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Abstract

Motion information in image sequences connects pixels that are highly
correlated. In this paper, we consider vertex-weighted graphs that are
formed by motion vector information. The vertex weights are defined
by scale factors which are introduced to improve the energy compaction
of motion-adaptive transforms. Further, we relate the vertex-weighted
graph to a subspace constraint of the transform. Finally, we propose a
subspace-constrained transform (SCT) that achieves optimal energy com-
paction for the given constraint. The subspace constraint is derived from
the underlying motion information only and requires no additional in-
formation. Experimental results on energy compaction confirm that the
motion-adaptive SCT outperforms motion-compensated orthogonal trans-
forms while approaching the theoretical performance of the Karhunen Lo-
eve Transform (KLT) along given motion trajectories.

1 Introduction
Standard hybrid coding techniques utilize the concept of motion-compensated pre-
dictive coding. The predicted frames and bi-predicted frames are used to exploit the
temporal redundancy of frames to achieve compression efficiency. Image sequences
are encoded in a closed-loop fashion. This introduces strong dependencies among
coded frames. In the case of transmission with packet loss, this increases the risk of
error propagation for sequentially decoded pictures [1]. On the other hand, subband
coding schemes are designed in an open-loop fashion where decomposition, quantiza-
tion and entropy coding operate independently [2]. This approach has the potential
to avoid error propagation. Due to the motion in image sequences, motion-adaptive
decompositions are required.

Since motion-connected pixels are highly correlated, it is possible to perform linear
transforms efficiently [3]. [4] proposes wavelets for signals that are defined on the



vertices of an arbitrarily weighted finite graph. The approach is based on the spectral
decomposition of the Laplacian matrix of the graph [5]. One drawback of the method
is that the resulting representation is overcomplete since there is no downsampling as
in the classic discrete wavelet transform. In [6], a graph-based transform is proposed.
A picture is represented as a graph signal, where an image edge cuts the link between
two graph nodes. The transform matrix is then generated by the Laplacian matrix
of the graph. This method requires additional information on the edge map and the
adjacency matrix.

The class of motion-compensated orthogonal transforms (MCOT) is designed to
compact signal energy efficiently while strictly maintaining orthogonality for any mo-
tion field [7, 8]. The transform can be factored into a sequence of incremental trans-
forms. Scale factors are used in each incremental transform to ensure orthogonality
and to achieve good energy compaction. Further, MCOTs can be tailored to required
motion accuracies and variable block sizes such that they can be combined for efficient
video coding [9].

In contrast to previous work, we consider a transform that does not require ad-
ditional information on the graph. Our graph is obtained from the motion vector
information. The vertex weights are given by scale factors, which are defined ac-
cording to [7]. As the vertex-weighted graph determines the transform partially, our
transform is subspace constrained. In particular, the vertex-weighted graph will de-
fine a one-dimensional linear subspace. Our transform is designed to achieve optimal
energy compaction, given this constraint.

The paper is organized as follows: Section 2 defines the vertex-weighted graph
as obtained from the motion vector information and the scale factors. Section 3
discusses the construction of the subspace-constrained transform. Section 4 presents
the experimental results.

2 Motion and Vertex-Weighted Graphs
In the following, we define our vertex-weighted graph. Let x = [x1, x2, . . . , xn]

T be a
vector representing n pixels. They are linked by motion vectors. Fig. 1 depicts an
example of five pixels linked by motion vectors. The pixels form a graph with a tree
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Figure 1: A vertex-weighted graph.

structure. x1 is the root which will become the temporal lowband pixel. x2 to x5 will
become the temporal high band pixels. x1 to x5 will be processed together by one



transform. The weight of each vertex in this graph will be associated with an energy
value.

Any orthonormal transform matrix T = [t1, t2, . . . , tn] maps the vector x of pixel
intensities according to

y = T Tx, (2.1)

where y = [y1, y2, . . . , yn]
T is the output of the transform and tk with k = 1, . . . , n

are the column vectors in T .
We reuse the concept of scale factors from [7] and let c1, c2, . . . , cn be the scale

factors of the pixels x1, x2, . . . , xn, respectively, i.e., xk = ckx
′
k, ∀k = 1, 2, . . . , n.

