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ABSTRACT

In this paper, we consider motion-adaptive transforms
that are based on vertex-weighted graphs. The graphs are
constructed by motion vector information and the weights of
the vertices are given by scale factors, where the scale factors
are used to control the energy compaction of the transform.
The vertex-weighted graph defines a one dimensional linear
subspace. Thus, our transform basis is subspace constrained.
To find a full transform matrix that satisfies our subspace
constraint, we rotate the discrete cosine transform (DCT)
basis such that the first basis vector matches the subspace
constraint. Since rotation is not unique in high dimensions,
we choose a simple rotation that only rotates the DCT basis
in the plane which is spanned by the first basis vector of the
DCT and the subspace constraint. Experimental results on
energy compaction show that the motion-adaptive transform
based on this rotation is better than the motion-compensated
orthogonal transform based on hierarchical decomposition
while sharing the same first basis vector.

Index Terms— Motion-adaptive transform, subspace-
constrained transform, vertex-weighted graph

1. INTRODUCTION

Our goal is to improve motion-compensated predictive coding
by developing motion-adaptive transforms for efficient video
coding. Since pixels in video sequences have high temporal
and spatial correlation, we can form graphs for efficient linear
transforms. [1] considers lifting transforms on graphs based
on spatial and temporal connections due to block motion. [2]
considers an edge-adaptive graph-based transform. The trans-
form is constructed by the eigenvectors of the Laplacian ma-
trix of the graph [3]. This method requires additional infor-
mation on the edge map. In [4], wavelet transforms on graphs
are proposed. The wavelets are based on the spectral decom-
position of the discrete Laplacian matrix of the graph. One
drawback is that the wavelet is overcomplete since there is no
downsampling as in the classic discrete wavelet transform.

This work has been supported in part by the Swedish Research Council
under the grant 2011-5841.

The so-called motion-compensated lifting wavelet per-
mits a reversible filter structure, but struggles with uncon-
nected, connected,and multi-connected pixels when perform-
ing the update step. Hence, [5] proposes an optimum update
step that minimizes the mean-squared reconstruction error.
On the other hand, the class of motion-compensated orthogo-
nal transforms (MCOT) is designed for successive pictures in
a video sequence and maintains strict orthogonality for any
motion field [6, 7]. The transform compacts the signal energy
efficiently by using the concept of scale factors. Further,
sub-pel accurate motion and variable block sizes can be used
with MCOT for efficient video coding [8].

In [9], we designed a class of motion-adaptive transforms
based on vertex-weighted graphs. The vertex-weighted graph
is constructed from the motion information only. Since the
transform basis is derived from the eigen-decomposition of a
subspace representation of the covariance matrix, the trans-
form achieves optimal energy compaction given the subspace
constraint. The advantage is that the constraint is defined
by the vertex-weighted graph only. One disadvantage of the
method is that many basis vectors are signal dependent. Thus,
they need to be signaled to the decoder.

In this paper, we design a transform that takes the same
vertex-weighted graph into consideration, but the basis vec-
tors are not signal dependent. Our transform can be obtained
simply by rotating the discrete cosine transform basis. Given
the same vertex-weighted graph, it is designed to achieve bet-
ter energy compaction than MCOT.

The paper is organized as follows: Section 2 defines the
vertex-weighted graph. Section 3 discusses the construction
of the transform basis by using a graph-based rotation. Sec-
tion 4 presents the experimental results.

2. SUBSPACE CONSTRAINT

We consider in [9] a subspace-constrained transform that is
based on vertex-weighted graphs. The graph is constructed
by motion vector information. The vertex weights are given
by the scale factors, which are defined according to [6]. As
the vertex-weighted graph determines the transform in a one-
dimensional linear subspace, the transform is subspace con-
strained. In the following, we explain the scale factors and



the subspace constraint. Our graph-based rotation also satis-
fies this subspace constraint.

