Picture Coding Symposium 2006

Motion and Disparity Compensated Coding for Video Camera Arrays

Markus Flierl, Aditya Mavlankar, and Bernd Girod

Max Planck Center for Visual Computing and Communication

N view-points

Motivation

[Breakdancing, courtesy of MSR]

Efficient coding of video camera array signals with motion and disparity compensation

Outline

- H.264-based coding scheme
 - Matrix of pictures
 - Hierarchical B slices and bi-prediction
 - Experimental results
- Multi-view image-sequence model
 - Image-sequence model
 - Model for N image sequences
 - Assumptions
 - Model results

Coding Scheme for Matrix of Pictures

Experimental Results: PSNR vs. Rate

Ballet

quarter-pel accurate disparity

quarter-pel accurate motion

K: temporal GOP

N: group of views

Experimental Results: Rate Difference vs. GOP Size

Experimental Results: PSNR vs. Rate

Experimental Results: Rate Difference vs. Disparity

Image-Sequence Model

Model for motion-compensated subband coding

[Flierl & Girod, 2003]

v model picture

 Δ_{1k} k-th displacement error

 \mathbf{n}_k *k*-th model error of motion compensation

 \mathbf{c}_k k-th motion-compensated signal

Model for N Image Sequences

 $\Theta_{1\nu}$: ν -th disparity error

z_i: i-th view model error

s_i: i-th motion & disparity compensated signal

Model Assumptions

- Assumptions for the image-sequence model:
 - True motion is additive, i.e., $d_{\kappa\mu} + d_{\mu\nu} = d_{\kappa\nu}$
 - Estimated motion is additive
 - Displacement error is additive
 - Accuracy of motion compensation is identical
- Assumptions for the multi-view model
 - True and estimated disparity is additive
 - Disparity error is additive
 - Accuracy of disparity compensation is identical
 - Displacement and disparity error are independent

Performance Bounds

- Transform coding of NK pictures at high rates
- Compare optimum transform coding of NK pictures to independent coding of N image sequences each with K pictures
- At high rates and for the same mean squared reconstruction error, we measure the average rate difference to independent coding of N image sequences

Model Results: Rate Difference vs. GOP Size

Model Results: Rate Difference vs. Disparity

Conclusions

- Motion and disparity compensated coding for video camera arrays
- Experimental and model results show that
 - for a given GOV size N, the coding gains decrease with increasing temporal GOP size K,
 - the coding gains saturate for increasing GOV size N, independent of the temporal GOP size K,
 - the relative gains due to more accurate disparity compensation increase with growing GOV size N, and
 - these relative gains saturate for large GOV sizes N.

Experimental Results: Rate Difference vs. Disparity

