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Abstract

Multi-hypothesis motion-compensated prediction extends traditional mo-
tion-compensated prediction used in video coding schemes. Known algorithms
for block-based multi-hypothesis motion-compensated prediction are, for exam-
ple, overlapped block motion compensation (OBMC) and bidirectionally pre-
dicted frames (B-frames). This paper presents a generalization of these algo-
rithms in a rate-distortion framework. All blocks which are available for predic-
tion are called hypotheses. Further, we explicitly distinguish between the search
space and the superposition of hypotheses. Hypotheses are selected from a search
space and their spatio-temporal positions are transmitted by means of spatio-
temporal displacement codewords. Constant predictor coefficients are used to
combine linearly hypotheses of a multi-hypothesis. The presented design algo-
rithm provides an estimation criterion for optimal multi-hypotheses, a rule for
optimal displacement codes, and a condition for optimal predictor coefficients.
Statistically dependent hypotheses of a multi-hypothesis are determined by an
iterative algorithm. Experimental results show that increasing the number of
hypotheses from 1 to 8 provides prediction gains up to 3 dB in prediction error.

1 Introduction

Motion-compensated coding schemes achieve data compression by exploiting the simi-
larities between successive frames of a video signal. Often, with such schemes, motion-
compensated prediction (MCP) is combined with intraframe encoding of the predic-
tion error. Successful applications range from digital video broadcasting to low rate
videophones. Several standards, such as ITU-T H.263, are based on this scheme.

Many codecs today employ more than one motion-compensated prediction sig-
nal simultaneously to predict the current frame. The term ”multi-hypothesis motion
compensation” has been coined for this approach. A linear combination of multiple
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prediction hypotheses is formed to arrive at the actual prediction signal. Examples are
the combination of past and future frames to predict B-frames or overlapped block
motion compensation in the MPEG or H.263 coding schemes.

Performance bounds of multi-hypothesis MCP are investigated in [1] by introducing
a simplified signal model. In this paper, we present a realistic block-based model and
a practical design algorithm that handles real world signals. In doing so, we generalize
known algorithms for multi-hypothesis MCP [2, 3].

Known AR models for multi-hypothesis MCP utilize Wiener coefficients to weight
several hypotheses as well as different spatio-temporal positions. In contrast, we
include a rate penalty to combine several spatio-temporally displaced hypothe-
ses. For transmission, we assign relative spatio-temporal positions of hypotheses
(∆xν ,∆yν ,∆tν ) to spatio-temporal displacement codewords. For the weighted super-
position, all hypotheses are considered equally, independent of their spatio-temporal
position. The predictor coefficients are not transmitted for each block.

This extension requires a rate-distortion framework. The average quality of the
prediction has to be constrained by the average rate of the spatio-temporal displace-
ment code. Section 2 explains rate-distortion optimized MCP. Section 3 introduces
our model for block-based multi-hypothesis MCP. In section 4, we present the de-
sign algorithm, the optimal hypothesis selection algorithm, and the optimal predictor
coefficients.

2 Rate-Distortion Optimized MCP

In block-based motion-compensated prediction, each block in the current frame is
approximated by a spatially displaced block from the previous frame. We associate
with each s×s block a vector in a s2-dimensional space. Original blocks are represented
by the random variable S with its samples s from the vector space.

The quality of the prediction is measured by the average distortion between original
blocks S and predicted blocks Ŝ. We utilize squared Euclidean distance in the vector
space to determine the distortion between two samples.

D = E
{∥∥∥S− Ŝ

∥∥∥2

2

}
(1)

The blocks are coded with a displacement code B. Each displacement codeword pro-
vides a unique rule how to compensate the current block-sample s. The average rate
of the displacement code is determined by its average length.

R = E {|B|} (2)

Optimal rate-distortion prediction minimizes average prediction distortion for a
given average displacement rate. For our purposes, we restate the constrained problem.
We weight the average rate by the Lagrange multiplier λ [5]. We call the resulting
functional the average rate-distortion measure J . In order to achieve rate-distortion
optimal prediction, we minimize the average rate-distortion measure for constant λ.