Each scale factor is related to the count how often the corresponding pixel is used
as reference. The weights of the vertices are then c1, c2, . . . , cn and the vector of
scale factors is c = [c1, c2, . . . , cn]

T . Similar to [7], we assume that these n pixels are
connected by ideal motion such that x′

1 = x′
2 = · · · = x′

n. Then, the covariance matrix
of x is

L = E[xxT ] = σ2
x′
1
ccT . (2.2)

We are looking for a transform matrix T such that it decorrelates x

Λ = T TLT, (2.3)

where Λ is a diagonal matrix. Since L is singular with rank 1, Λ is only non-zero
in the first diagonal element. Hence, matrix T compacts all the energy into the first
coefficient and x is processed by T as follows:

√∑n
k=1 c

2
k · x′

1

0
...
0

 = T T


c1x

′
1

c2x
′
1

...
cnx

′
1

 , (2.4)

that is,
√
cTc = tT1 c (2.5)

0 = tTk c, ∀k = 2, 3, . . . , n. (2.6)

The energy is conserved since cTc =
∑n

k=1 c
2
k.

Geometrically, (2.5) and (2.6) can be explained as a projection of c onto an
n-dimensional orthogonal space Rn that is defined by the n orthonormal vectors
t1, t2, . . . , tn. To obtain

√
cTc in the first projection, the first column t1 in T should

be collinear with c, such that the projection of c onto t1 captures the total energy.
Since T is orthogonal, there is no energy left to be projected on t2, . . . , tn. Therefore,
the first vector of the transform matrix is determined by c, which is our subspace
constraint,

t1 =
c

∥c∥2
=

1√
cTc

c. (2.7)

If x is not due to ideal motion, i.e., x1, x2, . . . , xn are affected by noise, we will not
obtain perfect energy compaction into one coefficient. However, we keep the subspace
constraint c as it reflects the vertex-weighted graph.



3 Subspace-Constrained Transform (SCT)
As t1 is determined, our goal is to construct the remaining vectors of the orthonormal
basis that can achieve optimal energy compaction, given the constraint. Now, assume
the n-dimensional orthonormal basis B = [b1, b2, . . . , bn] with b1 = t1. Such a basis
exists, as we can define the (n−1)-dimensional subspace [b2, . . . , bn] by, e.g., the Gram-
Schmidt orthonormalization. Then our target basis t2, . . . , tn is simply a rotation of
[b2, . . . , bn]. Now, our goal is to find this rotation such that the remaining energy is
optimally compacted.

3.1 Representation of Orthogonal Subspace

Let the rotation matrix be

A =


1 0 0 · · · 0
0 a22 a23 · · · a2n
0 a32 a33 · · · a3n
...

...
... . . . ...

0 an2 an3 · · · ann

 . (3.1)

Then, tk = b2a2k + b3a3k + · · ·+ bnank for k = 2, . . . , n, where each bj is a n× 1 vector
and each ajk is a scalar. tk lies in the (n−1)-dimensional subspace. The first element
in A is set to one with zeros on all the other positions in the first row and the first
column. With that, we always preserve the first vector t1 = b1. We have

T = BA, (3.2)

that is,

[
t1 t2 · · · tn

]
=

[
b1 b2 · · · bn

]

1 0 · · · 0
0 a22 · · · a2n
...

... . . . ...
0 an2 · · · ann

 . (3.3)

Now, we define the rotation part of A as A′, where A′ is an (n− 1)× (n− 1) matrix.

A′ =
[
a′2 a′3 · · · a′n

]
=


a22 a23 · · · a2n
a32 a33 · · · a3n
...

... . . . ...
an2 an3 · · · ann

 , (3.4)

where a′k is the k-th column of A′ with dimension (n − 1) × 1. A′ rotates the basis
b2, . . . , bn to obtain t2, . . . , tn. A can be expressed as

A =

[
1 0
0 A′

]
. (3.5)



Let B′ = [b2, b3, . . . , bn] be the basis that will be rotated. Then B = [b1, B
′]. Since

b2 ⊥ b3 ⊥ · · · ⊥ bn, we have

B′TB′ = I(n−1)×(n−1), (3.6)

which is an (n− 1)× (n− 1) identity matrix. Thus,

T =
[
b1 B′] [1 0

0 A′

]
=

[
t1 B′A′] = [

t1 B′a′2 B′a′3 · · · B′a′n
]
. (3.7)

Each B′a′k has a dimension of n × 1, which is the same as tk. The covariance based
on B is given by

M = BTLB =


bT1Lb1 bT1Lb2 · · · bT1Lbn
bT2Lb1 bT2Lb2 · · · bT2Lbn

...
... . . . ...

bTnLb1 bTnLb2 · · · bTnLbn

 . (3.8)

Let M ′ be the dimension-reduced covariance of M with dimension (n− 1)× (n− 1),

M ′ = B′TLB′ =


bT2Lb2 bT2Lb3 · · · bT2Lbn
bT3Lb2 bT3Lb3 · · · bT3Lbn

...
... . . . ...

bTnLb2 bTnLb3 · · · bTnLbn

 . (3.9)

M ′ is the covariance based on B′. M ′ is symmetric since bTi Lbj = (bTi Lbj)
T = bTj Lbi,

∀i, j ∈ 2, 3, . . . , n.

