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Abstract— In this paper, we propose two algorithms to con-
struct motion-adaptive transforms that are based on vertex-
weighted graphs. The graphs are constructed by motion vector
information. The weights of the vertices are given by scale
factors that are used to accommodate proper concentration
of energy in transforms. The vertex-weighted graph defines a
one dimensional linear subspace. Thus, our transform basisis
subspace constrained. We propose two algorithms. The first is
based on the Gram-Schmidt orthonormalization of the discrete
cosine transform (DCT) basis. The second combines the rotation
of the DCT basis and the Gram-Schmidt orthonormalization.
We assess both algorithms in terms of energy compaction.
Moreover, we compare to prior work on graph-based rotation of
the DCT basis and on so-called motion-compensated orthogonal
transforms (MCOT). In our experiments, both algorithms out-
perform MCOT in terms of energy compaction. However, their
performance is similar to that of graph-based rotation of the
DCT basis.

I. I NTRODUCTION

For efficient video coding, our goal is to improve conven-
tional frame-by-frame coding by developing motion-adaptive
representations that are suitable for coding at least two frames
jointly. The motion between frames forces us to deviate from
conventional wavelets. Wavelet type constructions for func-
tions defined on more general manifolds are feasible [1]. How-
ever, due to occlusions in the pictures, local homeomorphisms
may not always exist. On the other hand, we are able to define
wavelets on graphs [2]. For example, lifting transforms on
graphs [3] may be constructed based on spatial and temporal
connections due to block motion. In [2], the wavelets are
based on the spectral decomposition of the discrete Laplacian
matrix of the graph [4]. One drawback is that the wavelet is
overcomplete since there is no downsampling as in the classic
discrete wavelet transform.

The so-called motion-compensated lifting wavelet permits
a reversible filter structure, but struggles with unconnected,
connected, and multi-connected pixels when performing the
update step. Hence, [5] and [6] propose modified update
operators to address this shortcoming. Instead of using the
lifting wavelet, the class of motion-compensated orthogonal
transforms (MCOT) is designed for successive pictures in
a video sequence and maintains strict orthogonality for any
motion field [7], [8]. Not requiring the concept of lifting, these
transforms compact the signal energy efficiently by using the
concept of scale factors. Further, sub-pel accurate motionand

variable block sizes can be used with MCOT for efficient video
coding [9].

Beyond wavelets, [10] considers an edge-adaptive graph-
based transform, where it is constructed by the eigenvectors
of the Laplacian matrix of the graph. This method requires
additional information on the edge map.

In [11], we designed a class of motion-adaptive transforms
based on vertex-weighted graphs. The vertex-weighted graph
is constructed from the motion information only. Since the
transform basis is derived from the eigen-decomposition ofa
subspace representation of the covariance matrix, the trans-
form achieves optimal energy compaction given the subspace
constraint. The advantage is that the constraint is defined
by the vertex-weighted graph only. One disadvantage of the
method is that many basis vectors are signal dependent. Thus,
they need to be signaled to the decoder.

We continued to design a transform that takes the same
vertex-weighted graph into consideration, but the basis vectors
are not signal dependent [12]. The transform can be obtained
simply by rotating the discrete cosine transform (DCT) basis.
No extra information needs to be transmitted to recover the
basis. However, since there are many ways to determine
the rotation of the DCT basis, the high dimensions of the
transform matrix are not unique.

In this paper, we focus on the high dimensions of the
transform matrix. Given the same vertex-weighted graph, we
propose two additional methods to construct the motion-
adaptive transform with the utility of the DCT basis. We also
discuss the relation between different constructed transform
matrices.

The paper is organized as follows: Section II defines the
vertex-weighted graph. Section III proposes two algorithms
for constructing the transform matrix and discusses the relation
between them. Section IV presents the experimental results.

II. SUBSPACECONSTRAINT

We consider in [11] and [12] a subspace-constrained trans-
form that is based on vertex-weighted graphs. The graph is
constructed by motion vector information. The vertex weights
are given by the scale factors, which are defined according to
[7]. As the vertex-weighted graph determines the transformin
a one-dimensional linear subspace, the transform is subspace



constrained. In the following, we explain the scale factorsand
the subspace constraint.

