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Abstract

This paper presents an approach for using hierarchically structured multi-view features for
mobile visual search. We utilize a graph model to describe the feature correspondences
between multi-view images. To add features of images from new viewpoints, we design
a level raising algorithm and the associated multi-view geometric verification, which are
based on the properties of the hierarchical structure. With this approach, features from
new viewpoints can be recursively added in an incremental fashion. Additionally, we de-
sign a query matching strategy which utilizes the advantage of the hierarchical structure.
The experimental results show that our structure of the multi-view feature database can
efficiently improve the performance of mobile visual search.

1 Introduction

Image-based information retrieval systems such as mobile visual search [1] [2] [3] have
been developed rapidly in recent years. They allow interactive and semantic access
to real-world objects by simply taking a picture of the desired object. However,
mobile image retrieval is generally constrained by the limitations of bandwidth and
computational capacity of mobile devices. Therefore, the so-called bag-of-features
approach [4] is usually used where only the salient image features are extracted and
sent as queries.

To match a query with the corresponding object at the server, a reliable database
with efficient data structure plays a crucial role. The well-known vocabulary tree (VT)
methods [5] [6] have been widely used in indexing the image features. It essentially
utilizes k-means methods to partition the descriptor space into visual words. Then,
the clustered visual words are used to construct the vocabulary tree. However, when
the database grows by adding more features, it is important to flexibly accommodate
and index new features [7]. In particular for multi-view imagery [8] [3], adding more
images at different scales and perspectives is common.

For a multi-view feature database, the selection of image features is usually based
on feature correspondences across multiple views. Features with well-established cor-
respondences are more robust for matching with query features. By utilizing relevant
multi-view feature correspondences, it is possible to achieve an advanced matching
performance while using a smaller number of image features. However, three im-
portant issues need to be resolved when increasing the number of images for each
object. First, new features should be added incrementally to the existing features.
Second, the new database of features should be more efficient than the previous one.



Figure 1: Hierarchical sets of features from four views.

Third, the increase in computational complexity of matching a query against the new
database features should be limited.

In this paper, we propose a structure for multi-view features that improve the per-
formance of mobile visual search. Hierarchically structured multi-view feature sets
with multiple levels are constructed and used for efficient matching. With our struc-
ture, we are able to recursively manage the new features and update the database.
To maintain the geometric consistency among the multi-view imagery, we propose
a multi-view fundamental matrix. Taking advantage of our structured features, the
recall-rate performance is improved without increasing the computational complexity
of the query matching process.

2 Multi-View Image Features at the Server

Large-scale objects such as buildings are usually hard to match due to significant
change of viewpoint and lighting conditions between query and server. Thus, an
image database at the server with a considerable perspective diversity will improve
the performance of mobile visual search.

For the server, we acquire multiple images from each building. For each image,
we extract a set of the Scale Invariant Feature Transform (SIFT) features due to its
robustness under rotation, scale change and affine transformation [9]. However, as
there are multiple feature sets for the same object, the redundancy in feature space is
high. Thus, an efficient feature selection algorithm is needed to discriminate features.
On the other hand, as the images are taken from different perspectives with varying
lighting conditions, using a robust representation of feature descriptors is important
for reliable feature matching. Furthermore, the data structure should be augmentable
to be able to to add features from new viewpoints.

2.1 Hierarchical Structure of Sets of Features

Due to the high redundancy among the multi-view image features, comparing the
features received from the client to all the features at the server is inefficient. More-
over, the reliability of features in the multi-view imagery is varying. For example, the
features from the foreground are more reliable when compared with those from the
background. Therefore, a best-feature-first policy should be applied such that more
reliable features are used first.
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Figure 2: Feature correspondences modeled as complete graphs.

Multi-view feature correspondences provide a way to measure the reliability of
the features. Let fi ↔ fj be a feature correspondence, where fi denotes the feature
point in the i-th image and fj the corresponding one in the j-th image. Further,
let fi ↔ fj ↔ . . . ↔ fk be a multi-view feature correspondence that indicates a
correspondence among features in several images. With that, we define a set of fea-
ture correspondences using l images C l

i,j,...,k = {(fi, fj, . . . , fk)|fi ↔ fj ↔ . . . ↔ fk}
and represent it by a complete graph with l vertices. The i-th vertex in the graph
represents a feature in the i-th image. Each edge represents the correspondence be-
tween two features. Our multi-view feature correspondences imply correspondences
between all possible pairs of features. Hence, we represent them as undirected com-
plete graphs. Examples of sets C l

i,j,...,k are shown in Fig. 2. The advantage of modeling
multi-view feature correspondences as complete graphs for geometric verification will
be addressed in Section 2.2.2.

