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ABSTRACT

This paper discusses an adaptive non-linear transform for image se-
quences that aims to generate al1-norm preserving sparse approx-
imation for efficient coding. Most sparse approximation problems
employ a linear model where images are represented by a basis and
a sparse set of coefficients. In this work, however, we consider im-
age sequences where linear measurements are of limited use due to
motion. We present a motion-adaptive non-linear transform for a
group of pictures that outputs common and detail coefficients and
that minimizes thel1 norm of the detail coefficients while preserving
the overalll1 norm. We demonstrate that we can achieve a smaller
l1 norm of the detail coefficients when compared to that of motion-
adaptive linear measurements. Further, the decay of normalized ab-
solute coefficients is faster than that of motion-adaptive linear mea-
surements.

Index Terms— Sparse approximation,l1 norm, motion com-
pensation, image sequence processing.

1. INTRODUCTION

We assume that video signals are sparse or compressible in the sense
that they depend essentially only on a small number of degrees
of freedom. Most sparse approximation problems employ a linear
model where the signal can be written either exactly or accurately
as a superposition of a small number of vectors in some fixed basis
[1]. Recently, it has been shown thatl1 minimization is an efficient
and correct method for sparse signal recovery. In particular, this is
applicable to compressive sensing where a small number of linear
measurements is used to recover sparse signals. The compressive
sensing framework states that if a signal can be approximated using
a sparse representation, it can also be accurately reconstructed from
a small collection of linear measurements [2]. For example, exact
signal reconstruction from highly incomplete frequency information
is demonstrated in [3]. Further, an application of compressive sens-
ing to images and video is presented in [4].

We are interested in sparse representations of video that can be
coded efficiently. For example, [5] presents a spatio-temporal rep-
resentation that uses a sparse decomposition algorithm along mo-
tion trajectories. Sparse approximations are obtained by utilizing the
matching pursuit algorithm on redundant dictionaries. In the present
work, however, we argue that linear measurements are of limited use
due to motion. We present a motion-adaptive non-linear transform
for a group of pictures that outputs common and detail coefficients
and that minimizes thel1 norm of the detail coefficients while pre-
serving the overalll1 norm. We compare our results to a motion-
compensated orthogonal transform for image sequences that offers

a motion-adaptive linear representation while preserving the overall
l2 norm [6].

The paper is organized as follows: Section 2 introduces thel1-
norm preserving motion-compensated transform and thel1 mini-
mization of the detail coefficients. Section 3 presents experimental
results, compares thel1 norm of the detail coefficients, and discusses
the decay of normalized absolute coefficients.

2. MOTION-COMPENSATED TRANSFORM

Let x1 andx2 be two positive vectors representing consecutive pic-
tures of an image sequence. The non-linear transformT maps these
vectors according to
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into two vectorsy1 andy2 which represent common and detail coef-
ficients, respectively. Let the transform be dependent on the motion
vectors between the two input pictures. GivenT , there exists an
unique inverse transformT−1(y) = x that recovers the original sig-
nal from the coefficients. BothT andT−1 conserve thel1 norm of
the signal and the coefficients such that

‖y‖1 = ‖x‖1. (2)

The problem can be formulated as follows: Given the vector of in-
put picturesx, find a motion-dependent transform whose coefficient
vectory recovers the vector of input picturesx while minimizing
thel1 norm of the detail coefficientsy2.

min ‖y2‖1 s.t. T−1(y) = x (3)

To simplify the problem of constructing an invertible transform,
we write the non-linear transformT as a concatenation ofk incre-
mental transformsTκ such that

T = Tk ◦ Tk−1 ◦ · · · ◦ Tκ ◦ · · · ◦ T2 ◦ T1, (4)

where each incremental transform has a unique inverse and con-
serves thel1 norm of its input vector. This guarantees thatT is
invertible andl1 conserving. It can be imagined that the pixels in im-
agex2 are processed from top-left to bottom-right ink steps where
each stepκ is represented by the incremental transformTκ.

2.1. Incremental Transform

Let x(κ)
1 andx

(κ)
2 be two vectors representing consecutive pictures

of an image sequence ifκ = 1, or two output vectors of the incre-
mental transformTκ−1 if κ > 1. The incremental transformTκ
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maps these vectors according to
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into two vectorsx(κ+1)
1 and x

(κ+1)
2 which will be further trans-

formed into common and detail coefficients, respectively.

x
(κ)
1

x
′

1,i�
��~dκ -

x
(κ+1)
1

x
′′

1,i�
��~dκ

�
�

�
�

�
�

�
�

�
�

�
�

�>@
@

@
@

@
@

@
@

@@R

x
(κ)
2

x
′

2,j

· · · κ-3 κ-2

κ-1 κ+1 · · ·
-

x
(κ+1)
2

x
′′

2,j

· · · κ-3 κ-2

κ-1 κ+1 · · ·

Fig. 1. The incremental transformTκ for two framesx(κ)
1 andx

(κ)
2

at stepκ that uses the motion vector~dκ.

