Video Coding with Lifted Wavelet Transforms and Complementary Motion-Compensated Signals

Markus Flierl, Pierre Vandergheynst
Signal Processing Institute
Swiss Federal Institute of Technology, Lausanne

Bernd Girod
Department of Electrical Engineering
Stanford University
Outline

- Wavelets with lifting scheme and motion compensation
- Wavelets and superposition of multiple motion-compensated signals
- Video coding scheme and experimental results for temporal Haar and 5/3 wavelets
- Signal model and performance bounds for complementary motion-compensated signals
- Comparison to predictive coding with complementary motion-compensated signals
Motion-Compensated Haar Wavelet

Update step uses negative motion vector of corresponding prediction step
Haar Wavelet with N=2 Motion-Compensated Signals

Update step uses negative motion vectors of corresponding prediction step.
Coding Scheme

- Dyadic decomposition for each group of K pictures
- Motion-compensated Haar wavelet
- Block-adaptive selection between single ($N=1$) and complementary ($N=2$) signals
- 16x16 block motion compensation with half-pel accuracy
- Spatial coding with 8x8 DCT and run-length coding (H.263 compatible)
- Same quantizer step-size for all K intra-frame encoder
Haar Wavelet with N=2 Complementary Signals

Foreman, QCIF, 30 fps

PSNR Y [dB] vs. R [kbit/s]

- K=32, N=2, M=8
- K=32, N=2, M=1
- K=32, N=1, M=1
Haar Wavelet with N=2 Complementary Signals

Mobile & Calendar, QCIF, 30 fps

R [kbit/s]

PSNR Y [dB]

K=32, N=2, M=8
K=32, N=2, M=1
K=32, N=1, M=1

0 500 1000 1500 2000

R [kbit/s]
Wavelets with Frame-Adaptive Motion Compensation

Mobile & Calendar, QCIF, 30 fps

PSNR Y [dB] vs. R [kbit/s]

- $K=32, N=2, M=8$
- $K=32, 5/3$
- $K=32, N=1, M=8$
- $K=32, \text{Haar}$
Motion-Compensated 5/3 Wavelet

Update steps use negative motion vectors of corresponding prediction steps
Theoretical Signal Model

• Let $s_k[x,y]$ be the k-th picture at pel-location x,y

• The signals are space-discrete and band-limited

• Ideal reconstruction is used for sub-pel accurate displacements $d_{\mu\nu}$

• Displacement operation is invertible
Displacements are complementary such that

\[d_{2\kappa,2\kappa+1}^{(1)} = d_{2\kappa,2\kappa+1} - \Delta_{2\kappa,2\kappa+1} \]

\[d_{2\kappa,2\kappa+1}^{(2)} = d_{2\kappa,2\kappa+1} + \Delta_{2\kappa,2\kappa+1} \]

Motion-compensated signals are averaged.
Model for Coding with Complementary Signals

Any input picture can be the reference picture

\[T(\Delta_{\mu\nu}) \]

- \(\nu \): model picture
- \(n_k \): \(k \)-th noise signal
- \(s_k \): \(k \)-th input picture
- \(z_k \): \(k \)-th transform signal
- \(\Delta_{\mu\nu} \): displacement error between pictures \(\mu \) and \(\nu \)
Performance Measure

- Rate difference for each picture k

$$\Delta R_k = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \log_2 \left(\frac{\Phi_{z_k z_k}(\omega)}{\Phi_{b_k b_k}(\omega)} \right) d\omega$$

- Measures maximum bit-rate reduction
- Compares to optimum intra-frame encoding
- For the same mean squared reconstruction error
- For Gaussian signals

- Average rate difference

$$\Delta R = \frac{1}{K} \sum_{k=0}^{K-1} \Delta R_k$$
Rate Difference with Negligible Noise

Calibration:

\[\beta = 0.5 \log_2(12 \sigma^2_\Delta) \]

Integer-pel \(\beta = 0 \)

Half-pel \(\beta = -1 \)

Quarter-pel \(\beta = -2 \)
Rate Difference with RNL = -30 dB

Calibration:

\[\beta = 0.5 \log_2(12 \sigma^2_\Delta) \]

- Integer-pel \(\beta = 0 \)
- Half-pel \(\beta = -1 \)
- Quarter-pel \(\beta = -2 \)
Important Observations

- For single motion-compensated signals in the lifting steps, bit-rate savings at high bit-rates are bounded by 1 bit per sample per displacement inaccuracy step when compared to optimum intra-frame coding of the input pictures.

- Superimposed complementary signals in the lifting steps improve compression efficiency: For GOPs of size K, bit-rate savings at high bit-rates are bounded by $\frac{K-1}{K}$ 2 bits per sample per displacement inaccuracy step.

- Residual noise limits the efficiency for very accurate motion compensation.
Comparison to Predictive Coding

- **Predictive coding scheme:**
 - 16x16 block motion compensation with half-pel accuracy
 - Single ($N=1$) or two complementary ($N=2$) motion-compensated signals
 - M previous reference frames
 - Spatial coding with 8x8 DCT and run-length coding
 - Only one intra-frame in the beginning of the sequence
 - Same quantizer step-size for all inter-frames

- **Motion-compensated wavelet coding scheme uses the same components**
Comparison to Predictive Coding

Container Ship, QCIF, 30 fps

PSNR Y [dB]

R [kbit/s]

MCT, K=32, N=2, M=8
MCP, K=288, N=2, M=8
MCT, K=32, N=1, M=1
MCP, K=288, N=1, M=1
Comparison to Predictive Coding

Mother & Daughter, QCIF, 30 fps

![Graph showing PSNR vs. R for different coding methods.]

- MCT, K=32, N=2, M=8
- MCP, K=288, N=2, M=8
- MCT, K=32, N=1, M=1
- MCP, K=288, N=1, M=1
Comparison to Predictive Coding with GOP 8

Calibration:
\[\beta = 0.5 \log_2(12 \sigma^2_\Delta) \]

- Integer-pel \(\beta = 0 \)
- Half-pel \(\beta = -1 \)
- Quarter-pel \(\beta = -2 \)

RNL = -100 dB
Comparison to Predictive Coding with GOP 8

Calibration:

\[\beta = 0.5 \log_2 (12 \sigma^2_{\Delta}) \]

- Integer-pel \(\beta = 0 \)
- Half-pel \(\beta = -1 \)
- Quarter-pel \(\beta = -2 \)

RNL = -30 dB
Conclusions

- For single motion-compensated signals, the rate difference is limited to 1 bit per sample per displacement inaccuracy step.
- For $N=2$ complementary motion-compensated signals, the rate difference approaches the limit of 2 bits per sample and displacement inaccuracy step.
- Complementary motion-compensated lifted wavelet transforms achieve the same bounds for compression efficiency as predictive coding with complementary signals and permit additionally efficient scalable representations.