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Abstract

Multihypothesis motion-compensating predictors combine several motion-
compensated signals to predict the current frame of a video signal. This paper
applies the wide-sense stationary theory of multihypothesis motion compensa-
tion for hybrid video codecs to multihypothesis motion estimation. This allows
us to study the influence of the displacement error correlation on the efficiency
of multihypothesis motion compensation. Reducing the displacement error cor-
relation between the hypotheses decreases the variance of the multihypothesis
prediction error. We derive a property for the displacement error correlation co-
efficient for an optimal multihypothesis motion estimator in the mean squared
error sense. We observe for the wide-sense stationary model that jointly optimal
motion estimation improves the prediction performance and reduces the predic-
tion error variance up to 12 dB per accuracy refinement step compared to 6 dB
per accuracy refinement step for uncorrelated displacement errors. Consequently,
the gain of multihypothesis motion-compensated prediction with jointly optimal
motion estimation over motion-compensated prediction increases by improving
the accuracy of each hypothesis. We also discuss the combination of hypotheses
with additive noise and extend the predictor by the optimum Wiener filter.

1 Introduction

Efficient video compression algorithms employ more than one motion-compensated
signal simultaneously to predict the current frame of a video signal. The term ”mul-
tihypothesis motion compensation” has been coined for this approach. Theoretical
investigations in [1] show that a linear combination of multiple prediction hypothe-
ses can improve the performance of motion-compensated prediction. It is reported in
[2] that an optimal multihypothesis motion estimation algorithm selects hypotheses
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such that their displacement error correlation coefficient is maximally negative. In this
paper, we will investigate this property in more detail.

A practical algorithm for rate-constrained multihypothesis motion estimation has
been presented first in [3]. The iterative algorithm improves conditionally optimal
solutions and provides a local optimum for the joint estimation problem. The exper-
imental results demonstrate that the joint estimation of hypotheses is important for
multihypothesis motion-compensated prediction.

The joint estimation of hypotheses is also important for a video coding scheme that
utilizes multihypothesis motion-compensated prediction. It is shown in [4] that jointly
estimated hypotheses improve not only the motion-compensated prediction signal but
also the rate-distortion efficiency of a hybrid video codec.

The paper is organized as follows: Section 2 adopts the power spectral model for
inaccurate multihypothesis motion compensation from [1] and extends it such that
multihypothesis motion estimation can be investigated. Section 3 discusses optimal
multihypothesis motion estimation and derives a property for the displacement error
correlation coefficient. Section 4 investigates the influence of the frame signal model
on the performance of multihypothesis motion-compensated prediction. Section 5 ana-
lyzes “noisy” hypothesis and presents the performance of the multihypothesis motion-
compensated predictor with Wiener filter for jointly estimated hypothesis.

2 Power Spectral Model for Inaccurate Multihy-

pothesis Motion Compensation

Let s[l] and cµ[l] be scalar two-dimensional signals sampled on an orthogonal grid
with horizontal and vertical spacing of 1. The vector l = (x, y)T denotes the location
of the sample. For the problem of multihypothesis motion compensation, we interpret
cµ as the µ-th of N motion-compensated frames available for prediction, and s as the
current frame to be predicted. We call cµ also the µ-th hypothesis.

Obviously, motion-compensated prediction should work best if we compensate the
true displacement of the scene exactly for a prediction signal. Less accurate com-
pensation will degrade the performance. To capture the limited accuracy of motion
compensation, we associate a vector-valued displacement error ∆µ with the µ-th hy-
pothesis cµ. The displacement error reflects the inaccuracy of the displacement vector
used for motion compensation and transmission. The displacement vector field can
never be completely accurate since it has to be transmitted as side information with a
limited bit-rate. For simplicity, we assume that all hypotheses are shifted versions of
the current frame signal s. The shift is determined by the vector-valued displacement
error ∆µ of the µ-th hypotheses. For that, the ideal reconstruction of the band-limited
signal s[l] is shifted by the continuous valued displacement error and re-sampled on the
original orthogonal grid. For now, our translatory displacement model omits “noisy”
signal components.

