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ABSTRACT

Depth Image Based Rendering (DIBR) is a standard technique in
free viewpoint television for rendering virtual camera views. For
synthesis it utilizes one or several reference texture images and asso-
ciated depth images, which contain information about the 3D struc-
ture of the scene. Many popular depth estimation methods infer the
depth information by considering texture images in pairs. This of-
ten leads to severe inconsistencies among multiple reference depth
images, resulting in poor rendering quality. We propose a method
which takes as input a set of depth images and returns an enhanced
depth map to be used for rendering at the virtual viewpoint. Our
framework is data-driven and based on a simple geometric multi-
scale model of the underlying depth. Inconsistencies and errors in
the inputted depth images are handled locally using tools from the
field of robust statistics. Numerical comparison shows the method
outperform standard MPEG DIBR software.

Index Terms— DIBR, Free Viewpoint Television, Depth Con-
sistency, Adaptive Estimation, Multiscale Modelling.

1. INTRODUCTION

The emerge of free viewpoint television and 3D video has raised
interest in multi-view imagery, which allows users to access 3D
scenes freely and interactively. A widely used technique for enabling
free viewpoint experience is Depth Image Based Rendering (DIBR),
which utilizes one or more reference texture images and their associ-
ated depth images to synthesize virtual camera views [1]. In essence,
DIBR projects original pixels from reference images into 3D world
coordinates according to their depth values as specified by the asso-
ciated depth images. These coordinates are then projected onto the
image plane of the virtual camera view. Thus, depth images play a
crucial role in DIBR and more accurate depth maps can improve the
quality of rendered views.

Many conventional depth image estimation methods infer the
depth information from pairs of texture images instead of jointly
considering all references [2]. Meanwhile, some depth improvement
methods enhance the quality of individual depth images by applying
smoothing-based methods on a single view [3]. These can lead to
inconsistencies among multiple reference depth images. Such in-
consistencies can be due to many factors, such as illumination dif-
ferences among multiple texture references, pairwise matching of
references instead of jointly matching multiple references, etc.

To enhance the consistency among multiple references, so-
called multi-hypothesis-based methods have been proposed for
improving the pixelwise consistency among references [4]. Other
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examples are feature-based improvement methods which utilize
reliable image features to correct the reference depth images [5, 6].

Considering the geometrical properties of depth images (hav-
ing smooth variations over connected areas and sharp discontinuities
along boundaries of objects) we expect there to be regions in the tar-
geted frame where parts of the depth images seem to agree, while
corresponding data from the other depth images appear as outliers.
This paper proposes an adaptive, multiscale, and flexible depth map
estimation procedure which can deal with this situation.

The paper is organized as follows. Section 2 presents our depth
enhancement framework and an evaluation of the procedure arising
is given in Section 3. We finish with some discussion and future
perspectives in Section 4.

2. METHODOLOGY

2.1. Problem statement and data model

Assume we haveK reference depth images for a target camera view.
Let I be the set of pixels in the corresponding n-by-m rectangular
camera frame whose total number of pixels is denoted byN = n·m.
Here we focus on the square case n = m (the methodology could
be extended to cases where n 6= m). We take the image domain as
the continuous square [0, 1]2 so that the pixels in I form an array
of 1/n-by-1/n squares. Furthermore, we assume that n is dyadic,
n = 2J , for an integer J .

Let d(i) denote the true depth value at pixel i ∈ I and let the
measurement y(k)(i) denote the value of depth image k = 1, . . . ,K
at pixel i ∈ I . Our goal is to estimate the true depth given the
measurements. Next we make some assumptions about the data for
motivating our proposed method.

Our first step is to model the measurements by

y(k)(i) = d(i) + Z(k)(i), k = 1, . . . ,K, i ∈ I, (1)

where Z(k)(i) is measurement error. According to the discussion
above, the classical assumption of assuming the errors Z(k)(i) to
be Gaussian would not suit well for describing the inconsistencies
among the reference depth images.