Let x = [x1, x2, . . . , xn]
T be a vector representing n con-

nected pixels. Energy compaction changes the magnitude of
the pixel intensities, while the model of ideal motion implies
constant intensity for connected pixels. In order to combine
energy compaction and ideal motion, we use the concept of
scale factors from [6] and represent the original pixel values
by x′

1, x
′
2, . . . , x

′
n. Then, let c1, c2, . . . , cn be the scale factors

of the pixels x1, x2, . . . , xn, respectively, i.e., xk = ckx
′
k,

k = 1, 2, . . . , n. Similar to [6], we assume that these n pixels
are connected by ideal motion such that x′

1 = x′
2 = · · · = x′

n.
The weights of the vertices are then the scale factors and the
vector of scale factors is c = [c1, c2, . . . , cn]

T . Then, an or-
thonormal transform matrix T = [t1, t2, . . . , tn] compacts all
the energy into the first coefficient,

y = TTx = TT
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where y is the output of the transform. (1) can be rewritten as

tT1 c =
√
cT c, (2)

tTk c = 0, k = 2, 3, . . . , n. (3)

That is, t1 captures the whole energy of the signal and
t2, . . . , tn capture no energy. Considering an n-dimensional
orthogonal space defined by n orthonormal vectors t1, . . . , tn,
the above two equations (2) and (3) are projections of c onto
this n-dimensional orthogonal space. The first vector t1
should be collinear with c such that the projection of c onto
t1 contains the total energy. Since the space is orthogonal,
no energy is left to be projected on the remaining (n − 1)-
dimensional subspace. Thus, t1 is determined by c, which
gives our subspace constraint

t1 =
c

∥c∥2
=

c√
cT c

. (4)

If x is not due to ideal motion, i.e., x1, x2, . . . , xn are af-
fected by noise, we will not obtain perfect energy compaction
into one coefficient. However, we keep the subspace con-
straint c as it reflects the vertex-weighted graph.

3. GRAPH-BASED ROTATION (GBR)

3.1. Rotation of Basis

Since the well-known discrete Fourier transform (DFT) diag-
onalizes circulant matrices, our goal is to find a rotation from
the DFT to T such that T diagonalizes a covariance matrix,
given the subspace constraint t1.

Let L0 be an n×n covariance matrix with circulant struc-
ture. An n × n unitary DFT matrix F is the matrix of eigen-
vectors of L0 and computes the eigenvalue matrix Λ0. The
first basis vector f1 of F is always a scaled all-one vector,

f1 =
1√
n
[1, 1, . . . , 1]T . (5)

Let us expand L0 with the outer product of its eigenvector
f1f

T
1 , we have

L0 = αnf1f
T
1 + (1− α)C, (6)

where α is the weight of nf1fT1 and C is a complementary cir-
culant matrix. Since C is also circulant, F again diagonalizes
C. The eigenvalues of L0 are then calculated as

λ1 = αn+ (1− α)d1, (7)
λi = (1− α)di, for i = 2, 3, . . . , n, (8)

where d1 and di are the diagonal entries of

D = FTCF = diag[d1, d2, . . . , dn]. (9)

From the previous discussion, we want to preserve our
subspace constraint t1 = c

∥c∥2
. We hope to find a new matrix

L1 such that it provides an eigenvector matrix T with the first
basis vector t1. To find a such T , we start with F . There
exists a rotation matrix R that rotates f1 to t1, i.e.,

t1 = Rf1. (10)

Thus, the rotation is determined by the first basis vectors f1
and t1. Since we want to keep the same rotation for higher
dimensional basis vectors fi and ti, i > 1, we have

T = RF. (11)

Let Λ1 be the corresponding eigenvalue matrix of L1. As the
energy is preserved after the rotation, the sum of the eigenval-
ues for L0 and L1 are equal. Thus, for simplicity, we choose
Λ1 = Λ0, i.e., L1 gives the same eigenvalues as L0. Given
the rotation R, L1 can be calculated as

L1 = RL0R
T . (12)

Fig. 1 depicts a commutative diagram for L0, L1, F , and
T . The problem of rotating F to T is related to the mapping
from L0 to L1. The link is given by the eigenvalue decompo-
sition / Karhunen Loeve Transform (KLT).

