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ABSTRACT

This paper investigates lifted wavelet transforms applied in the
temporal direction of a video sequence. Due to the motion be-
tween pairs of frames, motion compensation is utilized in the
lifting steps. We discuss the modified Haar and 5/3 wavelet ker-
nel and provide experimental results for dyadic decompositions
with various levels. Further, we utilize a signal model for a the-
oretical discussion of both kernels. We generalize and replace the
dyadic decompositions by the Karhunen-Loeve Transform in order
to provide theoretical performance bounds for the compression ef-
ficiency of these coding schemes.

1. INTRODUCTION

Applying a linear transform in temporal direction of a video se-
quence may not be very efficient if significant motion is prevalent.
Motion compensation between two frames is necessary to deal
with the motion in a sequence. Consequently, a combination of
linear transform and motion compensation seems promising for ef-
ficient compression. For wavelet transforms, the so calledLifting
Scheme[1] can be used to construct the kernels. A two-channel
decomposition can be achieved with a sequence of prediction and
update steps that form a ladder structure. The advantage is that this
lifting structure is able to map integers to integers without requir-
ing invertible lifting steps. Further, motion compensation can be
incorporated into the prediction and update steps as proposed in
[2]. The fact that the lifting structure is invertible without requir-
ing invertible lifting steps makes this approach feasible. We cannot
count on invertible lifting steps as, in general, motion compensa-
tion is not invertible. If it is invertible, this motion-compensated
wavelet transform based on lifting permits a linear transform along
the motion trajectories in a video sequence.

2. CODING SCHEME

The investigated coding schemes process the video sequence in
groups ofK pictures (GOP). First, we decompose each GOP in
temporal direction. The dyadic decomposition utilizes a motion-
compensated wavelet which will be discussed later in more detail.
The temporal transform providesK output pictures that are intra-
frame encoded. In order to allow a comparison to a classic hybrid
coder, we utilize for the intra-frame coder a8 × 8 DCT with run-
length coding. If we employ a Haar wavelet and set the motion
vectors to zero, the dyadic decomposition will be an orthonormal
transform. Therefore, we select the same quantizer step-size for
all K intra-frame encoder. The motion information that is required
for the motion-compensated wavelet transform is estimated in each
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decomposition level depending on the results of the lower level.
Further, we employ half-pel accurate motion compensation with
bi-linear interpolation.

2.1. Motion-Compensated Lifted Haar Wavelet

First, we discuss the lifting scheme with motion compensation for
the Haar wavelet [2].
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Fig. 1. Haar transform with motion-compensated lifting steps. The
update step uses the negative motion vector of the prediction step.

Fig. 1 depicts a Haar transform with motion-compensated lift-
ing steps. The even frames of the video sequences2κ are displaced
by the estimated valuêd2κ,2κ+1 to predict its odd framess2κ+1.
The prediction step is followed by an update step with the dis-
placement−d̂2κ,2κ+1. We use a block-size of16×16 and half-pel
accurate motion compensation in the prediction step and select the
motion vectors such that they minimize the squared error in the
high-bandhκ. In general, the block-motion field is not invertible
but we still utilize the negative motion vectors for the update step.
Additional scaling factors in low- and high-band are necessary to
normalize the transform.

2.2. Motion-Compensated Lifted 5/3 Wavelet

The Haar wavelet is a short filter and provides limited coding gain.
We expect better coding efficiency with longer wavelet kernels. In
the following, we discuss the lifted 5/3 wavelet kernel with motion
compensation [2].

Fig. 2 depicts the 5/3 transform with motion-compensated lift-
ing steps. Similar to the Haar transform, the update steps use the
negative motion vectors of the corresponding prediction steps. But
for this transform, the odd frames are predicted by a linear com-
bination of two displaced neighboring even frames. Again, we use
a block-size of16 × 16 and half-pel accurate motion compensa-
tion in the prediction steps and choose the motion vectorsd̂2κ,2κ+1

and d̂2κ+2,2κ+1 such that they minimize the squared error in the
high-bandh2κ+1. The corresponding update steps use the negative
motion vectors.
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Fig. 2. 5/3 transform with motion-compensated lifting steps. The
update steps use the negative motion vectors of the corresponding
prediction steps.

