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Abstract— In this paper, we propose two algorithms to con- Vvariable block sizes can be used with MCOT for efficient video
struct motion-adaptive transforms that are based on vertex coding [9].
weighted graphs. The graphs are constructed by motion vecto Beyond wavelets, [10] considers an edge-adaptive graph-

information. The weights of the vertices are given by scale b d f h . d by the ei
factors that are used to accommodate proper concentration P@s€d transform, where it is constructed by the eigenvector

of energy in transforms. The vertex-weighted graph defines a Of the Laplacian matrix of the graph. This method requires
one dimensional linear subspace. Thus, our transform basiss additional information on the edge map.

EZQZﬁaf,ﬁ tchoensé‘gr’;]egémdfrggﬁgﬁotmoalggggahgsihghgisfgfé' In [11], we designed a class of motion-adaptive transforms
cosine transform (DCT) basis. The second combines the rotan based on vertex-weighted gr_aph_s. The vgrtex-welgh_tedwgrap
of the DCT basis and the Gram-Schmidt orthonormalization. IS constructed from the motion information only. Since the
We assess both algorithms in terms of energy compaction. transform basis is derived from the eigen-decompositioa of
Moreover, we compare to prior work on graph-based rotation & subspace representation of the covariance matrix, the-tran
the DCT basis and on so-called motion-compensated orthogah  {5rm achieves optimal energy compaction given the subspace

transforms (MCOT). In our experiments, both algorithms out- - : S .
perform MCOT in terms of energy compaction. However, their constraint. The advantage is that the constraint is defined

performance is similar to that of graph-based rotation of the DY the \{ertex-weighted graph only. Ong disadvantage of the
DCT basis. method is that many basis vectors are signal dependent, Thus

they need to be signaled to the decoder.
We continued to design a transform that takes the same
For efficient video coding, our goal is to improve convenyertex-weighted graph into consideration, but the basisors
tional frame-by-frame coding by developing motion-ade®ti are not signal dependent [12]. The transform can be obtained
representations that are suitable for coding at least taimés simply by rotating the discrete cosine transform (DCT) basi
jointly. The motion between frames forces us to deviate froNo extra information needs to be transmitted to recover the
conventional wavelets. Wavelet type constructions forcfunpasis. However, since there are many ways to determine

tions defined on more general manifolds are feasible [1]. Hohe rotation of the DCT basis, the high dimensions of the
ever, due to occlusions in the pictures, local homeomonpistransform matrix are not unique.

may not always exist. On the other hand, we are able to definqy this paper, we focus on the high dimensions of the

wavelets on graphs [2]. For example, lifting transforms ofansform matrix. Given the same vertex-weighted graph, we
graphs [3] may be constructed based on spatial and tempgj@pose two additional methods to construct the motion-
connections due to block motion. In [2], the wavelets argqaptive transform with the utility of the DCT basis. We also
based on the spectral decomposition of the discrete Laplacjjscuss the relation between different constructed toansf
matrix of the graph [4]. One drawback is that the wavelet i atrices.
oyercomplete since there is no downsampling as in the classi e paper is organized as follows: Section Il defines the
discrete wavelet transform. o vertex-weighted graph. Section Il proposes two algorghm
The so-called motion-compensated lifting wavelet permit§ constructing the transform matrix and discusses thaticel

a reversible filter structure, but struggles with unconeect peryeen them. Section IV presents the experimental results
connected, and multi-connected pixels when performing the

update step. Hence, [5] and [6] propose modified update
operators to address this shortcoming. Instead of using the
lifting wavelet, the class of motion-compensated orth@on We consider in [11] and [12] a subspace-constrained trans-
transforms (MCOT) is designed for successive pictures farm that is based on vertex-weighted graphs. The graph is
a video sequence and maintains strict orthogonality for angnstructed by motion vector information. The vertex wésgh
motion field [7], [8]. Not requiring the concept of liftinghése are given by the scale factors, which are defined according to
transforms compact the signal energy efficiently by usirg tli7]. As the vertex-weighted graph determines the transfiorm
concept of scale factors. Further, sub-pel accurate matich a one-dimensional linear subspace, the transform is sabspa

|I. INTRODUCTION

II. SUBSPACECONSTRAINT



constrained. In the following, we explain the scale factmd [1l. CONSTRUCTION OFTRANSFORMMATRICES
the subspace constraint. A. Graph-Based Rotation (GBR)