A multihypothesis motion-compensating predictor forms a prediction signal by
averaging N hypotheses cµ[l] in order to predict the current frame signal s[l]. The
prediction error for each pel at location l is the difference between the current frame
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signal and N averaged hypotheses

e[l] = s[l] − 1

N

N∑
µ=1

cµ[l]. (1)

Assume that s and cµ are generated by a jointly wide-sense stationary random
process with the real-valued scalar two-dimensional power spectral density Φss(ω) as
well as the cross spectral densities Φcµs(ω) and Φcµcν (ω). The power spectral density
of the prediction error in (1) is given by the power spectrum of the current frame and
the cross spectra of the hypotheses

Φee(ω) = Φss(ω) − 2

N

N∑
µ=1

<
{
Φcµs(ω)

}
+

1

N2

N∑
µ=1

N∑
ν=1

Φcµcν (ω), (2)

where <{·} denotes the real component of the, in general, complex valued cross spec-
tral densities Φcµs(ω), and ω = (ωx, ωy)

T the vector-valued frequency. We adopt the
expressions for the cross spectra from [1], where the displacement errors ∆µ are inter-
preted as random variables which are statistically independent from s:

Φcµs(ω) = Φss(ω)E
{
e−jωT ∆µ

}
(3)

Φcµcν (ω) = Φss(ω)E
{
e−jωT (∆µ−∆ν)

}
(4)

Like in [1], we assume a power spectrum Φss that corresponds to an exponentially
decaying isotropic autocorrelation function with a correlation coefficient ρs.

For the µ-th displacement error ∆µ, a 2-D stationary normal distribution with
variance σ2

∆ and zero mean is assumed where the x- and y-components are statistically
independent. The displacement error variance is the same for all N hypotheses. This is
reasonable because all hypotheses are compensated with the same accuracy. Further,
the pairs (∆µ,∆ν) are assumed to be jointly Gaussian random variables. The predictor
design in [3] showed that there is no preference among the N hypotheses. Consequently,
the correlation coefficient ρ∆ between two displacement error components ∆xµ and
∆xν is the same for all pairs of hypotheses. The above assumptions are summarized
by the covariance matrix of a displacement error component.

C∆x∆x = σ2
∆




1 ρ∆ · · · ρ∆

ρ∆ 1 · · · ρ∆
...

...
. . .

...
ρ∆ ρ∆ · · · 1


 . (5)

Since the covariance matrix is nonnegative definite [5], the correlation coefficient ρ∆

in (5) has the limited range

1

1 − N
≤ ρ∆ ≤ 1 for N = 2, 3, 4, . . . , (6)

which is dependent on the number of hypotheses N . In contrast to [1], we do not
assume that the displacement errors ∆µ and ∆ν are mutually independent for µ 6= ν.



Flierl and Girod: Multihypothesis Motion Estimation for Video Coding, in Proc. DCC, March 2001 4

These assumptions allow us to express the expected values in (3) and (4) in terms
of the 2-D Fourier transform P of the continuous 2-D probability density function of
the displacement error ∆µ.

E
{
e−jωT ∆µ

}
:= P (ω, σ2

∆) = e−
1
2
ωT ωσ2

∆ (7)

The expected value in (4) contains differences of jointly Gaussian random variables.
The difference of two jointly Gaussian random variables is also Gaussian. As the two
random variables have equal variance σ2

∆, the variance of the difference signal is given
by σ2 = 2σ2

∆(1 − ρ∆). Therefore, we obtain for the expected value in (4)

E
{
e−jωT (∆µ−∆ν)

}
= P

(
ω, 2σ2

∆(1 − ρ∆)
)

for µ 6= ν. (8)

For µ = ν, the expected value in (4) is equal to one. With that, we obtain for the
power spectrum of the prediction error in (2):

Φee(ω)

Φss(ω)
=

N + 1

N
− 2P (ω, σ2

∆) +
N − 1

N
P

(
ω, 2σ2

∆(1 − ρ∆)
)

(9)

Setting ρ∆ = 0 provides a result which is presented in [1].