2.3. Experimental Results

For the experiments, we subdivide the test sequencesMother &
Daughter and Mobile & Calendar, each with 288 frames, into
groups ofK pictures. We decompose the GOPs independent of
each other and in the case of the 5/3 wavelet, we use a cyclic ex-
tension as it is slightly beneficial for some sequences.

0 100 200 300 400 500 600 700 800
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

R [kbit/s]

P
S

N
R

 Y
 [d

B
]

5/3, K=32 
Haar, K=32 
Haar, K=16 
Haar, K=8 
Haar, K=2 
DPCM, K=288 

Fig. 3. Luminance PSNR vs. total bit-rate for the QCIF sequence
Mother & Daughterat 30 fps. A dyadic decomposition is used to
encode groups ofK = 2, 8, 16, and 32 pictures with the Haar
kernel, andK = 32 with the 5/3 kernel. Results for a basic hybrid
video codec with 287 inter-frames are given for reference.

Figs. 3 and 4 show the luminance PSNR over the total bit-rate
for the sequencesMother & DaughterandMobile & Calendaren-
coded with groups ofK = 2, 8, 16, and 32 pictures with the Haar
kernel. The bit-rate savings diminish very quickly as the GOP size
approaches 32 pictures. Please note that forMobile & Calendarat
lower bit-rates the wavelet codec outperforms a basic hybrid video
codec (intra- and inter-frames,16 × 16 block-motion compensa-
tion, half-pel accuracy, previous reference picture, and8×8 DCT)
with a very large GOP size. Note also that the 5/3 decomposition
with a GOP size of 32 outperforms not only the corresponding
Haar decomposition but also the basic hybrid codec withK=288.
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Fig. 4. Luminance PSNR vs. total bit-rate for the QCIF sequence
Mobile & Calendarat 30 fps. A dyadic decomposition is used to
encode groups ofK = 2, 8, 16, and 32 pictures with the Haar
kernel, andK = 32 with the 5/3 kernel. Results for a basic hybrid
video codec with 287 inter-frames are given for reference.

3. THEORETICAL SIGNAL MODEL

Let sk = {sk[l], l ∈ Π} be scalar random fields over a two-
dimensional orthogonal gridΠ with horizontal and vertical spac-
ing of 1. The vectorl = (x, y)T denotes a particular location in the
latticeΠ. We interpretsk as thek-th of K pictures to be encoded.
Further, the signalsk[l] is band-limited and we obtain a displaced
version of it as follows: we shift the ideal reconstruction of the
band-limited signal by the continuous-valued displacement vector
d and re-sample it on the original grid. With this signal model, any
shift-invariant displacement operation is invertible.

3.1. Motion-Compensated Lifted Haar Wavelet

Now, given this signal model, we revisit the motion-compensated
lifted Haar wavelet in Fig. 1 and remove the displacement oper-
ators in the lifting steps such that we can isolate a lifted Haar
wavelet without displacement operators.
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Fig. 5. Equivalent Haar wavelet without shifts in the lifting steps.

Fig. 5 shows the equivalent Haar wavelet where the displace-
ment operators are pre- and post-processing operators with respect
to the original Haar transform. This scheme is equivalent to Fig. 1,
if the displacement operators are invertible.

We continue and perform the dyadic decomposition of a GOP
with the equivalent Haar wavelet. For that, the displacements of
the equivalent Haar blocks have to be added. We assume that the
estimated displacements between pairs of frames are additive such
that, e.g.,d̂02 + d̂23 = d̂03. As the true displacements are also
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additive, e.g.d02 + d23 = d03, and differ from the estimated
displacement by the displacement error, i.e.dij = d̂ij + ∆ij ,
we conclude that the displacement errors are also additive, e.g.
∆02 + ∆23 = ∆03.
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Fig. 6. Dyadic Haar Transform (DHT) without shifts in the lifting
steps forK = 4 pictures.

Fig. 6 depicts a dyadic decomposition forK = 4 pictures
based on the equivalent Haar wavelet in Fig. 5. The dyadic Haar
transform without displacements in the lifting steps is labeled by
DHT. The displacementŝd0k are pre- and post-processing opera-
tors with respect to the original dyadic Haar decomposition DHT.