J(λ) = E
{∥∥∥S− Ŝ

∥∥∥2

2

}
+ λE {|B|} (3)
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3 Block-Based Multi-Hypothesis MCP

Standard block-based motion-compensated prediction estimates one block from the
previous frame in order to compensate one block in the current frame. We call this
method short-term MCP. Long-term MCP as introduced in [4] extends the standard
approach by estimating one block from several previous frames.

We introduce a new, block-based model for multi-hypothesis MCP. In contrast
to short-term or long-term MCP, we use n blocks c1, . . . , cn from previous frames in
order to predict one block in the current frame. All blocks which are available for
prediction are called hypotheses. n hypotheses that predict the block ŝ are grouped
to a multi-hypothesis or n-hypothesis c. The predicted block ŝ is determined by linear
combination of the individual components cν . The coefficients hν determine the weight
of each component for the predicted block.

ŝ =
n∑

ν=1

cνhν =
(

c1 . . . cn

)



h1
...

hn


 = ch (4)

Figures 1 and 2 explain the difference between a 1-hypothesis and a 2-hypothesis
for a two-dimensional block. The 1-hypothesis approximates the original block s di-
rectly. In contrast, the individual components of a 2-hypothesis do not necessarily
approximate the original block; it is accomplished by combining the two components
linearly.

s
c

sŝ

c1

c2

Figure 1: 1-hypothesis for a two-dimen-
sional block.

Figure 2: 2-hypothesis for a two-dimen-
sional block.

The weighted superposition extends the predictive power of blocks available for
prediction and causes also a dependence among the components of an n-hypothesis.
Subsection 4.1 discusses this problem.

4 Block-Based Multi-Hypothesis MCP Design

We consider motion-compensated prediction as a vector quantization problem. For
the design of multi-hypothesis MCP, we utilize known algorithms for vector quan-
tizer design. The Generalized Lloyd Algorithm (GLA) in conjunction with Entropy
Constrained Vector Quantization (ECVQ) solve the design problem iteratively.
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Figure 3: Model for the design of multi-hypothesis MCP.

The ECVQ algorithm [5] implies a quantizer model according to Figure 3, which
we adopt for our design algorithm. The mapping α performs the estimation of the
multi-hypotheses C from the original blocks S. The mapping γ assigns each multi-
hypothesis displacement to its corresponding entropy codeword. To be lossless, γ has
to be invertible and uniquely decodable [5]. The weighted superposition β determines
the predicted blocks Ŝ from the multi-hypotheses.

For solving the design problem, we attempt to minimize the average rate-distortion
measure (3) in order to get the optimal mappings α, β, and γ. The predicted blocks
Ŝ = β◦α(S) and the codewords B = γ◦α(S) can be expressed by our model mappings.
The operator · ◦ · denotes composition according to Figure 3. This allows us to rewrite
the average rate-distortion measure (3) in terms of the model and, in consequence, to
determine the optimal predictor {α, β, γ}.

J(α, β, γ, λ,S) = E
{
‖S− β ◦ α(S)‖2

2 + λ|γ ◦ α(S)|
}

(5)

For given distribution of the original blocks Sc and constant Lagrange multiplier λc,
the optimal predictor incorporates the optimal mappings α, β, and γ which satisfy

min
α,β,γ

J(α, β, γ, λc,Sc). (6)

Our iterative design algorithm for solving (6) includes three steps. The distribution of
the original blocks Sc as well as the Lagrange multiplier λc are guessed for initialization.

The first step determines the optimal multi-hypothesis c = α(s) for given mappings
βc and γc.

min
α

E
{
‖Sc − βc ◦ α(Sc)‖2

2 + λc|γc ◦ α(Sc)|
}

=⇒ α(s) = argmin
c

{
‖s− chc‖2

2 + λc|γc(c)|
}

(7)

Equation (7) is the biased nearest neighbor condition familiar from vector quantization
with a rate-constraint.

