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ABSTRACT a motion-adaptive linear representation while preserving the overall
) ) . ) ) l2 norm [6].
This paper discusses an adaptive non-linear transform for image se- The paper is organized as follows: Section 2 introduces;the
quences that aims to generaté, anorm preserving sparse approx- norm preserving motion-compensated transform and!theini-
imation for efficient coding. Most sparse approximation problemsmization of the detail coefficients. Section 3 presents experimental

employ a linear model where images are represented by a basis apgdyits, compares tiie norm of the detail coefficients, and discusses
a sparse set of coefficients. In this work, however, we consider iMe decay of normalized absolute coefficients.

age sequences where linear measurements are of limited use due to
motion. We present a motion-adaptive non-linear transform for a
group of pictures that outputs common and detail coefficients and
that minimizes thé; norm of the detail coefficients while preserving " . . .
; Letx; andx2 be two positive vectors representing consecutive pic-

the overalll; norm. We demonstrate that we can achieve a smalle{ - !

. - . “tures of an image sequence. The non-linear transfBmmaps these
11 norm of the detail coefficients when compared to that of motion-, ;

S . ectors according to

adaptive linear measurements. Further, the decay of normalized ahe
solute coefficients is faster than that of motion-adaptive linear mea- Vi X1
surements. { V2 ] = ([ D

2. MOTION-COMPENSATED TRANSFORM

1)

X2

Index Terms— Sparse approximatiori; norm, motion com-

N . into two vectorsgy; andy. which represent common and detail coef-
pensation, image sequence processing.

ficients, respectively. Let the transform be dependent on the motion
vectors between the two input pictures. GivEnthere exists an
1. INTRODUCTION unique inverse transfordi—' (y) = x that recovers the original sig-
nal from the coefficients. Botii' and7~* conserve thé, norm of
We assume that video signals are sparse or compressible in the seii3e signal and the coefficients such that
that they depend essentially only on a small number of degrees
of freedom. Most sparse approximation problems employ a linear [yl = [l @

model where the signal can be written either exactly or accuratelyy,q problem can be formulated as follows: Given the vector of in-

as a superposition of a small number of vectors in some fixed bas§; picturesx, find a motion-dependent transform whose coefficient
[1]. Recently, it has been shown tHatminimization is an efficient  ectory recovers the vector of input pictureswhile minimizing
and correct method for sparse signal recovery. In particular, this ithe !, norm of the detail coefficientgs .

applicable to compressive sensing where a small number of linear

measurements is used to recover sparse signals. The compressive min|jys|; st T '(y)=x (3)

sensing framework states that if a signal can be approximated using

a sparse representation, it can also be accurately reconstructed from To simplify the problem of constructing an invertible transform,

a small collection of linear measurements [2]. For example, exace Write the non-linear transforffi as a concatenation déf incre-

signal reconstruction from highly incomplete frequency informationmental transform&’. such that

is demonstrated in [3]. Further, an application of compressive sens-

ing to images and v[id]eo is presentedpiFr)1 [4]. P T'=TyoTsr0---0Tso---0Tp0T, “)
We are interested in sparse representations of video that can Rghere each incremental transform has a unique inverse and con-

coded efficiently. For example, [5] presents a spatio-temporal repserves the; norm of its input vector. This guarantees thatis

resentation that uses a sparse decomposition algorithm along mgwertible and; conserving. It can be imagined that the pixels in im-

tion trajectories. Sparse approximations are obtained by utIIIZIng thggeX2 are processed from top-|eft to bottom-right]ﬂ'mteps where

matching pursuit algorithm on redundant dictionaries. In the preser§ach step: is represented by the incremental transfdm
work, however, we argue that linear measurements are of limited use

due to motion. We present a motion-adaptive non-linear transforny |
for a group of pictures that outputs common and detail coefficients”
and that minimizes thé norm of the detail coefficients while pre- Let x§“> andxé”> be two vectors representing consecutive pictures
serving the overall; norm. We compare our results to a motion- of an image sequence if = 1, or two output vectors of the incre-
compensated orthogonal transform for image sequences that offamental transformil,_; if x > 1. The incremental transforr),

. Incremental Transform
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maps these vectors according to

(k+1) (%)
X2 X2
into two vectorsx!"*" and x{"**) which will be further trans-

formed into common and detail coefficients, respectively.
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Fig. 1. The incremental transforf, for two frame5x§"> andxé“)
at stepx that uses the motion vectdr..

plane at angl® — a.