One can observe that typical depth images for real-world scenes
are “cartoon-like,” where geometry plays a bigger role than texture.
One could think of a depth image as a composition of several smooth
regions, each corresponding to a surface of an object in the scene; the
boundaries of the regions are piecewise smooth curves, correspond-
ing to the outlines of an object obstructing the background or another
object (see Fig. 1). Hence it seems reasonable to model depth as a
piecewise constant functions of the form

d̃(i) =
M∑
m=1

αmgm(i), (2)



          (a) Newspaper, DERS 5.0            (b) Newspaper, multiscale-based 

          (d) Lovebird1, multiscale-based           (c) Lovebird1, DERS 5.0  

Fig. 1. Comparison of depth images at target view position.

for a real-valued sequence (αm) and indicator functions gm(i) =
1Sm(i), with ∪Mm=1Sm = I and Sm ∩ Sm′ = ∅ for m 6= m′.

2.2. Multiscale framework for depth enhancement

Our approach is based on models of the form (2) where the set of
supports P = {Sm,m = 1, . . . ,M} consists of dyadic squares
forming a recursive dyadic partition (RDP). Here a dyadic square is
a region

S(kx, ky, j) = [kx2
−j , (kx + 1)2−j ]× [ky2

−j , (ky + 1)2−j ],

for integers kx, ky, j s.t. 0 ≤ kx, ky < 2j and 0 ≤ j ≤ J ; the
pixel set I corresponds to the dyadic squares S(kx, ky, J) for 0 ≤
kx, ky ≤ n. We can think about the dyadic squares as nodes in a tree
with J + 1 levels, where a dyadic square at level j is connected to
the four dyadic squares at level j +1 it can be decomposed into. An
RDP is a partition of [0, 1]2 which can be reached by the following
rules: (a) P = {[0, 1]2} is an RDP; and (b) if P = {S1, . . . , SM}
is an RDP, then a new RDP can be formed by decomposing one of
the dyadic squares Sm into four dyadic squares (provided Sm is not
at the bottom level j = J).

Our procedure can be summarized by two steps:

(i) Local estimation: For each dyadic square, estimate the depth
based on the data associated to this square. Measure the fit
of the estimate to the data and assign it as a cost to the corre-
sponding node in the tree.

(ii) Global estimation using model selection: Find a balance be-
tween model’s global goodness-of-fit to the data vs. model
complexity.

Local estimation of depth: Our local estimate for each dyadic
square is based on asserting the depth to be constant over that square.
The choice of local estimation procedure depends on the nature of
the error terms in the data model (1). For example, the standard
assumption of taking the error terms to be i.i.d. zero-mean Gaussian
would under the constant depth hypothesis lead to an estimate which
is the average of all the measurements which fall in the dyadic square
– the natural criterion for goodness-of-fit would be the squared `2-
distance. However, as argued above, the Gaussian assumption does

not seem appropriate for the data under consideration. Instead, we
will view the data as a set of measurements with outliers, which
brings the local estimation problem into the field of robust statistics
[7]. Here we make a simple choice and take the popular median
as our robust local estimate. Hence the local depth estimate α̂m
corresponding to the dyadic square Sm is

α̂m := Median{y(k)(i) : i ∈ Sm, k = 1, . . . ,K} (3)

= argmin
αm

K∑
k=1

∑
i∈Sm

|y(k)(i)− αm|. (4)

Thus the natural goodness-of-fit measure for the median is the `1-
distance so we define the local fit for dyadic square Sm as

C(Sm | y) :=
K∑
k=1

∑
i∈Sm

|y(k)(i)− α̂m|. (5)

Global estimation and model selection: To motivate our choice of
criterion for the model selection procedure, we consider the general-
ized likelihood principle where the measurement errors are assumed
to be i.i.d. and Laplace distributed (due to its fat tails, the Laplace
distribution f(x) = e−|x|/2 is often used to model outliers). This
leads to taking

min
(αm)