For our problem, a complete graph with more vertices is more reliable and repre-
sentative than a complete graph with less vertices. Simply speaking, a large complete
graph represents correspondences among many images. An example with four vertices
is shown in Fig. 1. Here, a graph with four vertices is the largest since it establishes
correspondences among all four images. Most of the correspondences relate to the
foreground object. Note, there are no multi-view features located on the background
objects such as containers, humans, and remote buildings.

As multi-view features with more vertices are more reliable for robust matching, we
structure the sets of feature correspondences in a hierarchical manner. In particular,
sets of feature correspondences with l vertices are placed on level l. Further, subsets
with l vertices, where feature correspondences can be established, are placed on level
l. An example for hierarchical sets of features with four levels from four views is
shown in Fig. 3.

Each feature correspondence fi ↔ fj ↔ . . . ↔ fk at level l has l SIFT feature
descriptors with 128 coefficients each. Thus, if there is a common feature descriptor
to represent the l corresponding features, we can reduce the number of descriptors
significantly. Due to image noise, changes of perspective, and varying lighting con-
ditions, we view the l feature descriptors as a set of measurements with outliers. To
represent them by a reliable descriptor, we take the median of the l descriptors as a
robust estimate [10]:

d̂l(u) = Median{dlh(u) : h = i, j, . . . , k}, u = 1, . . . , 128, (1)
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Figure 3: Hierarchical sets of features with four levels from four views.

where d̂l is the representative descriptor at level l, and dlh the feature descriptor in
the h-th view.

The hierarchical structure offers four advantages: First, the quality of a set of
features is supported by multiple correspondences as determined by the associated
graph. Second, the representative descriptor which is estimated by the median of
the feature descriptors is robust to changes of perspective and varying lighting condi-
tions. Third, using the representative descriptors reduces the redundancy of the set
of features significantly. Fourth, progressive matching and recursive adding of new
features can be accomplished efficiently. We will address the fourth advantage in the
following.

2.2 Adding New Features to the Hierarchical Structure

For reliable search, more features from different viewpoints improve the probability of
correct recall of a query. To improve the quality of the sets of features at the server,
and hence, improve the recall results for visual search, we would like to add features
captured from new viewpoints or at different lighting conditions to the existing sets
at the server.

2.2.1 Level Raising Algorithm

The hierarchical structure of the multi-view feature sets offers the advantage that
features from new images can be added to the existing sets in an incremental fashion.
We propose a top-to-bottom algorithm to efficiently raise each level of the hierarchical
structure. An example is shown in Fig. 4.

Let S
(t)
k denote the set of new features from the k-th viewpoint at the updating

step t. We assume that there are k− 1 views in the existing sets, then the maximum
number of levels is m = k − 1. As the top level contains the most robust features
when compared to the other levels, we begin the raising algorithm from the top level.

In the beginning, we match the hierarchical sets C
m,(0)
i,...j at level m with the feature

set S
(0)
k by using the fast nearest-neighbor criterion [9]. It will result in three sets
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Figure 4: Adding new features to the current sets of features.

of features. The first set is the new hierarchical set Cm+1
i,...j,k with added features from

S
(0)
k which has been raised to m + 1. The second and third sets are the remaining

hierarchical sets at level m and the updated set of new features at step 1, denoted as
C

m,(1)
i,...j and S

(1)
k , respectively. The remaining hierarchical sets C

m,(1)
i,...j still sit on level

m, while the updated feature set S
(1)
k is matched with the sets at level m− 1 in the

next step. Note that after matching the new feature set Sk at all levels, a geometric
verification is needed to eliminate possible outliers. We will address this verification
in Section 2.2.2.

With our hierarchical structure, we are able to raise the sets at a lower level to
an higher level if a matching feature can be found in the set of new features. The
remaining features in S

(t)
k which can not be matched at all will be placed at the

bottom level m = 1. Usually, most of the features at the bottom level are from
background objects which are less helpful. However, when continually adding new
features, relevant features at the bottom level will be raised if new correspondences
are found. Therefore, with this algorithm, we obtain a hierarchically structured set
with scalable quality.

2.2.2 Geometric Verification using the Multi-View Fundamental Matrix

The level raising algorithm allows us to add new features to the existing set. How-
ever, the results of descriptor matching may contain outliers. Therefore, a suitable
geometric verification is necessary for the level raising algorithm. In particular, it
needs to accommodate the multi-view camera scenario.