Let x = [x1, x2, . . . , xn]
T be a vector representingn

connected pixels. Energy compaction changes the magnitude
of the pixel intensities, while the model of ideal motion implies
constant intensity for connected pixels. In order to combine
energy compaction and ideal motion, we use the concept of
scale factors from [7] and represent the original pixel values
by x′

1, x
′
2, . . . , x

′
n. Then, letc1, c2, . . . , cn be the scale factors

of the pixelsx1, x2, . . . , xn, respectively, i.e.,xk = ckx
′
k,

k = 1, 2, . . . , n.
To illustrate concept of the scale factors, let us consider

the following example. Suppose a reference pixelx′
1 with

intensity 100 is connected to two pixelsx′
2 andx′

3 with the
same intensity. In the first step of the transform, the energy
of x′

2 is shifted tox′
1. Then,x′

2 becomes an energy-removed
highband coefficient. The value of the reference pixel becomes
x1 =

√
2 · 100 = c1x

′
1, wherec1 =

√
2 is the scale factor and

x1 captures the energy ofx′
1 andx′

2. In the second transform
step, the energy ofx′

3 is shifted tox′
1 as well. As a result,

x1 =
√
3 · 100 = c1x

′
1, where c1 is updated to

√
3. x1

now captures the total energy ofx′
1, x′

2, andx′
3, where the

compaction of the energy is represented byc1.
Similar to [7], we assume that then pixels are connected by

ideal motion such thatx′
1 = x′

2 = · · · = x′
n. The weights of

the vertices are then the scale factors and the vector of scale
factors isc = [c1, c2, . . . , cn]

T . Then, ann × n orthonormal
transform matrixT = [t1, t2, . . . , tn] compacts all the energy
into the first coefficient,

y = T Tx = T T
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(1)
wherey = [y1, y2, . . . , yn]

T is the output of the transform.
Equation (1) can be rewritten as

tT1 c =
√
cT c, (2)

tTk c = 0, k = 2, 3, . . . , n. (3)

That is, t1 captures the whole energy of the signal and
t2, . . . , tn capture no energy. Considering ann-dimensional
orthogonal space defined byn orthonormal vectorst1 to tn,
the above two equations (2) and (3) are projections ofc

onto thisn-dimensional orthogonal space. The first vectort1
should be collinear withc such that the projection ofc onto
t1 contains the total energy. Since the space is orthogonal,
no energy is left to be projected on the remaining(n − 1)-
dimensional subspace. Thus,t1 is determined byc, which
gives our subspace constraint

t1 =
c

‖c‖2
=

c√
cT c

. (4)

If x is not due to ideal motion, i.e.,x1, x2, . . . , xn are af-
fected by noise, we will not obtain perfect energy compaction
into one coefficient. However, we keep the subspace constraint
c as it reflects the vertex-weighted graph.

III. C ONSTRUCTION OFTRANSFORM MATRICES

A. Graph-Based Rotation (GBR)

In [12], we considered the well-known discrete Fourier
transform (DFT) and circulant matrices that can be diagonal-
ized by DFT. LetL0 be a covariance matrix with symmetric
circulant structure andΛ0 the eigenvalue matrix ofL0. Based
on the DFT matrixF andL0, we want to find a covariance
matrix L1 that can be diagonalized byT . Let Λ1 be the
eigenvalue matrix ofL1. There exists a rotation matrixR that
rotates the first basis vectorf1 = 1√

N
[1, . . . , 1]T to t1 to meet

the subspace constraint, i.e.,t1 = Rf1. We keep the same
rotation for higher dimensional basis vectors, thus,

T = RF. (5)

Since the energy is preserved after the rotation, the sum of
the eigenvalues forL0 andL1 are equal. For simplicity, we
let Λ1 = Λ0. Then, the relation betweenL0 andL1 is given
by

L1 = RL0R
T . (6)

Fig. 1 depicts a commutative diagram forL0, L1, F , andT .
The problem of rotatingF to T is related to the mapping from
L0 to L1. The link is given by the eigenvalue decomposition
/ Karhunen Loeve Transform (KLT).
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Fig. 1. Commutative diagram for covariance matrices and transforms.

We discussed in [12] that if there exists aT that satisfies
the subspace constraintt1, we can find a correspondingL1

that thisL1 in return givesT as an eigenvector matrix with
the first basis vectort1. However, sinceT is not unique in
high dimensions, it cannot be determined directly from the
commutative diagram.

Based on the discussion, we proposed a practical algorithm,
namely graph-based rotation (GBR) that rotatesF to T . We
rotatedF only in the plane spanned byf1 and t1, i.e., the
projection part ofF onto this plane will be rotated only. With
that, f1 will be rotated tot1 to meet the subspace constraint.
The orthogonal part ofF is left untouched, which becomes
the orthogonal part ofT . Then,T is obtained by adding the
orthogonal part and the rotated projection part together. If the
weights in a graph are all equal, thent1 = f1, there is no need
to rotatef1 to t1. In this caseT is the same asF .

B. Construction Based on Gram-Schmidt Orthonormalization

Since T is not unique in high dimensions, we propose
here two additional algorithms to constructT based onF .