The second step provides the optimal mapping γ for given mappings αc and γc. A
constant mapping αc assures a constant distribution of the multi-hypotheses Cc.

min
γ

E
{
‖Sc − βc ◦ αc(Sc)‖2

2 + λc|γ ◦ αc(Sc)|
}

=⇒ min
γ

E {|γ(Cc)|} (8)

Equation (8) postulates a minimum average codeword length for the optimal con-
ditional code. For a finite number of multi-hypothesis displacements, the Huffman
algorithm solves this optimization.
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The third step determines the optimal multi-hypothesis superposition for given
mappings αc and γc.

min
β

E
{
‖Sc − β ◦ αc(Sc)‖2

2 + λc|γc ◦ αc(Sc)|
}

=⇒ min
h

E
{
‖Sc − Cch‖2

2

}
(9)

Equation (9) is the Wiener problem for the optimal conditional predictor coefficients.

0: Given the distribution of the original blocks S. Select the initial entropy code
γ and predictor coefficients h. Choose a constant Lagrange mulitiplier λ.

1: Given the entropy code γ and predictor coefficients h, find the optimal multi-
hypothesis c for each original block s according to

min
c

{
‖s− ch‖2

2 + λ|γ(c)|
}

.

2: Given the new distribution of multi-hypotheses C from Step 1, design an
optimal entropy code γ satisfying

min
γ

E {|γ(C)|}.

3: Given the multi-hypotheses C from Step 1, determine optimal predictor co-
efficients h by solving

min
h

E
{
‖S− Ch‖2

2

}
.

4: Continue with Steps 1 to 3 as long as improvement is possible.

Figure 4: Iterative design algorithm for multi-hypothesis MCP.

Figure 4 presents an iterative design algorithm based on the previous discussion.
Step 2 incorporates an algorithm that minimizes the expected displacement codeword
length and will not be discussed further. The conditional minimizations in Step 1 and
Step 3 will be considered in more detail.

4.1 Optimal Hypothesis Selection Algorithm

According to our model, we have to find n hypotheses for each predicted block. The
dependence among these hypotheses requires a joint solution for the estimation prob-
lem.

Each hypothesis is addressed by a spatio-temporal displacement (∆xν ,∆yν ,∆tν ).
This address is relative to the position of the predicted block. Allowing a search space
of size [−a, a] × [−a, a] × [−m,−1], a full search algorithm implies a complexity of

Pf =
[
m(2a + 1)2

]n
(10)



Flierl, Wiegand, Girod: A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis
Motion-Compensated Prediction, in Proceedings of the IEEE DCC, pp. 239-248, Snowbird, Utah, Mar. 1998 6

search positions. For practical parameters (a = 15, m = 10, n = 4), the complexity of
Pf = 8.5 · 1015 search positions is computationally too demanding.

An iterative algorithm, which is inspired by the Iterated Conditional Modes (ICM)
of Besag [6], avoids searching the complete space by successively improving n optimal
conditional solutions. Convergence to a local optimum is guaranteed, because the
algorithm prohibits an increase of the error measure. A relative decrease of the rate-
distortion measure of less than 0.5% indicates practical convergence. Our iterative
version in Figure 5 is called Optimal Hypothesis Selection Algorithm (OHSA) and
provides a locally optimal solution for (7).

0: Assuming n-hypotheses, the rate-distortion measure

j(c1, . . . , cµ, . . . , cn) =

∥∥∥∥∥∥∥s−
n∑

ν=1
ν 6=µ

cνhν − cµhµ

∥∥∥∥∥∥∥
2

2

+ λ


 n∑

ν=1
ν 6=µ

|γ(cν)| + |γ(cµ)|



is subject to minimization for each original block s. Select the entropy code
γ, predictor coefficients h, and the Lagrange multiplier λ. Initialize the algo-
rithm with n hypotheses (c

(0)
1 , . . . , c(0)

n ) and set i := 0.