In this work, we use the epipolar constraint as the geometric constraint. The
n-view epipolar constraint can be expressed as

pFn q
T = 0, (2)

where p = [x1, y1, 1, x2, y2, 1, . . . , xn−1, yn−1, 1] is the image coordinate vector of the
feature correspondences in 1, . . . , n− 1 views, q = [x2, y2, 1, x3, y3, 1, . . . , xn, yn, 1] the
vector in 2, . . . , n views. Fn is the n-view fundamental matrix in R3(n−1)×3(n−1). Due



to the underlying symmetry, we write it as an upper triangular matrix

Fn =

⎡
⎢⎢⎢⎢⎢⎣

F1,2 F1,3 F1,4 . . . F1,n

0 F2,3 F2,4 . . . F2,n

0 0
. . . . . . . . .

0 0 0
. . . Fn−2,n

0 0 0 0 Fn−1,n

⎤
⎥⎥⎥⎥⎥⎦
, (3)

where each Fi,k is a two-view fundamental matrix between the i-th and k-th view.
Further, each non-zero block matrix Fi,k in Fn represents an edge between the i-th
and k-th vertex [11].

As the number of correspondencesN is usually large, we have to work with an over-
determined expression. We determine the fundamental matrix by the least square
error solution F∗

n according to

min
Fn

N∑
j=1

(pj Fn q
T
j )

2, (4)

where j indicates the j-th feature correspondence.
However, the dimension of Fn is growing with the number of views. This leads

to high costs for solving (4). Therefore, we propose a recursive algorithm for the
estimation of the multi-view fundamental matrix by utilizing the properties of the
level raising algorithm. For adding the n-th new viewpoint, we decompose Fn into
two parts, denoted by the known part Rn−1 and the new part Bn,

Fn =

⎡
⎢⎢⎢⎢⎢⎣

F1,2 F1,3 F1,4 . . . F1,n−1 F1,n

0 F2,3 F2,4 . . . F2,n−1 F2,n

0 0
. . . . . . . . . . . .

0 0 0
. . . Fn−2,n−1 Fn−2,n

0 0 0 0 0 Fn−1,n

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎣

Fn−1 F1,n
...

0 Fn−1,n

⎤
⎥⎦ , (5)

where the left part is Rn−1 and the right part Bn, such that Fn = [Rn−1, Bn].
Rn−1 contains the (n−1)-view fundamental matrix Fn−1. It essentially represents

the geometric constraints of the previous level which are unchanged. The new part
Bn = [F1,n, . . . , Fn−1,n]

T represents the new geometric constraints between the views
1, . . . , n − 1 and the new view n which is introduced by the set of new features Sn.
Therefore, we only need to accurately estimate Bn when adding a new view.

As Bn contains n − 1 fundamental sub-matrices, we estimate each fundamental
matrix Fk,n individually. Note that we do not make any assumptions such as knowing
the intrinsic parameters of the cameras. Hence, we do not utilize the dependencies
among the fundamental matrices like [11]. After applying the level raising algorithm,
we get a set of new feature correspondences {C l

i,...,j,n} where the indices i, . . . , j ∈
[1, . . . , n − 1] and l ∈ [1, . . . , n]. Now, we extract all correspondences between the
views k and n with

C∗
k,n = {(fk, fn)|fk, fn ∈

n⋃
l=2

⋃
i,...,j

C l
i,...,j,k,n}, (6)



where C∗
k,n denotes the accumulated set of correspondences between the views k and

n. We apply the epipolar-constrained RANSAC algorithm [12] on C∗
k,n and obtain a

reliable estimate of the fundamental matrix Fk,n. The outliers in Sn are placed on
the bottom level.

With that, we only need to update the sub-matrix Bn when adding the n-th
viewpoint. This recursive algorithm allows us to implement the multi-view geometric
verification at low computational complexity.

2.3 Progressive Query Matching

With the hierarchical structure of the feature sets at the server, we are able to pro-
gressively match query features. As the hierarchical structure leads to a scalable
quality of features, we implement a best-feature-first matching strategy by using the
features at the highest level first. Therefore, this top-to-bottom matching process has
a similar structure than the feature adding process in Section 2.2.

Let Qc denote the set of query features which contains N = |Qc| features. As
the sets of features at the server is hierarchically structured, we always choose the
features in a top-to-bottom order. For each object on the server, we pick up to
N feature correspondences. Therefore, the computational load among all objects
is also balanced. Due to our strategy, only a small number of server features is
used for matching. We use the nearest-neighbor criterion for matching, where the
representative descriptors are generated by (1), followed by geometric verification
with the epipolar-constrained RANSAC.