%23 = tan(¢) ®)
Ly
223 = tan(¢—a) ©)
Ty

Using trigonometric identities, we obtain the values of the output
signal point as a function af.

’
T2.5
. tan(a)

e S (10)
i 1y T2a tan(a)

T1,i

"

The rotation anglex is determined in the next subsection which dis-
cusses thé minimization.

Note that to accomplish the transforiy each pixel inxs is
touched only once whereas the pixelsinmay be touched multiple
times or never. Further, the order in which the incremental trans-
forms T, are applied does not affect tlie conservation off". But
the order may affedy minimization.

2.2. 11 Minimization

The rotation angle for each pixel touched by the incremental trans-
form has to be chosen such that thenorm is minimized for the
imagex,. We discuss a method that reduces th@orm of detail
coefficients to zero if each motion vector connects pixels with iden-
tical intensity.

Fig. 1 depicts the process accomplished by the incremental A 22 A 22

transform(, with its input and output images as defined above. The

incremental transform removes thenorm of thej-th pixelx;,j in
the imagaé”) with the help of the-th pixel xll in the imagaé

which is linked by the motion vectaf, (or of the j-th block with

)

the help of thei-th block if all pixels of the block have the same

X N . "o, .

motion vectord,.). Thel;-removed pixel value:, ; is a function of
. ’ ’ . 1"

the pixel valuesc; ; andz, ;. Thel;-concentrated pixel value, ;

is also a function of the pixel valueé,i anda:;,j. All other pixels
are simply kept untouched.

As each incremental transform modifies only the pixel values (a) (b)
x1,; andzs ;, it can essentially be captured by the simple transform

H, as defined by

il =Ha | ML), )
CCQ’J' wgﬁj

which rotates signal points in a plane by the anglehile conserv-
. . " " / / . /
ing theirly norm|zy ;| + |25 ;| = |1 ;] + |22 ;|. Forimagesg, ;
" e . -
andz, ; are always positive. Hence, theconservation law yields

’

T1,4- (7)
Ty 4
17
T1,4

1+

The input signal point is located in the plane at angisee Fig. 2).

Fig. 2. The incremental transforf, as a rotation of a signal point
on thel; circle. Consider perfect translatory motion: (a) As not
modified in previous incremental transforms, pixglandz, have
the same intensity value. (b) Pixe] has been modified by a scale
factor in a previous incremental transform.

Consider the pixel pait1,; andz2 ; to be processed by the in-
cremental transforrfi’,. To determine the rotation angtefor the
pixel z2,;, we assume that the pixeb ; is connected to the pixel
x1,; such thatea ; = x1,;. Consequently, the resulting detail pixel
mzj shall be zero. Note that the pixe| ; may have been processed
previously byT’,, wherer < k. Therefore, lev, be thescale factor
for the pixelz1,; such thatw’u = vix1,;. The pixelzq ; is used
only once during the transform procéEsand no scale factor needs
to be considered. But for sake of generality,dgbe the scale factor

H, rotates by such that the output signal point is located in the for the pixelz2,; such thatc;,j = vaxa,;. Letu; be the scale factor
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for the pixelx, ; after it has been processed By. Now, the pixels  2.3. Inverse Incremental Transform

’ l
a;,; andz, ; are processed Ly, as follows: The inverse incremental transform takes the common and detail co-

w ) _ efficients and operates as the transfdiiy, but rotates by the angle
1T1,i V11,4 . . .
{ 0 ] = Hao ({ VT g D (11) —a. Again, the scale counters andn. are used to determine this
’ angle.
Fig. 2 depicts the incremental transfoffiy as a rotation of a ) <y 4 nal
signal point on thd, circle. If the scale factor for both pixels is Ty @y, Mt 21
one, we need to rotate the signal point by5° to obtain a zero ) - 1 il (21)

detail coefficient. For general scale factors, we need to compensate
the angleg. In any case/; minimization of the detail coefficient
impliestan(¢ — «) = 0, i.e. ¢ = «, such that