1: Select the µ-th out of n hypotheses; start from the first and end with the
n-th hypothesis.

a: Focus on the µ-th hypothesis. All others are kept constant. Select a
local neighborhood of hypothesis c(i)

µ as the conditional search space of

hypothesis c(i+1)
µ .

b: Minimize the rate-distortion measure by full search within the condi-
tional search space of hypothesis c(i+1)

µ .

min
c
(i+1)
µ

j(c
(i+1)
1 , . . . , c

(i+1)
µ−1 , c(i+1)

µ , c
(i)
µ+1, . . . , c

(i)
n )

2: As long as the rate-distortion measure decreases, continue with step 1 and
set i := i + 1.

Figure 5: Optimal Hypothesis Selection Algorithm

Figure 6 demonstrates the performance for equally weighted hypotheses (hν = 1
n
).

Throughout the paper, we obtain our results by predicting from past frames of the
original sequences. Prediction error is given as average PSNR in dB. Larger num-
bers indicate smaller prediction error variance. The results with half-pel accuracy are
obtained by spatial bilinear interpolation.

We initialize the OHSA with n hypotheses by applying the rule of Splitting One
Hypothesis. The computational demand of finding a 1-hypothesis is rather moderate.
We repeat this optimal 1-hypothesis n times to generate the initial n-hypothesis.

For each n-hypothesis component in each iteration, OHSA performs a full search
within a conditional search space in which an optimal conditional n-hypothesis compo-
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Figure 6: Prediction error and the num-
ber of hypotheses for the sequence Fore-
man (QCIF, 7.5 fps, 10s), 16× 16 blocks,
and λ = 0.

Figure 7: Prediction error and the num-
ber of hypotheses for the sequence Fore-
man (QCIF, 7.5 fps, 10s), integer-pel ac-
curacy, 16× 16 blocks, and λ = 0 depen-
dent on conditional search space size.

nent has to be found. The size of the conditional search space [−b, b]× [−b, b]× [−b, b]
affects the quality of the local optimum and the complexity of the algorithm, which is

Pi = m(2a + 1)2 + In(2b + 1)3 (11)

search positions for I iterations. For practical parameters (a = 15, m = 10, n = 4,
b = 4, I = 3), the complexity is reduced by factor 4.6 · 1011 to Pi = 1.8 · 104 search
positions compared to (10). Figure 7 shows the influence of the conditional search
space size b.

OHSA does not determine the optimal number of hypotheses of a multi-hypothesis.
The optimal number of hypotheses in the rate-distortion sense depends significantly
on the rate constraint. For a given maximal number N , we determine the optimal
number of hypotheses for each original block by running the OHSA for all numbers n
from 1 to N and picking the one that minimizes the rate-distortion measure.

min
n:1≤n≤N

{∥∥∥s − c(n)h(n)
∥∥∥2

2
+ λ|γ(c(n))|

}
(12)

4.2 Optimal Predictor Coefficients

The third step in our iterative design algorithm solves the well-known Wiener problem
of predictor design. Since our predictor preserves the expected value of the original
block, i.e. E {S} = E

{
Ŝ
}
, we express the Wiener problem in covariance notation.

min
h

{
CSS − 2hT CCS + hT CCCh

}
(13)
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CSS is the scalar variance of the original block, CCC the n × n covariance matrix of
the hypotheses, and CCS the n× 1 covariance vector between the hypotheses and the
original block.

For video signals, we want to constrain additionally the sum of the prediction
coefficients hν to one. With the vector uT = (1, 1, · · · , 1) of dimension n, we write
uT h = 1. A Lagrangian approach to the constrained Wiener problem leads to the
predictor coefficients

h = C−1
CC

(
CCS − uTC−1

CCCCS − 1

uT C−1
CCu

u

)
. (14)

For the predictor design, we are using 18 training sequences each covering 10 sec-
onds of video in QCIF resolution. The rate is 7.5 frames per second. The sequences
are: Akiyo, Bream, Car Phone, Children, Coastguard, Container Ship, Fun Fair, Hall
Monitor, Mobile, News, Salesman, Sean, Silent, Stefan, Table Tennis, Total Destruc-
tion, Tunnel und Weather.
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Figure 8: Convergence of the predictor co-
efficients (2 hypotheses) for the training
sequences (QCIF, 7.5 fps), 16×16 blocks,
λ = 100, and m = 10.