M∑
m=1

K∑
k=1

∑
i∈Sm

|y(k)(i)− d̃(i)| =
M∑
m=1

C(Sm | y)

as the goodness-of-fit measure for the model (2). We choose to mea-
sure the model complexity by the number of terms M in the model
(2) and define the complexity-penalized functional, for parameter
λ > 0, as

Jλ(P ) :=

M∑
m=1

C(Sm | y) + λM =

M∑
m=1

Cλ(Sm | y),

where P = {Sm,m = 1, . . . ,M} is an RDP and Cλ(Sm | y) :=
C(Sm | y) + λ. Our proposed global estimator is

d̂λ(i) =
∑

Sm∈P∗λ

α̂m1Sm(i); P ∗λ := argmin
P

Jλ(P ), (6)

where the minimization is taken over all RDPs in our tree. The
choice of parameter λ depends on the balance between the richness
in the structure of the underlying depth and how severe the errors
in the data can be: small λ are preferred for capturing highly vari-
able depth but large λ for fighting inconsistency (λ also scales with
K and N ). The examples we consider in Section 3 indicate that the
procedure performs well over a range of λ – a practical procedure for
choosing λ adaptively or by experience, for different types of scenes
and camera setups, is a subject of future research.

2.3. Algorithms and computational complexity

In the local estimation step above, we need to take the median over
all the dyadic squares in the tree. Due to the recursive structure of
the tree, this can be done efficiently using a simple extension of the
merge sort algorithm for sorting lists [8]. The computational com-
plexity is O(KN logN), where N = n2 is the total number of
pixels. Now there are O(logN) levels and at each level j there
are 4j squares with N4−j pixels each, so once we have the medi-
ans, calculating the local costs (5) for all dyadic squares requires
O(KN logN) operations.



Table 1. Settings for Test Sequences.
Sequence

name
Target
camera

Reference
cameras

Multiscale-based
depth references

Newspaper
(Indoor)

4 2,6 2,3
5,64 3,5

Lovebird1
(Outdoor)

6 4,8 4,5
7,86 5,7

To find the estimator (6), we first decorate the nodes in the tree
with the penalized costs Cλ(Sm | y). Then one can minimize com-
plexity functional Jλ(P ) over all possible RDPs using a standard
tree optimization algorithm of complexityO(N logN) (see [9, 10]).
Hence the overall complexity for our procedure is O(KN logN).
Compare this to a simple pixelwise median approach which esti-
mates depth by taking medians over the warped reference depth im-
ages pixel by pixel – the complexity of such procedure is O(KN).

3. NUMERICAL EXPERIMENTS

We compare the performance of our proposed method to that of the
View Synthesis Reference Software 3.5 (VSRS 3.5) [11] which is
used for MPEG 3DV/FTV exploration experiments. VSRS 3.5 uses
a DIBR approach which synthesizes the target view by referencing
left and right texture images and their associated depth images. The
reference depth images are generated by MPEG 3DV/FTV Depth
Estimation Reference Software 5.0 (DERS 5.0) [2]. We also con-
sider the pixelwise median approach mentioned in Section 2.3 – this
is essentially what the proposed estimator (6) would give for λ = 0.

The luminance PSNR (Y-PSNR) between rendered view and
corresponding actual camera view is used for evaluating an objec-
tive performance for each method. We use the multi-view video test
sets Newspaper (provided by GIST [12]) and Lovebird1 (provided
by ETRI [13]); the resolution of the videos is 1024 × 768 and we
use 50 successive frames; the setting for the test sequences is in Ta-
ble 1. Note that VSRS 3.5 only needs two references to synthesize
the target view (col. 3 in Table 1) – for a fairer comparison, we use
the same texture references for texture warping for all the methods.
We use inverse-mapping to warp the reference textures to the target
position.

