of x to a lowband coefficient. Let

t1, t2, . . . , tn be the basis vectors of T . Using (1), we have

yi = x′tTi c, for i = 1, . . . , n. (3)

The lowband coefficient y1 = x′tT1 c is designed to capture

the total energy of the signal x, thus, t1 needs to be collinear

with c,

t1 =
c

‖c‖2
. (4)

Then, y1 = x′
√
cT c contains the total energy of x. Since

t1 represents one dimension in the n-dimensional space, and

all the other basis vectors t2, . . . , tn are orthogonal to t1, the

highband coefficients y2, . . . , yn are all zeros. With this, the

transform T is able to compact the energy perfectly. We refer

to the constraint of t1 in (4) as the subspace constraint [17].

2.3. Motion-Adaptive Transforms

As the basis vector t1 of the transform is determined accord-

ing to the scale factors, the remaining n − 1 basis vectors

are left to be constructed. Different sets of n − 1 basis vec-

tors lead to different highband coefficients. The following

summarizes the construction of three transforms proposed in

previous work.

The motion-compensated orthogonal transform (MCOT)

is a Haar-like transform constructed from a sequence of ro-

tation matrices Hi [1]. Each rotation matrix Hi compacts

the energy of two coefficients into one lowband coefficient

and one highband coefficient. The transform matrix is the

product of these rotation matrices, and n − 1 rotation ma-

trices are needed to process n coefficient, i.e., TMCOT =
(H1H2 · · ·Hn−1)

T
.

The second transform is the DCT-based rotation (DBR),

which is constructed by rotating the DCT basis such that the

first basis vector b1 = 1√
n
[1, . . . , 1]T of the DCT meets the

subspace constraint [17]. As b1 and t1 span a plane and de-

termine a rotation from b1 to t1, the higher order basis vec-

tors of DCT can be rotated in the same direction and hold the

relative positions.

The third transform is obtained from the eigenvector ma-

trix of the Laplacian of a vertex-weighted graph (VWL) [16].

The graph is inherited from the motion information. The

weights on the graph are given by the scale factors, such that

the Laplacian eigenbasis has one eigenvector that is the same

as the subspace constraint t1. This transform requires the

eigen-decomposition of a vertex-weighted graph. However,

the advantage is that it incorporates the underlying motion

structure into the transform. The DBR can be viewed as an

approximation of VWL, as the DBR does not require eigen-

decomposition, and as the energy compaction is close to that

of the VWL.

Since all the proposed transforms share the same the sub-

space constraint t1, the corresponding lowband coefficients

produced by these transforms are equal. However, the high-

band coefficients differ for these transforms.

3. MULTI-REFERENCE MOTION-ADAPTIVE

TRANSFORM (MRMAT)

In this section, we first construct the multi-reference motion-

adaptive transform (MRMAT). Then, we introduce the pro-

cess of applying MRMAT on a given graph.



3.1. Construction of MRMAT

Each transform discussed in Sec. 2.3 compacts the energy to

only one lowband coefficient, and only this lowband coeffi-

cient can be used again in other transforms for energy com-

paction. This limits the case of using the transform if there

are multiple coefficients to be used in another transform or if

there are multiple references for motion estimation, e.g., bidi-

rectional or multihypothesis motion estimation. In the fol-

lowing, we construct the transform that allows multiple refer-

ences and create multiple lowband coefficients.

The main concept of creating multiple lowband coeffi-

cients is to first, compact the energy of the input signal to one

coefficient, and second, redistribute the energy from one coef-

ficient to multiple coefficients equally. The energy should be

conserved in general, thus, the transforms from the two steps

need to be orthonormal.

Again, we let x be the n-dimensional input vector, and y

the output vector of the energy compacting transform with y1
as the lowband coefficient. Assume there are k (1 ≤ k < n)
energy-redistributed coefficients x̃k = [x̃1, . . . , x̃k]. Let Uk

be the transform used in energy redistribution, we consider

x̃k = UT
k yk, where yk denotes the first k elements of y.

From (1), the inverse process of energy compaction is

given by x = T T−1
y = Ty as T is orthonormal. This

inverse process can be viewed as redistributing the energy

back to n coefficients. Using the same idea, we simply let

UT
k = Tk to redistribute the energy from one to k coefficients,

where Tk is the transform that compacts k input coefficients

into one lowband cofficient. Thus, we have

x̃k = Tkyk. (5)

Since T satisfies the subspace constraint determined by c,

similarly, the first basis vector of Tk needs to satisfy the sub-

space constraint determined by the scale factors of x̃k . The

full matrix of T or Tk can be constructed using the transforms

introduced in Sec. 2.3.

Now, we need to compute the scale factors of x̃k. To re-

distribute the lowband energy equally to the k coefficients,

these scale factors need to be updated equally. Let m =
[m1, . . . ,mn]

T and c = [c1, . . . , cn]
T be the scale coun-

ters and scale factors associated with x, respectively. Let

m̃k = [m̃1, . . . , m̃k]
T and c̃k = [c̃1, . . . , c̃k]

T be the scale

counters and scale factors associated with x̃, respectively. The

scale counters consider the energy shifted from xk+1, . . . , xn

to x̃1, . . . , x̃k. The update of scale counters is then given by

m̃i = mi+
1

k


n− k +

n∑

j=k+1

mj


 , for i = 1, . . . , k, (6)

and the update of scale factors follows c̃i =
√
m̃i + 1.