Figure 9: Convergence of the predictor co-
efficients (3 hypotheses) for the training
sequences (QCIF, 7.5 fps), 16×16 blocks,
λ = 100, and m = 10.

Figures 8 and 9 show the convergence of the predictor coefficients for an iterative
predictor design. We use fixed length codebooks for initializing the design algorithm.
In order to demonstrate convergence of predictor coefficients, we compare a uniform
coefficient initialization hν = 1

n
to an arbitrary initialization gν . We observe that the

converged predictor coefficients approximate 1
n
, regardless of their initial values.
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4.3 Performance of Designed Predictors

We evaluate the rate-distortion performance for the designed predictors (λ =
100) by predicting the test sequence Foreman for various Lagrange multiplier
(25, 50, 100, . . . , 1600). Note that the test sequence is not in the training set.
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Figure 10: Prediction error and rate of
the multi-hypothesis code RMHC for the
sequence Foreman (QCIF, 7.5 fps, 10s),
and 16 × 16 blocks.

Figure 11: Cumulated partial rates
RMHCi

over the total rate RMHC of the
multi-hypothesis code for the sequence
Foreman (QCIF, 7.5 fps, 10s), 16 × 16
blocks, N = 4, and m = 10.

Figure 10 compares 4 integer-pel predictors with a constant number of hypotheses
to an adaptive integer-pel predictor allowing up to N = 4 hypotheses for each block.
The case n = 1 corresponds to long-term MCP. Increasing the number of hypotheses
from n = 1 to n = 2 provides gains of more than 1.5 dB in prediction error, the
increase from n = 1 to n = 4 hypotheses, however, more than 2.2 dB. Please note
the superiority of the adaptive predictor according to (12), which outperforms each
predictor with constant number of hypotheses.

Figure 11 shows the subdivision of the total rate for the multi-hypothesis code
RMHC generated by the adaptive predictor. Hypothesis ”0” marks an uncoded block
and is a special case of a 1-hypothesis. Partial rates of the multi-hypothesis code
correspond to differences between two successive curves in Figure 11. We observe that
more blocks are decomposed into N = 4 hypotheses and less blocks into n < N
hypotheses by increasing the rate.

Multi-hypothesis motion compensated prediction is a very promising technique
that can yield significant bit-rate savings for future video coding algorithms. Increasing
the accuracy of MCP from integer-pel to half-pel provides gains from 0.7 dB to 1 dB
in prediction error (Figure 6). But increasing the number of hypotheses from n = 1 to
n = 4 provides gains of more than 2.2 dB in prediction error.
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5 Conclusions

In this paper, we have presented a locally optimal design algorithm for block-based
multi-hypothesis motion-compensated prediction. We explicitly distinguish between
the search space and the superposition of hypotheses. The components of a multi-
hypothesis are selected from the same search space and their spatio-temporal posi-
tions are transmitted by means of spatio-temporal displacement codewords. Constant
predictor coefficients are used to combine linearly components of a multi-hypothesis.
Further, we have provided an estimation criterion for optimal n-hypotheses, a rule
for optimal displacement codes, and a condition for optimal predictor coefficients.
Statistically dependent components of a n-hypothesis are determined by the optimal
hypothesis selection algorithm, which improves successively n optimal conditional hy-
potheses. For best performance, we additionally determine the optimal number of
hypotheses for each original block.

Several important observations can be made. Increasing the number of hypotheses
from 1 to 2 provides prediction gains of more than 1.5 dB, the increase from 1 to 4
hypotheses more than 2.2 dB. OHSA reduces the complexity of the underlying joint
optimization problem to a feasible size. Determining the optimal number of hypotheses
for each block, additional improvements are achieved. For increasing rate constraint,
the average number of hypotheses decreases for each original block. Finally, we ob-
serve practically no dominant n-hypothesis component for our training sequences. The
optimum predictor coefficients are approximately 1

n
for n linear combined hypotheses.
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