Let x = [x1,72,...,2,]7 be a vector representing _ . .
connected pixels. Energy compaction changes the magnitud [12], we considered the well-known discrete Fourier

of the pixel intensities, while the model of ideal motion iieg ransform (DFT) and circulant matrices that can be diagonal

constant intensity for connected pixels. In order to corebiﬁzed by DFT. LetLo be a covariance matrix with symmetric

energy compaction and ideal motion, we use the concept%rfculant structure and the eigenvalue matrix of,. Based

scale factors from [7] and represent the original pixel galu on the DFT matrixt” and .LO’ we _Want to find a covariance
by« &, ..., z.. Then, letei, ca, ..., ¢, be the scale factors matrix L, that can be diagonalized by. Let A; be the

o : : eigenvalue matrix of.;. There exists a rotation matri® that

of the pixelszy,zo,...,z,, respectively, i.e.r;, = cpz}, . 1
PR 2p " b2t P ¥ 18-k Mk rotates the first basis vectfr = —<[1,...,1]" to t; to meet

o gifle subspace constraint, i.¢;, = Rf;. We keep the same

To illustrate concept of the scale factors, let us consi X X : ; ;
rotation for higher dimensional basis vectors, thus,

the following example. Suppose a reference pixél with

intensity 100 is connected to two pixets andz} with the T — RF. (5)

same intensity. In the first step of the transform, the energy . .

of a4, is shifted toz}. Then, ), becomes an energy-removedince the energy is preserved after the rotation, the sum of

highband coefficient. The value of the reference pixel bezmihe eigenvalues fol, and L, are equal. For simplicity, we

z1 = /2-100 = ¢12,, wherec; = /2 is the scale factor and et A1 = Ag. Then, the relation betweeh, and L, is given

x1 captures the energy af, andz. In the second transform by .

step, the energy of is shifted toz/ as well. As a result, Ly =RLoR". (6)

r; = V/3-100 = ¢z, wherec, is updated tov/3. x;

now captures the total energy of, =/, and %,

compaction of the energy is representeddpy
Similar to [7], we assume that thepixels are connected by

Fig. 1 depicts a commutative diagram fbg, L1, F', andT'.
where the The problem of rotating” to T' is related to the mapping from
Ly to L. The link is given by the eigenvalue decomposition
/ Karhunen Loeve Transform (KLT).

ideal motion such that] = 2, = --- = z/,. The weights of
the vertices are then the scale factors and the vector of scal Ly = RLyR”
factors isc = [c1,c2,...,¢,])T. Then, ann x n orthonormal Lo Ly
_transform_ matriXT_:_ [t1,t2,...,t,] compacts all the energy i‘ Lo = RTL,R 3
into the first coefficient, S =
01:13’1 0135’1 \/W : a:’l T KLT KLT T
Coh Co) 0 o -
y=T'x=1"| " | =17"| . | = : ~ T = RF 3
: : : r T
Cn, cn) 0 F=R'T
(1) , - : .
wherey — [yl’ I yn]T is the output of the transform. Fig. 1. Commutative diagram for covariance matrices anasfams.
Equation (1) can be rewritten as . . . . -
g (1) We discussed in [12] that if there existsTathat satisfies
tf'c=vcTc, (2) the subspace constraint, we can find a corresponding;
the=0, k=2,3,...,n. (3) thatthisL, in return givesI’ as an eigenvector matrix with

That | h hol ¢ the sianal Hm first basis vectot;. However, sincel’ is not unique in
at Is, t, captures the whole energy of the signal an igh dimensions, it cannot be determined directly from the
ts,...,t, capture no energy. Considering andimensional

h | defined h | commutative diagram.
ohrt o%ona space detine bg;ort odr10r3ma vector;l t.o tn, ¢ Based on the discussion, we proposed a practical algorithm,
the a ove t.WO equatlons (2) and (3) are pI’O.jeCtIOHSCO namely graph-based rotation (GBR) that rotatéso 7'. We
onto thisn-dimensional orthogonal space. The first vedtpr