3 Optimal Multihypothesis Motion Estimation

The previous section shows that the displacement error correlation coefficient influ-
ences the performance of multihypothesis motion compensation. In the following, we
focus on the relationship between the prediction error variance

σ2
e =

1

4π2

π∫
−π

π∫
−π

Φee(ω)dω (10)

and the displacement error correlation coefficient.
Fig. 1 depicts the dependency of the normalized prediction error variance from

the displacement error correlation coefficient ρ∆ within the range (6). The depen-
dency is plotted for N = 2, 4, 8, and ∞ for integer-pel accurate motion compensation
(σ2

∆ = 1/12). The correlation coefficient of the frame signal ρs = 0.93 [1]. Reference is
the prediction error variance of the single-hypothesis predictor σ2

e,1. We observe that
a decreasing correlation coefficient lowers the prediction error variance. (9) implies
that this observation holds for any displacement error variance. Fig. 1 shows also that
identical displacement errors (ρ∆ = 1) will not reduce the prediction error variance
compared to single-hypothesis motion compensation. This is reasonable when we con-
sider identical hypotheses. They do not improve multihypothesis motion-compensation
because they have identical displacement errors.

We will use the following definition: An optimal multihypothesis motion estimator
is an algorithm that selects sets of hypotheses such that the performance of multihy-
pothesis motion compensation is optimized.
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Figure 1: Normalized prediction error variance for multihypothesis MCP over the dis-
placement error correlation coefficient ρ∆. Reference is the single-hypothesis predictor.
The hypotheses are averaged and no residual noise is assumed. The variance of the
displacement error is set to σ2

∆ = 1/12.

Assuming a mean squared error measure, the optimal multihypothesis motion esti-
mator minimizes not only the summed squared error but also its expected value [3]. If
a stationary error signal is assumed, this optimal estimator minimizes the prediction
error variance. That is, an optimal multihypothesis motion estimator minimizes the
prediction error variance by minimizing the displacement error correlation coefficient.
Its minimum is given by the lower bound of the range (6).

ρ∆ =
1

1 − N
for N = 2, 3, 4, . . . (11)

This insight implies an interesting result for the case N = 2: Two optimally jointly
estimated hypotheses show the property that their displacement errors are maximally
negatively correlated. The combination of two complementary hypotheses is more
efficient than two independent hypotheses.

The horizontal axis in Fig. 2 is calibrated by β = log2(
√

12σ∆). It is assumed that
the displacement error is entirely due to rounding and is uniformly distributed in the
interval [−2β−1, 2β−1] × [−2β−1, 2β−1], where β = 0 for integer-pel accuracy, β = −1
for half-pel accuracy, β = −2 for quarter-pel accuracy, etc [1]. The displacement error
variance is

σ2
∆ =

22β

12
. (12)

Fig. 2 depicts the prediction error variance for multihypothesis motion-com-
pensated prediction over the displacement inaccuracy β for both optimized displace-
ment error correlation according to (11) and uncorrelated displacement errors. For
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Figure 2: Prediction error variance for multihypothesis MCP over the displacement
inaccuracy β for both optimized displacement error correlation and statistically in-
dependent displacement errors. The hypotheses are averaged and no residual noise is
assumed.

uncorrelated displacement errors, we observe in Fig. 2 that doubling the number of
hypotheses decreases the error variance up to 3 dB and the slope reaches up to 6
dB per inaccuracy step. The case N → ∞ achieves a slope up to 12 dB per inac-
curacy step. For optimized displacement error correlation, we observe for accurate
motion compensation that the slope of 12 dB per inaccuracy step is already reached
for N = 2. For increasing number of hypotheses the prediction error variance con-
verges to the case N → ∞ at constant slope. We obtain for the band-limited signal
the following result: the gain of multihypothesis motion-compensated prediction with
jointly optimal motion estimation over motion-compensated prediction increases by
improving the accuracy of motion compensation for each hypothesis.

4 Influence of the Frame Signal Model

The model in Section 2 assumes an ideally sampled and reconstructed band-limited
signal. The result in the last section originates from both the optimal joint estimation
and the model assumptions. To show this, we alter the model assumptions for the
frame signal.