3.2. Motion-Compensated Lifted 5/3 Wavelet

We also apply the invertible displacement operator to the motion-
compensated lifted 5/3 wavelet in Fig. 2 and obtain the equivalent
5/3 wavelet in Fig. 7. Due to the structure of the 5/3 wavelet, we
have displacements between the frames2κ & 2κ + 1, 2κ + 2 &
2κ+1, and2κ & 2κ+2 (in the next decomposition level). Again,
we assume that the estimated displacements are additive such that,
e.g., d̂01 − d̂21 = d̂02. With this assumption, the displacement
operators between the levels cancel out and several decomposition
levels are possible without displacements between the levels.

s0 r - e+ -
√

2
l0r

?

− 1
2

1
2

6

rs1 r- −d̂01
- e+ -

1√
2

d̂01
- h0

− 1
2

6

r

r

?

1
4

s2 r- d̂21−d̂01
- e+ - d̂01−d̂21

-
√

2
l1r

1
46

Fig. 7. Equivalent 5/3 wavelet without shifts in the lifting steps.

The equivalent dyadic 5/3 transform has the same pre- and
post-processing displacement operators as the equivalent dyadic
Haar transform in Fig. 6 but the DHT is replaced by the original
dyadic 5/3 decomposition.

3.3. Generalized Signal Model

Now, we assume that the picturessk are shifted versions of a
“clean” video signalv with the true displacementsd0k and dis-

torted by independent additive white Gaussian noisenk. Combin-
ing this signal model with the equivalent dyadic decomposition,
we can eliminate the absolute displacements and restrict ourselves
to the displacement error∆0k in the k-th picture. In the follow-
ing, we do not consider particular displacement errors∆0k. We
rather specify statistical properties and consider them as random
variables∆k, statistically independent from the “clean” signalv
and the noisenk. The noise signalsnµ andnν are also mutually
statistically independent.
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Fig. 8. Motion compensation for a group ofK pictures.

Fig. 8 depicts the generalized model with the displacement-
free and linear transformT for a group ofK pictures. The motion-
compensated picturesc1, . . . , cK−1 are aligned with respect to the
first picturec0. According to Fig. 6, the signalszk are indepen-
dently intra-frame encoded. As the absolute displacements have
no influence on the performance of the intra-frame encoder, we
omit them and consider only the direct output signalsyk of T .

Now, assume that the random fieldsv and ck are jointly
wide-sense stationary with the real-valued scalar two-dimensional
power spectral densitiesΦvv(ω) andΦcµcν (ω). The power spec-
tral densitiesΦcµcν (ω) are elements in the power spectral density
matrix of the motion-compensated picturesΦcc. The power spec-
tral density matrix of the decorrelated signalΦyy is given byΦcc

and the transformT ,

Φyy(ω) = T (ω)Φcc(ω)T H(ω), (1)

whereT H denotes the Hermitian ofT andω = (ωx, ωy)T the
vector-valued frequency.

We adopt the expressions for the cross spectral densities
Φcµcν from [3]

Φcµcν (ω) = E
{

e−jωT (∆µ−∆ν )
}

Φvv(ω) + Φnµnν (ω) (2)

and assume a power spectrumΦvv that corresponds to an expo-
nentially decaying isotropic autocorrelation function with a corre-
lation coefficientρv = 0.93.

For thek-th displacement error∆k, a 2-D normal distribu-
tion with varianceσ2

∆ and zero mean is assumed where thex- and
y-components are statistically independent. The expected value in
(2) depends on the variance of the displacement error with respect
to the reference picturec0 (absolute displacement accuracy) and
the variance of the difference displacement error between pairs of
non-reference pictures (relative displacement accuracy). We as-
sume that each picture in a GOP can be the reference picturec0.
That is, there is no preference among the pictures in a GOP and the
variances of the absolute displacement error are the same for all
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K − 1 motion-compensated pictures. Based on the dyadic decom-
position with motion-compensated lifted wavelets and the assump-
tion that there is no preference among the pictures in a GOP, we
assume that absolute and relative displacement accuracy are iden-
tical. The differences of absolute displacement errors are equal to
relative displacement errors as we assume additive estimated dis-
placements. This results in correlated displacement errors [4]. We
abbreviate the expected value in (2) withP (ω,σ2

∆) which is the
characteristic function of the Gaussian displacement error.

With that, we obtain for the power spectral density matrix of
the motion-compensated pictures

Φcc(ω)

Φvv(ω)
=




1 + α P · · · P
P 1 + α · · · P
...

...
...