. . L rotated /' only in the plane spanned b andt, i.e., the
should b_e collinear witte such that the projection of onto ojection part ofF’ onto this plane will be rotated only. With
t; contains the total energy. Since the space is orthogo

r
i . o r{%lat f; will be rotated tot; to meet the subspace constraint.
no energy 1S left to be prolectgd on the.remam(mgf ,1)' The orthogonal part of’ is left untouched, which becomes
d!mensmnal subspace. Thug, is determined bye, which the orthogonal part of". Then,T is obtained by adding the
gives our subspace constraint orthogonal part and the rotated projection part togetffighel
t = = ¢ (4) weights in a graph are all equal, then= f;, there is no need
lcll2 c’c to rotatef; to t;. In this casel is the same ag'.
If x is not due to ideal motion, i.exy, zs, ..., z, are af-

fected by noise, we will not obtain perfect energy compaxtid>: Construction Based on Gram-Schmidt Orthonormalization
into one coefficient. However, we keep the subspace constrai Since 7' is not unique in high dimensions, we propose
c as it reflects the vertex-weighted graph. here two additional algorithms to construtt based onF'.



One is the Gram-Schmidt orthonormalization based on tk&ucture, its eigenvalues iy = diag, Ao, ..., A\,] satisfy
DFT basis, the other is a combination of Gram-Schmidhe following structure [13]
orthonormalization and graph-based rotation.

1) Gram-Schmidt Orthonormalization (GSO): Let the pro-
jection of vectorf; onto vectort; denote agroj(fi,t1)-t1. Thus, the eigenvalues i, also satisfy the property in (12).
Givenf;, we find a vector that is orthogonalt, i.e., subtract The structure of eigenvalues of the underlying covariance
f; the projected part. Thus, = f; — proj(fi,t1) - t1. The matrix is maintained before and after the rotation.

)\j = )\7L+j—2) for 71=2,3,...,n. (12)

second basis vectdr, = ;22— is then the normalize@.
Similarly, for high dimensional vectors ifi, we have IV. EXPERIMENTAL RESULTS
b1 Since the DFT matrix is complex, we use the discrete cosine
en =fi g — ZPTOJ(fkq,ti) t;, @) transform (DCT) matrix |r_1$tead in our experiments. We eval-
= uate the energy compaction for the QCIF sequeiroeaman,
ex Bus, City and Mobile. We compare the motion-compensated
te = Texll2’ fork=23,...,n, (8) orthogonal transform (MCOT) [7], the graph-based rotation

(GBR) [12], the Gram-Schmidt Orthonormalization (GSO),
the combination of GBR and GSO (GBR+GSO), and the
subspace-constrained transform (SCT) [11] for given gsaph
The MCOT is based on hierarchical decomposition. The
SCT is derived from the eigen-decomposition of a sub-
space representation of the covariance matrix. Since thie SC
achieves optimal energy compaction given the subspace con-
straint, it is given as a reference for the optimal highband
) ) . . energy. We concluded in [11] and [12] thatapproximates the
gzsnghﬁrr?eBF\jvzteoJIsned tﬁecgrg%efg?i'rﬂegzgﬂzlr t::i?rl]BI.e?é tEl,;asisenergy compaction of the KLT well, since it compacts lowband
’ P energy close to that of the KLT. It confirms the relevance of

Clearly, bothB andG have the same first basis vectgr The . .

. o . . ) ; the subspace constraint. Thus, we do not include the energy
difference is in the high dimensional basis vectors. Secon .

compaction of the KLT here.

Voctor 1nC:. Since the secand basi veclorsfand G are e basis VEClOrS for MCOT, GBR, GSO, and GBR+GSO
: are only graph dependent. However, the basis vectgrs

both orthogonal ta, the rotation does not affect the common. _ , o n, for the SCT are signal dependent and require

vectort,. covariance estimation. For a practical coding scheme, they
In other words, we rotate the DFT matr twice. In the need to be signaled to the decoder. At this point, we look

first rotation, I’ is rotated toB to meett;. In the second . ; . X
. . : .~ at the energy compaction only. Practical coding schemds wil
rotation, B is rotated to meet the second basis vectorin . .
be considered in future work.

As a result, the first two basis vectors of this algorithm are The covariance matrix for the SCT is estimated from

the same as the GSO, while the rest of the basis vectors are . .
based on the GBR. Samples that can provide the same vertex-weighted graphs.