Therefore, we count the number of matched features between the query and each
object on the server. We define ν as the minimum number of matched features after
geometric verification. The corresponding object will be chosen when the number of
correctly matched features satisfies the threshold ν. Otherwise, we sort the matching
results and choose the best candidate.

In general, at least eight correspondences are needed for computing the fundamen-
tal matrix [13]. Let Q̃c ↔ Q̃s(l) denote the feature correspondences between query

and server at level l, where Q̃c ⊂ Qc are the matching correspondences of the query
and Q̃s(l) ⊂ {C l

i,j,...,k} that of the server at level l. However, as {C l
i,j,...,k} is a set of

feature correspondences with different image indices, we cannot apply the epipolar-
constrained RANSAC directly. Considering the i-th view, we align all corresponding
features at level l associated with the i-th view for the RANSAC

Qs(l, i) = {fi|fi ∈
⋃
j,...,k

C l
i,j,...,k}. (7)

Then, geometric verification will determine the matching correspondences for the i-th
view Q̃s(l, i) ⊂ Qs(l, i). Finally, the set of matching correspondences at the server

Q̃s(l) =
⋃
i

Q̃s(l, i) is simply the collection across all views at level l.



3 Experimental Results

We evaluate our hierarchically structured multi-view feature set for the multi-view
image dataset Stockholm Buildings1 which comprises 50 buildings of that city. The
server holds 254 images of the 50 buildings. At least 2 views have been recorded
for each building. The client may use up to 100 additional test images of the 50
buildings. We acquired server and test images at different viewpoints and at different
times. The images have been recorded by a Cannon IXUS50 digital camera at a
resolution of 2592× 1944 pixels.

The query features are selected and encoded with the rate-constrained feature se-
lection method from our earlier work [3]. It utilizes stereo features to obtain more re-
liable query features. Note, this rate-constrained feature selection differs from single-
view feature-based methods as discussed in prior frameworks [1]. The advantage of
stereo features is explained in [3].
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Figure 5: Comparison of the recall-datarate trade-off using hierarchically structured sets of
features. The total number of images at the server for two views is 100 images, for three
views 150 images, for four views 200 images, and for all available views 254 images.

3.1 Recall-Datarate Performance

We investigate the trade-off between recall and datarate for hierarchically structured
multi-view feature sets. The recall is defined by the percentage with which the query
object is retrieved correctly from the server database. The datarate is simply the size
of the query packet which is sent to the server. We choose ν = 12 for the minimum
number of matched features after geometric verification [1].

To evaluate the recall-datarate performance, we adjust the number of available
views at the server. As shown in Fig. 5, the recall for queries of the same datarate is
increasing when adding features from new views to the hierarchical sets at the server.
12% is added to the recall rate when using three views instead of two, and up to 8%
when using four views instead of three.

1http://people.kth.se/~haopeng/sthlmbuildings/
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Figure 6: Increment of recall for matching with a given number of used levels.

3.2 Efficiency of Query Matching

With our hierarchical structure of feature sets, we are able to apply a best-feature-first
matching strategy for query matching. Therefore, we evaluate the efficiency of our
hierarchical structure for a given number of used levels. For this experiment, we use
the whole dataset with all available views (254 images). We determine the increment
of recall for matching with a given number of used levels.

As shown in Fig. 6, the increment of recall for matching with the top level only is
significantly higher than that with the other levels. More than 50% of the queries are
matched correctly on the top level. This confirms that the higher levels contain more
reliable and representative features when compared to those of the lower levels. Thus,
the best-feature-first matching strategy efficiently utilizes our hierarchical structure.

4 Conclusions

We discussed hierarchically structured multi-view feature sets for mobile visual search.
The feature correspondences in the multi-view imagery are modeled as complete
graphs. Further, the multi-view feature sets are hierarchically structured for aug-
mentation and recall. With a level raising algorithm and multi-view geometric ver-
ification, we can efficiently add features from new viewpoints. This improves the
reliability of the feature set at the server. Moreover, the hierarchical structure of-
fers feature sets of different qualities. With that, we can progressively match search
queries by utilizing a best-feature-first strategy. The experimental results show that
our hierarchically structured feature sets improve the recall-datarate performance of
mobile visual search. Future research may incorporate 3D geometric information and
more compact feature descriptors, such as CHoG [14].
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