3.2 Optimal Energy Compaction

Now, we look for the vector tk that maximizes the energy concentration in the (n−1)-
dimensional subspace. As tk is normalized and orthogonal to t1, t2, . . . , tk−1, our
constrained energy compaction problem is:

min
tk

−tTkLtk, k = 2, . . . , n, (3.10)

s.t. tTk tk = 1, (3.11)
tTk tj = 0, j = 1, . . . , k − 1, (3.12)
t1 =

c√
cT c

. (3.13)

We rewrite the above constrained problem in unconstrained form [10] and define the
cost function

Jk = −tTkLtk + λk(t
T
k tk − 1) +

k−1∑
j=1

νkjt
T
k tj, (3.14)

where λk and νkj are positive Lagrange multipliers. Our goal is to minimize the cost
function of the unconstrained problem.



The vectors t2, t3, . . . , tn will be constructed successively. First, we consider the
cost function for t2,

J2 = −tT2Lt2 + λ2(t
T
2 t2 − 1) + ν21t

T
2 t1, (3.15)

where λ2 and ν21 are positive Lagrange multipliers. We have

tT2Lt2 = (B′a′2)
TL(B′a′2) = a′T2 B′TLB′a′2 = a′T2 M ′a′2 (3.16)

tT2 t2 = (B′a′2)
T (B′a′2) = a′T2 B′TB′a′2 = a′T2 a′2 (3.17)

tT2 t1 = (B′a′2)
T b1 = a′T2 B′T b1 = 0. (3.18)

From (3.16) we see that the energy contribution of M ′ in a′2 is the same as the
contribution of L in t2. (3.17) states that the normalization of t2 is the same as
that of a′2, i.e., when a′T2 a′2 = 1, we obtain tT2 t2 = 1. (3.18) implies that the way
we construct t2 guarantees that t2 is orthogonal to t1 since B′ ⊥ b1. Thus, we can
eliminate the last part of the cost function. (3.15) can be rewritten as

J2 = −a′T2 M ′a′2 + λ2(a
′T
2 a′2 − 1). (3.19)

To minimize J2, we differentiate J2 with respect to a′2, that is,

∂J2
∂a′2

=− 2M ′a′2 + 2λ2a
′
2 = 0 (3.20)

M ′a′2 = λ2a
′
2. (3.21)

Thus, to minimize J2, a′2 needs to be an eigenvector of M ′ with corresponding eigen-
value λ2.

Note, the direct differentiation of J2 with respect to t2 in (3.15) is not helpful. t2
is an n-dimensional vector and the underlying problem gives only n− 1 independent
equations.

Next, we construct t3 such that t3 maximizes the concentration of the remaining
energy. Since t3 needs to be orthogonal to t1 and t2, the cost function for t3 is

J3 = −tT3Lt3 + λ3(t
T
3 t3 − 1) + ν31t

T
3 t1 + ν32t

T
3 t2, (3.22)

where λ3, ν31, and ν32 are positive Lagrange multipliers. We have

tT3Lt3 = a′T3 M ′a′3 (3.23)
tT3 t3 = a′T3 a′3 (3.24)
tT3 t1 = 0 (3.25)
tT3 t2 = (B′a′3)

T (B′a′2) = a′T3 a′2. (3.26)

As t3 shall be orthogonal to t2, a′3 needs to be orthogonal to a′2. As a′2 is an eigenvector
of M ′ and M ′ is a symmetric matrix, we assume that a′3 is also an eigenvector of M ′,
thus, a′3 ⊥ a′2. This assumption will be verified later. The cost function for t3 is

J3 = −a′T3 M ′a′3 + λ3(a
′T
3 a′3 − 1). (3.27)



Differentiation with respect to a′3 yields

∂J3
∂a′3

= −2M ′a′3 + 2λ3a
′
3 = 0, (3.28)

which gives the linear eigenproblem

M ′a′3 = λ3a
′
3. (3.29)

That is, a′3 is an eigenvector of M ′ that is orthogonal to a′2. At the same time, this
eigenvector minimizes above cost function.

We continue the process for t4, t5, . . . , tn and obtain a′4, a
′
5, . . . , a

′
n as eigenvectors of

M ′. Thus, A′ is a matrix of eigenvectors of M ′. Thus, A′TA′ = A′A′T = I(n−1)×(n−1).
Note that M ′ is obtained by B′, and hence, A′ is dependent on B′. For any chosen
orthonormal basis B′, we can calculate its corresponding A′. We are free to choose
the basis B′. In any case, we obtain our transform matrix T according to (3.7) which
always satisfies T TT = TT T = In×n. The first vector t1 reflects the vertex-weighted
graph and the transform matrix T achieves optimal energy compaction for the given
subspace constraint.