...
P P · · · 1 + α


 . (3)

α = α(ω) is the normalized spectral density of the noise
Φnknk (ω) with respect to the spectral density of the “clean” video
signal.

α(ω) =
Φnknk (ω)

Φvv(ω)
for k = 0, 1, . . . , K − 1 (4)

T represents the dyadic Haar transform or the dyadic 5/3 trans-
form. In terms of decorrelation and coding gain, the 5/3 wavelet
performs better than the Haar wavelet as shown in Figs. 3 and
4. In the following, we are interested in theoretical performance
bounds and choose the Karhunen-Loeve Transform (KLT). The
normalized eigenvalues of the power spectral density matrixΦcc

are λ1(ω) = 1 + α(ω) + (K − 1)P (ω) and λ2,3,...,K(ω) =
1 + α(ω)−P (ω). The power spectral density matrix of the trans-
formed signalsΦyy is diagonal. The first eigenvector just adds all
components and scales with1/

√
K. For the remaining eigenvec-

tors, any orthonormal basis can be used that is orthogonal to the
first eigenvector. That is, the KLT for our signal model is not de-
pendent onω. Note, that for this simple signal model, the Haar
transform is also a KLT.

The rate difference [3] is used to measure the improved com-
pression efficiency for each picturek.

∆Rk =
1

4π2
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)
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It represents the maximum bit-rate reduction (in bit per sample)
possible by optimum encoding of the transformed signalyk, com-
pared to optimum intra-frame encoding of the signalck for Gaus-
sian wide-sense stationary signals for the same mean squared re-
construction error. The overall rate difference∆R is the average
over all pictures and is used to evaluate the efficiency of motion-
compensated transform coding. Assuming the KLT, we obtain for
the overall rate difference

∆R =
1

4π2

π∫
−π

π∫
−π

K − 1

2K
log2

(
1 − P (ω,σ2

∆)

1 + α(ω)

)
+

1

2K
log2

(
1 + (K − 1)

P (ω, σ2
∆)

1 + α(ω)

)
dω. (6)

The case of a very large number of motion-compensated pictures is
of special interest for the comparison to video coding with motion-
compensated prediction.
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According to [3], the performance of motion-compensated predic-
tion with optimum Wiener filter achieves a rate difference of

∆RMCP =
1

4π2

π∫
−π
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2
log2

(
1 − P 2(ω, σ2

∆)

[1 + α(ω)]2

)
dω. (8)
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Fig. 9. Rate difference for motion-compensated transform coding
with groups ofK pictures over the displacement inaccuracyβ. The
performance of motion-compensated prediction with Wiener filter
is labeled by MCP. The residual noise level is -30 dB.

Fig. 9 depicts the rate difference according to (6) and (8) over
the displacement inaccuracyβ = log2(

√
12σ∆) for a residual

noise level of -30 dB. We observe that the rate difference starts
to saturate forK = 32 and that motion-compensated transform
coding outperforms motion-compensated prediction by at most 0.5
bits per sample. These observations are consistent with the exper-
imental results in the previous section.

4. CONCLUSION

We investigate experimentally and theoretically motion-compen-
sated lifted wavelet transforms. We implement dyadic Haar and 5/3
wavelets and observe the superiority of the later. Based on an ideal
signal model and the additivity of estimated displacements, we de-
velop equivalent transforms without displacement operators in the
lifting steps. Further, we determine performance bounds with the
Karhunen-Loeve Transform and observe that we outperform video
coding with motion-compensated prediction by at most 0.5 bits per
sample.

5. REFERENCES

[1] W. Sweldens, “The lifting scheme: A construction of second generation
wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp. 511–
546, 1998.

[2] A. Secker and D. Taubman, “Motion-compensated highly scalable video com-
pression using an adaptive 3D wavelet transform based on lifting,” inProceed-
ings of the IEEE International Conference on Image Processing, Thessaloniki,
Greece, Oct. 2001, pp. 1029–1032.

[3] B. Girod, “Efficiency analysis of multihypothesis motion-compensated predic-
tion for video coding,” IEEE Transactions on Image Processing, vol. 9, no. 2,
pp. 173–183, Feb. 2000.

[4] M. Flierl and B. Girod, “Video coding with motion compensation for groups
of pictures,” inProceedings of the IEEE International Conference on Image
Processing, Rochester, NY, Sept. 2002.