For the multiscale-based method, we first warp the reference
depth images listed in col. 4 of Table 1 to the target position. We
divide each frame into 4× 3 square blocks of size 256× 256 each.
The depth is estimated independently on each block using (6). This
is done for parameter values λ ranging from 2 to 1000.

3.1. Improvement of depth image

Fig. 1 shows comparisons of depth images at target position be-
tween DERS 5.0 and the proposed multiscale depth enhancement
approach. The geometry information appears to be better explained
by the multiscale-based approach than by DERS 5.0.

3.2. Objective performance comparison

As shown in Fig. 2, our multiscale-based algorithm for depth im-
age improvement outperforms the MPEG reference algorithm for a
wide range of λ values. The average Y-PSNR of the rendered im-
ages improves by about 2dB for the outdoor sequence (Lovebird1)
and about 1dB for the indoor sequence (Newspaper). The pixelwise
median performs surprisingly well but the results for the Newspaper
sequence support that it is worth going multiscale.

(a) Newspaper, VSRS 3.5  (b) Newspaper, multiscale-based 

(c) Lovebird1, VSRS 3.5  (d) Lovebird1, multiscale-based  

Fig. 3. Comparison of rendered images at target view position.

3.3. Subjective performance comparison

The comparison of subjective quality of rendered images are de-
picted in Fig. 3. The object details appear more piecewise smooth
and visually better for the proposed method as it improves the multi-
view consistency on a multiscale basis.

4. CONCLUSIONS AND PERSPECTIVES

We proposed a simple data-driven multiscale method for improving
quality of depth maps in a robust manner and a practical multi-view
video setting. Results from numerical demonstration are promising
and the procedure has low computational complexity and memory
requirements.

We envisage extending and evaluating the framework using
more sophisticated geometric multiscale tools –such as wedgelets
and platelets [14, 15]– for better modeling the underlying depth;
that is, use different structure of support sets Sm for the indicator
functions gm in (2). Such geometric modeling seems very relevant
for depth image coding and has been used for joint bit allocation
for texture images and associated depth (see [16] and references
therein). In relation to this, we point out that the estimation proce-
dure (6) provides a depth map which is already in a condensed form
– data compression is, in a way, a byproduct of the method.

For the local estimation one might want to consider other types
of robust estimators than (3), such as M-estimators, trimmed means,
and others [7]. The reason is that some pixel regions might not have
outliers (or inconsistencies) so the median could be overly conserva-
tive and an unnecessarily high price is paid for robustness. Instead
one might want to construct data-driven robust estimators which be-
have as closely as classical estimators –such as simple averaging–
when outliers are absent or few in number. An interesting research
direction could be to consider consistency testing for local groups of
pixels. The motivation is that one might expect some cameras to be
consistent over small regions of neighboring pixels. (Locally, this
would in some sense extend ideas from [4] which work pixelwise.)
One approach for weeding out outliers in depth measurements in a
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(a) Newspaper, reference camera 2 and 6
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(b) Newspaper, reference camera 3 and 5
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(c) Lovebird1, reference camera 4 and 8
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(d) Lovebird1, reference camera 5 and 7

 

 

VSRS 3.5

Pixelwise median

Mult iscale-based , λ = 2

Mult iscale-based , λ = 2 0

Mult iscale-based , λ = 100

Mult iscale-based , λ = 1000

Fig. 2. Objective performance comparison between proposed and references algorithms. The labels of the curves in subplots (a), (b) and (c)
are the same as those of (d). (Note the different range and scale for the y-axes.)

dyadic square S at level j could be to look for a setA ⊂ S of pixels,
with a targeted size |A| = L = L(j) (say, half of the total number
of measurements in S), which minimizes the range

max
i,i′∈A, k,k′=1,...,K

|y(k)(i)− y(k
′)(i′)|.

Finally, we would like to mention that robust local estimation proce-
dures could provide information about local consistency among the
reference depth maps – this could then be used in DIBR for choosing
which reference texture images to use for local image regions.
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