From (12), we can write L1 in a similar form to (6),

L1 = αnt1t
T
1 + (1− α)TDTT , (13)

where D is given in (9). The unknown part in (13) is T , which
indicates that if there exists a T that satisfies the subspace con-
straint t1, L1 can be obtained by (13). This L1 in return gives
T as an eigenvector matrix of L1 with the first basis vector t1.
T always exists, as it can be found by, e.g., the Gram-Schmidt
orthonormalization. However, T is not unique in high dimen-
sions. Since neither L1 nor R is known, T cannot be solved
directly from the commutative diagram.
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Fig. 1. Commutative diagram for covariance matrices and
transforms.

3.2. Practical Algorithm

Since the transform matrix T is not unique in high dimen-
sions, we choose a simple way to rotate the DFT matrix. To
find a unique T , we rotate F only in the plane spanned by f1
and t1, i.e., the projection of F onto this plane will be rotated
only. With that, f1 will be rotated to t1 to meet the subspace
constraint. The orthogonal part of F is left untouched. Let T ′

be a one-dimension-reduced matrix in T , i.e., T = [t1, T
′].

Similarly, let F ′ be a one-dimension-reduced matrix in F , i.e.,
F = [f1, F

′]. F ′ has the same dimension as T ′.
To rotate F to T , we follow the steps below:

1. In the plane spanned by f1 and t1 (plane(f1, t1)),
we find two vectors e1 and b1, where e1 ⊥ f1 and
b1 ⊥ t1. The projection of F ′ onto plane(f1, t1)
is the same as the projection of F ′ onto e1, denoted
as proj(F ′, e1) · e1. And the projection of T ′ onto
plane(f1, t1) is the same as the projection of T ′ onto
b1, denoted as proj(T ′,b1) · b1. Since the rotation
is only performed in this plane, the projection weight
does not change, i.e., proj(T ′,b1) = proj(F ′, e1).
Only the projected vector direction is changed from e1
to b1.

2. The orthogonal part OF ′ ⊥ plane(f1, t1) in F ′ is cal-
culated as

OF ′ = F ′ − proj(F ′, e1) · e1. (14)

Similarly, the orthogonal part in T ′ is calculated as

OT ′ = T ′ − proj(T ′,b1) · b1. (15)

Since both OF ′ and OT ′ are orthogonal to plane(f1, t1),
they are independent of the rotation. Thus, for simplic-
ity, we keep OT ′ = OF ′ .

3. Based on (15), the matrix T ′ is then

T ′ = OF ′ + proj(F ′, e1) · b1. (16)

Thus, T ′ is calculated by rotating the projection part
proj(F ′, e1) from e1 to b1 and adding back the or-
thogonal part OF ′ .

T is obtained by simply putting t1 and T ′ together. At this
point, there is no need to calculate the rotation matrix R itself,
since we can construct T from F directly by projection and
addition. Since OF ′ ⊥ t1 and b1 ⊥ t1, we have T ′ ⊥ t1. As
F is orthonormal and the projection weight does not change,
T is also orthonormal. If the weights in a graph are all equal,
then t1 = f1, there is no need to rotate f1 to t1. In this case
our T is the same as F .

4. EXPERIMENTAL RESULTS

Since the DFT matrix is complex, we use the discrete cosine
transform (DCT) matrix instead in our experiments. We eval-
uate the energy compaction for the QCIF sequences Foreman,
Bus, City and Mobile. We compare the motion-compensated
orthogonal transform (MCOT) [6], our graph-based rotation
(GBR), the subspace-constrained transform (SCT) [9], and
the KLT for given graphs. The basis vectors for MCOT and
GBR are only graph dependent. However, the basis vectors
tk, k = 2, 3, . . . , n, for the SCT and the basis vectors tk,
k = 1, 2, . . . , n, for the KLT are signal dependent and require
covariance estimation. For a practical coding scheme, they
need to be signaled to the decoder. At this point, we look at
the energy compaction only. Practical coding schemes will be
considered in future work.