One is the Gram-Schmidt orthonormalization based on the
DFT basis, the other is a combination of Gram-Schmidt
orthonormalization and graph-based rotation.

1) Gram-Schmidt Orthonormalization (GSO): Let the pro-
jection of vectorf1 onto vectort1 denote asproj(f1, t1) · t1.
Givenf1, we find a vector that is orthogonal tot1, i.e., subtract
f1 the projected part. Thus,e2 = f1 − proj(f1, t1) · t1. The
second basis vectort2 = e2

‖e2‖2

is then the normalizede2.
Similarly, for high dimensional vectors inT , we have

ek = fk−1 −
k−1
∑

i=1

proj(fk−1, ti) · ti, (7)

tk =
ek

‖ek‖2
, for k = 2, 3, . . . , n, (8)

where tk and fk are thek-th basis vectors inT and F ,
respectively. Equation (7) implies thatek is obtained by
subtracting all the projected parts offk−1 ontot1, . . . , tk−1. It
is guaranteed to be orthogonal to all the previous basis vectors
t1 to tk−1. The basis vectortk is then normalized in (8).
Thus,T is an orthonormal matrix. We see thatT is obtained
by decomposing the basis vectors inF step by step.

2) Combination of GBR and GSO (GBR+GSO): First, we
use the GBR to find a completen-dimensional basisB. At the
same time, we use the GSO to find another complete basisG.
Clearly, bothB andG have the same first basis vectort1. The
difference is in the high dimensional basis vectors. Second,
we use the GBR again to rotateB to meet the second basis
vector inG. Since the second basis vectors ofB andG are
both orthogonal tot1, the rotation does not affect the common
vectort1.

In other words, we rotate the DFT matrixF twice. In the
first rotation,F is rotated toB to meett1. In the second
rotation,B is rotated to meet the second basis vector inG.
As a result, the first two basis vectors of this algorithm are
the same as the GSO, while the rest of the basis vectors are
based on the GBR.

The two algorithms give different high dimensional basis
vectors inT . Similarly to the GBR, ift1 = f1, there is no need
to decompose or rotateF . In this case for both algorithms,T
is the same asF .

C. Discussion

From the rotationT = RF , we have

L0 = FΛ0F
T = RTTΛ0T

TR. (9)

ThenL1 can be expressed as

L1 = RL0R
T = TΛ0T

T . (10)

The above (10) states thatL1 is diagonalized byT with an
eigenvalue matrixΛ0. As Λ1 is defined as the eigenvalue
matrix of L1, it gives

Λ1 = Λ0. (11)

Therefore,Λ1 preserves the structure ofΛ0. For example,
assuming the covariance matrixL0 has a symmetric circulant

structure, its eigenvalues inΛ0 = diag[λ1, λ2, . . . , λn] satisfy
the following structure [13]

λj = λn+j−2, for j = 2, 3, . . . , n. (12)

Thus, the eigenvalues inΛ1 also satisfy the property in (12).
The structure of eigenvalues of the underlying covariance
matrix is maintained before and after the rotation.

IV. EXPERIMENTAL RESULTS

Since the DFT matrix is complex, we use the discrete cosine
transform (DCT) matrix instead in our experiments. We eval-
uate the energy compaction for the QCIF sequencesForeman,
Bus, City and Mobile. We compare the motion-compensated
orthogonal transform (MCOT) [7], the graph-based rotation
(GBR) [12], the Gram-Schmidt Orthonormalization (GSO),
the combination of GBR and GSO (GBR+GSO), and the
subspace-constrained transform (SCT) [11] for given graphs.

The MCOT is based on hierarchical decomposition. The
SCT is derived from the eigen-decomposition of a sub-
space representation of the covariance matrix. Since the SCT
achieves optimal energy compaction given the subspace con-
straint, it is given as a reference for the optimal highband
energy. We concluded in [11] and [12] thatt1 approximates the
energy compaction of the KLT well, since it compacts lowband
energy close to that of the KLT. It confirms the relevance of
the subspace constraint. Thus, we do not include the energy
compaction of the KLT here.

The basis vectors for MCOT, GBR, GSO, and GBR+GSO
are only graph dependent. However, the basis vectorstk,
k = 2, 3, . . . , n, for the SCT are signal dependent and require
covariance estimation. For a practical coding scheme, they
need to be signaled to the decoder. At this point, we look
at the energy compaction only. Practical coding schemes will
be considered in future work.