Fig. 1 depicts the process accomplished by the incremental
transformTκ with its input and output images as defined above. The
incremental transform removes thel1 norm of thej-th pixel x

′

2,j in

the imagex(κ)
2 with the help of thei-th pixelx

′

1,i in the imagex(κ)
1

which is linked by the motion vector~dκ (or of thej-th block with
the help of thei-th block if all pixels of the block have the same
motion vector~dκ). Thel1-removed pixel valuex

′′

2,j is a function of

the pixel valuesx
′

1,i andx
′

2,j . Thel1-concentrated pixel valuex
′′

1,i

is also a function of the pixel valuesx
′

1,i andx
′

2,j . All other pixels
are simply kept untouched.

As each incremental transform modifies only the pixel values
x1,i andx2,j , it can essentially be captured by the simple transform
Hα as defined by
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which rotates signal points in a plane by the angleα while conserv-
ing their l1 norm |x

′′

1,i| + |x
′′

2,j | = |x
′

1,i| + |x
′

2,j |. For images,x
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andx
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1,i are always positive. Hence, thel1 conservation law yields
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The input signal point is located in the plane at angleφ (see Fig. 2).
Hα rotates byα such that the output signal point is located in the

plane at angleφ − α.
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Using trigonometric identities, we obtain the values of the output
signal point as a function ofα.
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The rotation angleα is determined in the next subsection which dis-
cusses thel1 minimization.

Note that to accomplish the transformT , each pixel inx2 is
touched only once whereas the pixels inx1 may be touched multiple
times or never. Further, the order in which the incremental trans-
formsTκ are applied does not affect thel1 conservation ofT . But
the order may affectl1 minimization.

2.2. l1 Minimization

The rotation angleα for each pixel touched by the incremental trans-
form has to be chosen such that thel1 norm is minimized for the
imagex2. We discuss a method that reduces thel1 norm of detail
coefficients to zero if each motion vector connects pixels with iden-
tical intensity.
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Fig. 2. The incremental transformTκ as a rotation of a signal point
on the l1 circle. Consider perfect translatory motion: (a) As not
modified in previous incremental transforms, pixelx1 andx2 have
the same intensity value. (b) Pixelx1 has been modified by a scale
factor in a previous incremental transform.

Consider the pixel pairx1,i andx2,j to be processed by the in-
cremental transformTκ. To determine the rotation angleα for the
pixel x2,j , we assume that the pixelx2,j is connected to the pixel
x1,i such thatx2,j = x1,i. Consequently, the resulting detail pixel
x

′′

2,j shall be zero. Note that the pixelx1,i may have been processed
previously byTτ , whereτ < κ. Therefore, letv1 be thescale factor
for the pixelx1,i such thatx

′

1,i = v1x1,i. The pixelx2,j is used
only once during the transform processT and no scale factor needs
to be considered. But for sake of generality, letv2 be the scale factor
for the pixelx2,j such thatx

′

2,j = v2x2,j . Let u1 be the scale factor



M. Flierl: A l1-Norm Preserving Motion-Compensated Transform for Sparse Approximation of Image Sequences, IEEE ICASSP, Dallas, TX, Mar. 2010. 3

for the pixelx1,i after it has been processed byTκ. Now, the pixels
x

′

1,i andx
′

2,j are processed byTκ as follows:
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Fig. 2 depicts the incremental transformTκ as a rotation of a
signal point on thel1 circle. If the scale factor for both pixels is
one, we need to rotate the signal point by−45◦ to obtain a zero
detail coefficient. For general scale factors, we need to compensate
the angleφ. In any case,l1 minimization of the detail coefficient
impliestan(φ − α) = 0, i.e. φ = α, such that

tan(α) =
x

′

2,j

x
′

1,i

=
v2x1,i

v1x1,i

(12)

tan(α) =
v2

v1
. (13)

Finally, rotation on thel1 circle conserves thel1 norm. It determines
the scale factoru1 of the common pixel after it has been processed
by Hα.

|u1x1,i| = |v1x1,i| + |v2x1,i| (14)

u1|x1,i| = v1|x1,i| + v2|x1,i| (15)

u1 = v1 + v2 (16)

Now, letn1, n2, m1 ∈ N0 bescale counters such that their cor-
responding scale factors satisfy

vµ = nµ + 1 for µ = 1, 2 and (17)

u1 = m1 + 1. (18)

n1 simply counts how often the pixelx1,i is used as reference for
motion compensation. In the beginning, i.e., before the transform is
applied, the scale counter for each pixelx1,i is n1 = 0 and its scale
factor isv1 = 1.