For the comparison, we will assume a non-band-limited frame signal with the
isotropic autocorrelation function

φss(l) = σ2
se

−a
√

l2x+l2y . (13)
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(1) allows us to calculate directly the prediction error variance

σ2
e = σ2

s −
2

N

N∑
µ=1

E {φss(∆µ)} +
1

N2

N∑
µ=1

N∑
ν=1

E {φss(∆µ − ∆ν)}. (14)

We still assume a multi-dimensional Gaussian probability density function for the dis-
placement errors. This allows us to calculate a closed-form solution for the prediction
error variance

σ2
e

σ2
s

=
N + 1

N
+

N − 1

N
f(a

√
2σ∆

√
1 − ρ∆) − 2f(aσ∆) for

1

1 − N
≤ ρ∆ ≤ 1, (15)

with the function

f(b) = 1 −
√

π

2
be

1
2
b2erfc(

b√
2
), (16)

containing the complementary error function erfc(·). The optimal multihypothesis mo-
tion estimator minimizes the prediction error variance by minimizing the displacement
error correlation coefficient. Its minimum is also given by the lower bound of (6).
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Figure 3: Performance of the optimal multihypothesis predictor for a non-band-limited
frame signal. The hypotheses are averaged and no residual noise is assumed. a =
− ln(0.93).

Fig. 3 depicts the performance of the optimal multihypothesis predictor for a non-
band-limited frame signal. We observe that independent from the number of hypothe-
ses the slope reaches up to 3 dB per inaccuracy step. The gain that we observed in
Fig. 2 is also due to the band-limited character of the frame signal. Multihypothe-
sis motion compensation with jointly optimal motion estimation is advantageous for
band-limited signals.
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5 Hypotheses with Additive Noise

In order to consider signal components that cannot be modeled by motion compensa-
tion, statistically independent noise nµ is added to each motion-compensated signal.
In addition, an optimum Wiener filter is applied to all hypotheses. We also assume
that the current frame originates from a “clean” video signal v with power spectral
density Φvv(ω) [1]. For the case that the noise energy is the same for all hypotheses
and the current frame, we obtain for the power spectral density of the prediction error

Φee(ω)

Φss(ω)
= 1 − 1

1 + α(ω)

P 2(ω, σ2
∆)

P (ω, 2σ2
∆(1 − ρ∆))

N

N + 1+α(ω)

P(ω,2σ2
∆(1−ρ∆))

− 1
(17)

with

α(ω) =
Φnµnµ(ω)

Φvv(ω)
∀µ. (18)
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Figure 4: Prediction error variance for multihypothesis MCP over the displacement
inaccuracy β for both optimized displacement error correlation and statistically in-
dependent displacement errors. Residual noise level RNL = -30 dB. In all cases, the
optimum filter is applied.

Fig. 4 depicts the prediction error variance for multihypothesis MCP over the
displacement inaccuracy β for both optimized displacement error correlation and sta-
tistically independent displacement errors. The residual noise level is chosen to be
-30 dB. For half-pel accurate motion compensation and 2 hypotheses, we gain almost
4 dB in prediction error variance for optimized displacement error correlation over
statistically independent displacement errors.
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6 Conclusions

We investigate the performance of multihypothesis motion compensation for optimal
multihypothesis motion estimation. Jointly estimated hypotheses show the property
that their displacement errors are maximally negatively correlated. Hypotheses with
negatively correlated displacement errors improve the performance of multihypothesis
motion compensation.

For the investigated band-limited signal, the gain of multihypothesis motion-com-
pensated prediction with jointly optimal motion estimation over motion-compensated
prediction increases by improving the accuracy of motion compensation for each hy-
pothesis.

For signals that are not band-limited, jointly optimal motion estimation also de-
creases prediction error variance but does not change the slope of the prediction error
variance. In contrast to the ideally sampled and reconstructed band-limited signal,
the multihypothesis gain over motion-compensated prediction is independent of the
accuracy of motion compensation.

We also discuss the combination of hypotheses with additive noise and extend the
predictor by the optimum Wiener filter. For “noisy” hypotheses, we obtain improved
prediction performance for optimal multihypothesis motion estimation with the opti-
mum Wiener filter.
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