%) mi+1
1,1

The conservation of the norm recovers the positive pixel values in

the images.
/. . 2,5
tan(a) = 24 - V2T (12) A Pl
L1, V11,4 T1s=—777%1 (22)
2,5
tan(a) = 2. (13) L
V1 ’

After each inverse incremental transform, scale counters have to
be reduced accordingly. Note that scale counter values are uniquely
related to the applied motion field. If the sequence of incremental
transforms as applied in the forward transform is known, no extra

Finally, rotation on thé; circle conserves thige norm. It determines
the scale factor; of the common pixel after it has been processed
by H,.

luizii| = |oiz| + [vazial (14) information is necessary to reduce the scale counters correctly.
ut|zr| = vilz| +ve|ra 15
! 1u| ;';U 2l ElG; 3. EXPERIMENTAL RESULTS

1 - 1 2

Experimental results assessing theminimization are obtained for
the QCIF sequenceglother & Daughter and Foreman. We com-
pare the output of the -norm preserving motion-compensated trans-
vy = mnu+1 for p=1,2 and (17) form to the orthogonal motion-compensated linear measurements
w = my+ 1. (18) obtained with the work in [6]. For both transforms, the sa&8ne 8
block motion field is used. A scale counteris maintained for ev-
ny simply counts how often the pixel; ; is used as reference for ery pixel of each picture. The scale counter values are an immediate
motion compensation. In the beginning, i.e., before the transform isesult of the utilized motion vectors and are only required for pro-
applied, the scale counter for each pixgl; isn, = 0 and its scale  cessing.
factor isv; = 1. Figs. 3 and 5 depict the averaggenorm of detail coefficients
As noted previously, the transforffi touches each pixel is2 normalized by thé;-norm of all coefficients fot> andi;-norm pre-
only once and, hence, no scale factor needs to be considered as losgyving motion-compensated transformsNtmther & Daughter and
as only one transforrf is applied. But if four of more images are Foreman, respectively. The normalized averdgeorm of detail co-
to be transformed, a hierarchical procedure can be applied such thefficients is shown for groups of pictures of size 2, 4, 8, 16, and 32.
the common coefficients of the first level are the input to a transThis norm is decreasing with the size of the GOP asitheorm
form on the second level. As the common coefficients come withs increasingly concentrated into only one common coefficient im-
scale factors, they have to be considered for both input images of ttege. Moreover, thé, minimization results in a consistently lower
transform on the second level. Therefore, we use a scale caunter normalizedl; norm of detail coefficients when compared to that of
for each pixelzs ; to count how often it has been used as referencerthogonal motion-adaptive linear measurements.
in a transform on the first level. Obviously, the scale countgror Figs. 4 and 6 visualize the decay of normalized absolute coef-
the transforms on the first level are set to zero. ficients |y[t]|/|y[1]| over the sorted coefficient indexfor I and
The conservation of thi norm in (16) requires the scale factors [;-norm preserving motion-compensated transformsMother &
to satisfyu1 = v1 + v2. With the definition of scale counters in Daughter and Foreman, respectively. For this experiment, a GOP
(17) and (18), we obtain scale counter update rule for thel,-norm  size of 8 has been chosen. Only the first 50 000 coefficients are
preserving motion-compensated transform. shown. The remaining have a negligible small magnitude. Note that
the decay of normalized absolute coefficients is faster than that of
motion-adaptive linear measurements.

That is, each pixel that is used as reference for motion compensa-

Now, letni,n2, m1 € Ny bescale counters such that their cor-
responding scale factors satisfy

mi =n; +ns+1 (19)

tion by the incremental transform receives a scale counter update by 4. CONCLUSIONS
n2 + 1. This rule applies within the transforffi at any level of a
hierarchical decomposition. This paper presents a motion-adaptive transform for image se-

Finally, with the help of the definition of scale counters, the gquences that outputs common and detail coefficients and that min-
minimization of the detail coefficients is achieved by the transformimizes thel; norm of the detail coefficients while preserving the
H,, with the angle overall l; norm. It achieves a smalléf norm of the detail coef-
n2 + 1 (20) ficients when compared to that of motion-adaptive linear measure-
ny+1’ ments. Moreover, the decay of normalized absolute coefficients is
where the scale countets andn. are maintained according to (19). faster than that of motion-adaptive linear measurements.

tan(a) =
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