As noted previously, the transformT touches each pixel inx2

only once and, hence, no scale factor needs to be considered as long
as only one transformT is applied. But if four of more images are
to be transformed, a hierarchical procedure can be applied such that
the common coefficients of the first level are the input to a trans-
form on the second level. As the common coefficients come with
scale factors, they have to be considered for both input images of the
transform on the second level. Therefore, we use a scale countern2

for each pixelx2,j to count how often it has been used as reference
in a transform on the first level. Obviously, the scale countersn2 for
the transforms on the first level are set to zero.

The conservation of thel1 norm in (16) requires the scale factors
to satisfyu1 = v1 + v2. With the definition of scale counters in
(17) and (18), we obtain ascale counter update rule for thel1-norm
preserving motion-compensated transform.

m1 = n1 + n2 + 1 (19)

That is, each pixel that is used as reference for motion compensa-
tion by the incremental transform receives a scale counter update by
n2 + 1. This rule applies within the transformT at any level of a
hierarchical decomposition.

Finally, with the help of the definition of scale counters, thel1
minimization of the detail coefficients is achieved by the transform
Hα with the angle

tan(α) =
n2 + 1

n1 + 1
, (20)

where the scale countersn1 andn2 are maintained according to (19).

2.3. Inverse Incremental Transform

The inverse incremental transform takes the common and detail co-
efficients and operates as the transformHα, but rotates by the angle
−α. Again, the scale countersn1 andn2 are used to determine this
angle.
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The conservation of thel1 norm recovers the positive pixel values in
the images.
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After each inverse incremental transform, scale counters have to
be reduced accordingly. Note that scale counter values are uniquely
related to the applied motion field. If the sequence of incremental
transforms as applied in the forward transform is known, no extra
information is necessary to reduce the scale counters correctly.

3. EXPERIMENTAL RESULTS

Experimental results assessing thel1 minimization are obtained for
the QCIF sequencesMother & Daughter andForeman. We com-
pare the output of thel1-norm preserving motion-compensated trans-
form to the orthogonal motion-compensated linear measurements
obtained with the work in [6]. For both transforms, the same8 × 8
block motion field is used. A scale countern is maintained for ev-
ery pixel of each picture. The scale counter values are an immediate
result of the utilized motion vectors and are only required for pro-
cessing.

Figs. 3 and 5 depict the averagel1-norm of detail coefficients
normalized by thel1-norm of all coefficients forl2 andl1-norm pre-
serving motion-compensated transforms forMother & Daughter and
Foreman, respectively. The normalized averagel1 norm of detail co-
efficients is shown for groups of pictures of size 2, 4, 8, 16, and 32.
This norm is decreasing with the size of the GOP as thel1 norm
is increasingly concentrated into only one common coefficient im-
age. Moreover, thel1 minimization results in a consistently lower
normalizedl1 norm of detail coefficients when compared to that of
orthogonal motion-adaptive linear measurements.

Figs. 4 and 6 visualize the decay of normalized absolute coef-
ficients |y[t]|/|y[1]| over the sorted coefficient indext for l2 and
l1-norm preserving motion-compensated transforms forMother &
Daughter andForeman, respectively. For this experiment, a GOP
size of 8 has been chosen. Only the first 50 000 coefficients are
shown. The remaining have a negligible small magnitude. Note that
the decay of normalized absolute coefficients is faster than that of
motion-adaptive linear measurements.

4. CONCLUSIONS

This paper presents a motion-adaptive transform for image se-
quences that outputs common and detail coefficients and that min-
imizes thel1 norm of the detail coefficients while preserving the
overall l1 norm. It achieves a smallerl1 norm of the detail coef-
ficients when compared to that of motion-adaptive linear measure-
ments. Moreover, the decay of normalized absolute coefficients is
faster than that of motion-adaptive linear measurements.



M. Flierl: A l1-Norm Preserving Motion-Compensated Transform for Sparse Approximation of Image Sequences, IEEE ICASSP, Dallas, TX, Mar. 2010. 4

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

group of pictures

no
rm

al
iz

ed
 a

ve
ra

ge
 l

1-n
or

m
 o

f d
et

ai
l c

oe
f. 

[%
]

 

 

 l
2
-norm preserving MC transform     

 l
1
-norm preserving MC transform

Fig. 3. Averagel1-norm of detail coefficients normalized by thel1-
norm of all coefficients over the size of the GOP forl2 andl1-norm
preserving motion-compensated transforms for the QCIF sequence
Mother & Daughter.
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Fig. 4. Decay of normalized absolute coefficients|y[t]|/|y[1]| over
the sorted coefficient indext for l2 andl1-norm preserving motion-
compensated transforms with GOP size 8 for the QCIF sequence
Mother & Daughter.
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