The covariance matrix for the SCT is estimated from
samples that can provide the same vertex-weighted graphs.
The vertex-weighted graphs are considered to be the same if
they are formed by the same motion vectors and have the same
vertex weights. In the experiments, we use graphs that are
supported by at least thirty samples and that contain less than
nine connections for a reliable estimation. For the transforms
that are not signal dependent, we use only these reliable
samples for all the transforms to ensure a fair comparison.

Since the GSO and the GBR+GSO share the samet2, the
second coefficients of the transform output are equal. To show
that the GSO and the GBR+GSO give the same highband
energy in the first highband, we consider the graphs that
have only one coefficient in the second frame, since for each
instance of the graph, the transform determines the co-located
subband coefficients. The output coefficientsy1, . . . , yn will
be at the same positions asx1, . . . , xn, respectively.

The transforms are performed on a hierarchical decom-
position of a group of pictures (GOP). In the experiments,
we choose a GOP size of sixteen. Each GOP is divided
into four graph sets, where each set contains four successive
frames. Each set outputs one temporal lowband and three



temporal highbands. A GOP of sixteen frames requires two
decomposition levels. Since our graph-based transform does
not require a fixed graph structure, it is possible to choose
a different GOP size, rearrange the number of graph sets,
and alter the number of decomposition levels. The graphs are
defined by16× 16 block motion with a search range of±32.

Tables I to IV show the relative energy in the temporal sub-
band frames on the second decomposition level forForeman,
Bus, City, andMobile, respectively. All the transforms share
the same basis vectort1, thus they give the same lowband
energy. For higher dimensional basis vectorstk, k > 1, we see
that the second largest energy component of GBR is greater
than the others. Therefore, among the proposed constructed
transforms, GBR achieves similar or slightly better coding
performance. Comparing GSO and GBR+GSO, they provide
the same first highband energy, as they share the same basis
vectorst2. However, the third largest energy component of
GSO is larger than GBR+GSO, which implies that GSO is
better than GBR+GSO. Involving the GBR in the algorithm
does not give advantage in energy compaction.

TABLE I

RELATIVE ENERGY IN THE TEMPORAL SUBBAND FRAMES ON THE SECOND

DECOMPOSITION LEVEL FORForeman.

Low High 1 High 2 High 3
MCOT 98.771% 0.253% 0.573% 0.403%
GBR 98.771% 0.671% 0.282% 0.276%
GSO 98.771% 0.662% 0.289% 0.278%

GBR+GSO 98.771% 0.662% 0.285% 0.282%
SCT 98.771% 0.932% 0.224% 0.073%

TABLE II

RELATIVE ENERGY IN THE TEMPORAL SUBBAND FRAMES ON THE SECOND

DECOMPOSITION LEVEL FORBus.

Low High 1 High 2 High 3
MCOT 92.742% 2.392% 3.543% 1.323%
GBR 92.742% 4.763% 1.315% 1.180%
GSO 92.742% 4.316% 2.007% 0.935%

GBR+GSO 92.742% 4.316% 1.730% 1.212%
SCT 92.742% 5.976% 1.059% 0.223%

TABLE III

RELATIVE ENERGY IN THE TEMPORAL SUBBAND FRAMES ON THE SECOND

DECOMPOSITION LEVEL FORCity.

Low High 1 High 2 High 3
MCOT 90.648% 2.742% 4.265% 2.345%
GBR 90.648% 5.018% 2.130% 2.204%
GSO 90.648% 4.803% 2.345% 2.204%

GBR+GSO 90.648% 4.803% 2.286% 2.263%
SCT 90.648% 7.087% 1.762% 0.503%

V. CONCLUSION

This paper considers motion-adaptive transforms based on
vertex-weighted graphs and their practical construction using
the DCT basis. The vertex-weighted graph determines the

TABLE IV

RELATIVE ENERGY IN THE TEMPORAL SUBBAND FRAMES ON THE SECOND

DECOMPOSITION LEVEL FORMobile.

Low High 1 High 2 High 3
MCOT 92.850% 1.280% 4.498% 1.372%
GBR 92.850% 5.258% 1.363% 0.529%
GSO 92.850% 5.253% 1.366% 0.531%

GBR+GSO 92.850% 5.253% 1.362% 0.535%
SCT 92.850% 5.551% 1.268% 0.331%

first basis vector of the linear transform and leads to a
subspace constraint. We propose two algorithms to construct
the transform practically. One is based on the Gram-Schmidt
orthonormalization of the DCT basis, the other is a com-
bination of the rotation of the DCT basis and the Gram-
Schmidt orthonormalization. A discussion of the relationsin
the commutative diagram shows that any rotation fromF to
T maintains the structure of eigenvalues of the underlying
covariance matrices. The two methods introduced in this paper,
together with the graph-based rotation [12], provide three
examples to construct practical transforms that approximate
the SCT.
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