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Multi-Hypothesis Motion-Compensated Prediction
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Hypotheses are selected only from previous frames!

Multi-hypothesis: Array of hypotheses
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How to Select an Optimal Multi-Hypothesis?

Example: 2-Hypothesis
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3-dimensional search space for each hypothesis

Full search for a n-hypothesis:
Complexity ~ (-)™
Too demanding!!
— Successive improvement of n optimal conditional solutions.
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Hypothesis Selection Algorithm |

An iterative algorithm, which is inspired by the Iterated Conditional Modes.
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Initialization
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= Find the optimal 1-hypothesis in search space.

= Repeat the optimal 1-hypothesis n times to generate the
initial n-hypothesis.
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Hypothesis Selection Algorithm I

3-dimensional conditional search space: |—b, b] x [—b,b] x [—b,b]
C1 C2

_— _
D

Iteration 1

= 1 and 2 are centers of the conditional search spaces.

= Hypothesis c5 is fixed. Optimize hypothesis c¢; by full
search within its conditional search space (3).

= Hypothesis c; is fixed. Optimize hypothesis co by full
search within its conditional search space (4).
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Hypothesis Selection Algorithm Ili

C1 C2

Iteration 2 .

= 3 and 4 are centers of the conditional search spaces.

Continue until convergence.
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Hypothesis Selection Algorithm IV
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Number of Hpotheses

Trade-off between complexity and prediction gain
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Rate-Constrained Multi-Hypothesis MCP

= Multi-hypothesis MCP quantizes the original blocks and
generates a multi-hypothesis code.

= Improved prediction performance and higher data rate
due to more than one hypothesis per block

— Rate-constrained vector quantization for modeling multi-hypothesis MCP
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Predictor Model
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« : Multi-hypothesis search
B Weighted superposition

v : Entropy code

The optimal predictor {a*, 3*,v*} minimizes the average rate-distortion measure

J(a,8,7,A,8) = E{|IS = Boa(S)|; + Alyo a(S)|}
for given distribution of the original blocks S. and constant Lagrange multiplier A..

min J (@, B,7, A, Se).

o,B3,y
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Iterative Design Algorithm

1: Given: Entropy code v and predictor coefficients h

Optimal multi-hypothesis ¢ for each

: 2
. {HS ~ chlly + )\|7(c)\} original block s

2: Given: New distribution of multi-hypotheses C from Step 1

min F {|y(C)|} Optimal entropy code ~y
Y

3: Given: Multi-hypotheses C from Step 1

m}an {||S - ChH;} Optimal predictor coefficients h
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Optimal Predictor Coefficients
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For our parameters, the optimum predictor coefficients
are approximately % for n linear combined hypotheses.
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Optimal Number of Hypotheses
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Dependent on the rate constraint,
each block has its individual number of hypotheses.
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Conclusions

= Multi-hypothesis prediction increases prediction gain.

= The hypothesis selection algorithm reduces the complexity of the
underlying joint optimization problem to a feasible size.

= We observed that the optimum predictor coefficients are approximately
% for n linear combined hypotheses.

= Dependent on the rate constraint, each block has its individual number
of hypotheses.
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