In conclusion, in the first step in (1), T T is determined by

c to compact energy. The highband coefficients yk+1, . . . , yn
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Fig. 1. An example of a tree structure for the multi-reference

motion-adaptive transform. The scale counters m̃i (i =
1, . . . , 4) and the coefficients x̃i are given after each step. The

initial m̃i are zeros and the initial x̃i are 100s under ideal mo-

tion assumption. The first MRMAT operates on three coeffi-

cients 1, 2, and 3. The scale counters m̃1 and m̃2 are updated

according to (6), and the compacted energy in x̃i is repre-

sented as
√
m̃i + 1 · 100. No scale counter is associated with

the 3rd coefficient as it becomes a highband coefficient. The

second MRMAT operates on coefficients 1, 2, and 4. The

energy is finally compacted to the 1st coefficient, and m̃1 is

updated to 3.

are obtained by T T . In the second step in (5), Tk is deter-

mined by c̃k to redistribute energy, and the energy from y1 is

distributed to references x̃1 to x̃k for further processing.

3.2. Process of MRMAT

The graph inherited from the motion information is always

in a tree structure, where the root is the reference in the first

frame of each group of pictures (GOP), and the connection

of two nodes is determined by motion estimation. We apply

MRMAT along each path in the motion inherited graph.

For example, Fig. 1 depicts an example of a motion-

connected tree. The 1st node is connected to one node,

meaning that the first pixel is used as motion reference for

the second pixel. Similarly, the second pixel is used as ref-

erence for the third and fourth pixel. In the first transform,

the 1st, 2nd, and 3th pixel from three frames are processed as

they lie on the same path. The energy of these three pixels

is distributed to the 1st and the 2nd coefficients using MR-

MAT. Then, the 1st and the 2nd pixel are used again in the

next transform. In this second transform, the 1st, 2nd, and

4th coefficient that lie on the second path are processed and

produce one lowband coefficient for the 1st node. As a result

of this sequence of transforms, we obtain one lowband coef-

ficient and three highband coefficients, and the size of each

transform matrix is determined by the number of coefficients

that lie on the current path.

This successive process is different from the process we

performed in previous work, where all motion-connected co-

efficients have been transformed only once. Transforming all

the coefficients in one step may lead to discontinuities among

neighboring coefficients in one subband, in particular, if the

neighboring output coefficients are captured by basis vectors

with different frequency properties. The successive process

of MRMAT is able to reduce such discontinuities.



4. EXPERIMENTAL RESULTS

In the experiments, we evaluate the coding performance for

the QCIF sequences Foreman and Bus, each with 128 frames.

We compare the Motion-Compensated Orthogonal Transform

(MCOT) [1], the vertex-weighted Laplacian (VWL) [16], and

the multi-reference motion-adaptive transform (MRMAT).

The transform is applied along temporal direction. The

MCOT is a product of a sequence of Haar-like transforms.

The MRMAT is a process including energy compaction and

energy redistribution. The transform matrices constructed for

MRMAT use the vertex-weighted Laplacian (VWL) as intro-

duced in Sec. 2.3, as it gives a better energy compaction when

compared to the other two transforms in previous work [16].

The transform does not limit the block size in motion es-

timation or the GOP size, as the graph can represent a general

motion structure. The graphs are defined by 16 × 16 block

motion with a search range of ±64. The GOP size is set to

eight, thus, after the temporal transform, we obtain one tem-

poral lowband and seven temporal highbands. The compared

transforms use the same set of motion vectors, thus, the com-

parison is targeting the efficient coding of the subbands.

Since the lowband is energy compacted, the coefficients

have a large range. We scale down the lowband coeffi-

cients by dividing them with the corresponding scale factors.

The temporal subbands are then coded using HEVC model

HM16.7 with intra coding [18]. The encoder uses the Main

10 profile due to the possibility that the temporal subbands

may have a bit depth larger than eight bits. Other encoding

parameters remain the same as recommended in the HEVC

configuration file. We measure the peak signal to noise ratio

(PSNR) of the luma (Y) signal. The U and V components are

set to a constant value before encoding.

The rate allocation needs to be determined among the sub-

bands. To find the optimal rate allocation, we encode every

subband with all possible quantization parameters (QP). For

the kth subband, we choose the parameter that minimizes the

cost Jk,

J∗
k = min

i
(Dk,i + λRk,i) , (7)

for a given λ, where Dk,i is the distortion of subband k with

ith QP and Rk,i the rate of the corresponding subband and

QP.

Figs. 2 and 3 depict the luma PSNR vs. bitrate perfor-

mance for Foreman and Bus. Since the transforms are or-

thonormal, the distortion is not amplified and it can be mea-

sured without performing the inverse transform. In Fig. 2,

MRMAT outperforms MCOT by about 0.6dB, and VWL by

about 0.2dB. We observe in both figures that the proposed

MRMAT outperforms the other two. That is, the energy com-

paction and redistribution steps allow an improved compres-

sion of subbands.
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Fig. 2. Comparison of PSNR vs. rate for QCIF Foreman with

128 frames at 30fps.
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Fig. 3. Comparison of PSNR vs. rate for QCIF Bus with 128

frames at 30fps.

5. CONCLUSIONS

Aiming at extending the motion-adaptive transforms from

producing one lowband coefficient to multiple lowband co-

efficients, we proposed a multi-reference motion adaptive

transform in this paper. The new motion-adaptive transform

incorporates the scale factors into the construction of the

transform. The main concept of the proposed MRMAT in-

cludes energy compaction and energy redistribution. The

energy compaction step uses a motion-adaptive transform to

compact the energy to one lowband coefficient. The energy

redistribution step then distributes this energy using the trans-

pose of a dimension-reduced motion-adaptive transform. The

MRMAT is applied successively along the paths of a given

graph, thus, the structure of the motion-inherited graph is con-

sidered during the transform. In the experiments, MRMAT

is used as temporal transform and the temporal subbands

are encoded using HEVC intra coding. The experimental

results show that the proposed MRMAT outperforms MCOT

by about 0.6dB.
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