The covariance matrix is estimated from samples that
can provide the same vertex-weighted graphs. The vertex-
weighted graphs are considered to be the same if they are
formed by the same motion vectors and have the same vertex
weights. In the experiments, we use graphs that are sup-
ported by at least thirty samples and that contain less than
nine connections for a reliable estimation. MCOT and GBR
are not signal dependent. However, we use only these reliable
samples for all the transforms to ensure a fair comparison.

The transforms are performed on a hierarchical decompo-
sition of a group of pictures (GOP). In the experiments, we
choose a GOP size of sixteen. Each GOP is divided into four
graph sets, where each set contains four successive frames.
Each set outputs one temporal lowband and three temporal
highbands. A GOP of sixteen frames requires two decompo-
sition levels. Thus, on the first decomposition level, we obtain
four lowbands from the four sets. The second level decompo-
sition operates on these four lowbands. Since our graph-based
transform does not require a fixed graph structure, it is pos-
sible to choose a different GOP size, rearrange the number
of graph sets, and alter the number of decomposition levels.
The graphs are defined by 16×16 block motion with a search
range of ±32.

Tables 1 to 4 show the relative energy in the temporal sub-
band frames on the second decomposition level for Foreman,
Bus, City, and Mobile, respectively. Note, GBR provides the
same lowband energy as MCOT and SCT, since they all share
the same basis vector t1. The KLT is given as a reference for
the energy compaction of the first basis vector. The first ba-



sis vector of GBR approximates that of the KLT well, since
it compacts lowband energy close to that of the KLT. This
confirms the relevance of the subspace constraint.

Tables 1 to 4 show that for higher dimensional basis vec-
tors tk, k > 1, GBR closes the gap to the optimal SCT, given
the constraint. The second largest energy component of GBR
is greater than that of MCOT, but not as good as SCT due to
the sacrifice of signal dependency. In Table 4, the smallest
energy component for GBR is only half of that for MCOT,
which implies that GBR has better energy compaction in high
dimensions. Thus, GBR has the potential of achieving a bet-
ter coding performance. Note, the basis vectors of GBR are
uniquely determined by the underlying motion information
and the rotation of the DCT basis. No extra information needs
to be transmitted to recover the GBR basis. This is not the
case for the SCT.

Table 1. Relative energy in the temporal subband frames on
the second decomposition level for Foreman.

Low High 1 High 2 High 3
MCOT 98.73% 0.27% 0.60% 0.40%
GBR 98.73% 0.68% 0.29% 0.30%
SCT 98.73% 0.98% 0.22% 0.07%
KLT 98.74% 0.95% 0.24% 0.07%

Table 2. Relative energy in the temporal subband frames on
the second decomposition level for Bus.

Low High 1 High 2 High 3
MCOT 90.34% 3.36% 4.46% 1.84%
GBR 90.34% 5.74% 2.20% 1.72%
SCT 90.34% 8.07% 1.26% 0.33%
KLT 92.78% 5.73% 1.19% 0.30%

Table 3. Relative energy in the temporal subband frames on
the second decomposition level for City.

Low High 1 High 2 High 3
MCOT 90.52% 2.78% 4.22% 2.48%
GBR 90.52% 5.00% 2.24% 2.24%
SCT 90.52% 7.20% 1.77% 0.51%
KLT 91.52% 6.38% 1.62% 0.48%

5. CONCLUSION

This paper presents a motion-adaptive transform that is based
on a vertex-weighted graph and the rotation of the DCT basis.
The vertex-weighted graph determines the first basis vector of
the linear transform and leads to a subspace constraint. Our
GBR is constructed by rotating the DCT basis, where the ro-
tation is uniquely determined by the first basis vector of the

Table 4. Relative energy in the temporal subband frames on
the second decomposition level for Mobile.

Low High 1 High 2 High 3
MCOT 92.89% 1.34% 4.31% 1.46%
GBR 92.89% 5.01% 1.43% 0.67%
SCT 92.89% 5.49% 1.27% 0.35%
KLT 92.99% 5.45% 1.21% 0.35%

DCT and the subspace constraint. The GBR closes the gap
to the optimal energy compaction of the SCT, given our sub-
space constraint. The basis of the GBR does not need to be
transmitted to the decoder side since it is independent of the
signal.
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