The two algorithms give different high dimensional basiThe vertex-weighted graphs are considered to be the same if
) > : ) l?hey are formed by the same motion vectors and have the same
vectors inT'. Similarly to the GBR, ift; = f;, there is no need iahts. In the experiments. we use araphs that are
to decompose or rotatE. In this case for both algorithm§; vertex weights. oXp ’ grapt
is the same a& Sl_Jpported by_ at least th|rty sample_s an_d that contain leas th
' nine connections for a reliable estimation. For the tramsfo
C. Discussion that are not signal dependent, we use only these reliable
samples for all the transforms to ensure a fair comparison.
Since the GSO and the GBR+GSO share the saméhe
Lo = FAoFT = RTTATTR. (9) second coefficients of the transform output are equal. Tevsho
that the GSO and the GBR+GSO give the same highband
energy in the first highband, we consider the graphs that
Ly = RLoRT = TA,TT. (10) have only one coefficient in the second frame, since for each
instance of the graph, the transform determines the cdddca
The above (10) states that is diagonalized byl" with an  subband coefficients. The output coefficients. . ., v, will
eigenvalue matrixAo. As A, is defined as the eigenvaluepe at the same positions as, . . ., z,,, respectively.
matrix of Ly, it gives The transforms are performed on a hierarchical decom-
Ay = Ay, (11) position of a group of pictures (GOP). In the experiments,
we choose a GOP size of sixteen. Each GOP is divided
Therefore,A; preserves the structure df,. For example, into four graph sets, where each set contains four suceessiv
assuming the covariance matiy has a symmetric circulant frames. Each set outputs one temporal lowband and three

where t, and f;, are thek-th basis vectors inl" and F,
respectively. Equation (7) implies that, is obtained by
subtracting all the projected partsfaf ; ontoty, ..., tx_1. It
is guaranteed to be orthogonal to all the previous basi®wect
t, to ty_1. The basis vectot; is then normalized in (8).
Thus, T is an orthonormal matrix. We see thétis obtained
by decomposing the basis vectorshhstep by step.

2) Combination of GBR and GSO (GBR+GS0): First, we

From the rotatioril’ = RF', we have

Then L, can be expressed as



temporal highbands. A GOP of sixteen frames requires two
decomposition levels. Since our graph-based transforns doe
not require a fixed graph structure, it is possible to choose

TABLE IV

ELATIVE ENERGY IN THE TEMPORAL SUBBAND FRAMES ON THE SECOND
DECOMPOSITION LEVEL FORMOobile.

a different GOP size, rearrange the number of graph sets, Low High T | High 2 | High 3
and alter the number of decomposition levels. The graphs are 'V(';%%T 33'2283? é-gggzo i-ggggﬁo ég;ggﬁo
H H H . () . (] . 0 . 0
defined by16 x 16 block motlor? with a search range &f32. GS0 95.850% | 5253% | 1.366% | 0.531%
Tables I to IV show the relative energy in the temporal sub- GBR+GSO | 92.850% | 5.253% | 1.362% | 0.535%
band frames on the second decomposition leveRweman, SCT 92.850% | 5.551% | 1.268% | 0.331%

Bus, City, and Mobile, respectively. All the transforms share
the same basis vectar, thus they give the same lowband
energy. For higher dimensional basis vectigrsk > 1, we see first basis vector of the linear transform and leads to a
that the second largest energy component of GBR is greadgpspace constraint. We propose two algorithms to coristruc
than the others. Therefore, among the proposed construdiel transform practically. One is based on the Gram-Schmidt
transforms, GBR achieves similar or slightly better codingrthonormalization of the DCT basis, the other is a com-
performance. Comparing GSO and GBR+GSO, they proviéénation of the rotation of the DCT basis and the Gram-
the same first highband energy, as they share the same baskmidt orthonormalization. A discussion of the relatiams
vectorst,. However, the third largest energy component dhe commutative diagram shows that any rotation frénto
GSO is larger than GBR+GSO, which implies that GSO i§ maintains the structure of eigenvalues of the underlying
better than GBR+GSO. Involving the GBR in the algorithngovariance matrices. The two methods introduced in thiepap
does not give advantage in energy compaction. together with the graph-based rotation [12], provide three
examples to construct practical transforms that approddéma

TABLE | the SCT.
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