4 Experimental Results
In our experiments, we evaluate the energy compaction for the QCIF sequences Fore-
man and City. We compare the motion-compensated orthogonal transform [7], SCT,
and KLT for given graphs. The basis vectors tk, k = 2, 3, . . . , n, for SCT and the
basis vectors tk, k = 1, 2, . . . , n, for the KLT are signal dependent. For a practical
coding scheme, they need to be signaled to the decoder. At this point, we look at the
energy compaction only. Practical coding schemes will be considered in future work.

To estimate the covariance matrix, we consider samples that use the same vertex-
weighted graph, i.e., samples with the same motion vectors and the same scale factors.
If the number of samples is not sufficient for a reliable estimate, the covariance matrix
is not determined and we ignore those samples. In the experiments, the smallest
number of samples is set to thirty and graphs with less than nine connections are
considered for evaluation. The motion-compensated orthogonal transform does not
need to estimate the covariance matrix. However, we use only the samples that
provide a reliable estimate for SCT and KLT to ensure a fair comparison.

For each instance of the graph, the transform determines the co-located subband
coefficients. Considering the example in Fig. 1, the output coefficients y1, . . . , y5 will
be at the same positions as x1, . . . , x5, respectively. The number of frames that are
used to construct the graphs is set to four. At this point, a larger frame number affects
the reliability of the estimated covariance matrix negatively. The size of a group of
pictures (GOP) is chosen to be sixteen. A hierarchical decomposition is performed
on each GOP. In the experiments, a GOP of sixteen frames is separated into four sets
and each set contains four successive frames. Each set outputs one lowband and three
highbands. Thus, the first decomposition level produces four temporal lowbands to



be forwarded to the second decomposition level. If a different GOP size is chosen, the
number of frames included in the graphs and the number of decomposition levels can
be rearranged. The graphs are defined by 16× 16 block motion with a search range
of ±32.

Tables 1 and 2 show the relative energy in the temporal subband frames for the first
set of four frames on the first decomposition level for Foreman and City, respectively.
On the first decomposition level, the scale factors are all ones as no pixel has been
processed before. Thus, the first basis vector t1 is a normalized all-one vector. Tables
3 and 4 show the relative energy in the temporal subband frames on the second
decomposition level for Foreman and City, respectively. Note, SCT provides the same
lowband energy as MCOT since both share the same basis vector t1. For higher basis
vectors tk, k > 1, SCT closes the gap to the optimal Karhunen Loeve Transform
(KLT). Tables 3 and 4 show that the second largest energy component of SCT is
much greater than that of MCOT. This is due to the improved energy compaction of
SCT. Note, the subspace constraint is uniquely determined by the underlying motion
information. No extra information needs to be transmitted to recover the subspace
constraint itself. This is not the case for the KLT.

Table 1: Relative energy in the temporal subband frames of the first four frames on
the first decomposition level for Foreman.

Lowband Highband 1 Highband 2 Highband 3
MCOT 99.36% 0.12% 0.42% 0.10%
SCT 99.36% 0.54% 0.08% 0.02%
KLT 99.42% 0.49% 0.07% 0.02%

Table 2: Relative energy in the temporal subband frames of the first four frames on
the first decomposition level for City.

Lowband Highband 1 Highband 2 Highband 3
MCOT 93.99% 1.54% 3.13% 1.34%
SCT 93.99% 4.08% 1.40% 0.53%
KLT 94.18% 3.95% 1.35% 0.52%

Table 3: Relative energy in the temporal subband frames on the second decomposition
level for Foreman.

Lowband Highband 1 Highband 2 Highband 3
MCOT 98.32% 0.37% 0.72% 0.59%
SCT 98.32% 1.29% 0.30% 0.09%
KLT 98.35% 1.30% 0.28% 0.07%



Table 4: Relative energy in the temporal subband frames on the second decomposition
level for City.

Lowband Highband 1 Highband 2 Highband 3
MCOT 90.12% 2.95% 4.27% 2.66%
SCT 90.12% 7.47% 1.86% 0.55%
KLT 91.22% 6.50% 1.77% 0.51%

5 Conclusions
This paper presents a class of motion-adaptive transforms that is based on vertex-
weighted graphs. Each graph is determined by motion vector information where the
weights of the vertices are defined by scale factors. The vertex-weighted graph de-
termines uniquely the first basis vector of the linear transform. This first vector
defines a subspace that constrains the energy compaction of our transform. Our SCT
is constructed step-by-step from given graphs, where each graph can be defined by
temporal, spatial, or spatio-temporal connections. SCT achieves optimal energy com-
paction, given our subspace constraint. Moreover, if there exist additional constraints,
our SCT is able to incorporate these while achieving optimal energy compaction, given
these constraints.
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