Coding of Multi-View Image Sequences with Video Sensors

Markus Flierl and Bernd Girod

Max Planck Center for Visual Computing and Communication
Communicating Dynamic 3D Scenes

Sampled Dynamic 3D Scene

Data Network

E : Encoder

Fusion Center

at remote location
Outline

- Video sensor and fusion center
- Correlated multi-view image sequences
- Distributed coding with video sensors
 - Encoder of a video sensor
 - Decoding with side information
 - Disparity-compensated side information
- Experimental results
- Model study for stereoscopic images
Coding of Multi-View Image Sequences with Video Sensors
Fusion Center at Remote Location

...10011

network interface decoder renderer

Fusion Center
Each camera exploits the temporal correlation among K successive pictures.
Distributed Coding with Video Sensors

Decoder of sensor signal using side information

Reconstructed reference view

Coding of Multi-View Image Sequences with Video Sensors
Encoder of a Video Sensor

8x8 DCT

Temporal Transform

Spatial Transform

Wyner-Ziv Encoder

\[\text{dyadic decomposition of } K \text{ pictures with motion-compensated Haar wavelet} \]

\[\text{coefficient coder uses a nested lattice code} \]
Decoding with Side Information

- **Encoder n** uses a nested lattice code and transmits R_{TX} syndrome bits for each transform coefficient c.

- **Decoder n** decodes R_{TX} syndrome bits for each transform coefficient c *with feedback*:
 - **Encoder n** sends the initial R_{TX} syndrome bits.
 - **Decoder n** attempts to decode the transform coefficient c given the received R_{TX} syndrome bits and the coefficient side information z.

 $$\hat{c} = \arg\min_{c \in C_{\mu, \nu}} [c - z]^2 \quad \text{given} \quad \mu = R_{TX}$$

 The ν-th coset of the μ-th nested lattice.

 - In case of decoding error, **Decoder n** requests further syndrome bits.
 - No decoding error beyond the critical syndrome rate.
Side information from **Decoder 1** is disparity-compensated in the image domain.
Example Test Sequence *Jungle*

[3DTV Network of Excellence]
Experimental Results

- **Jungle**
 - 256x192
 - 30 fps
 - 240 frames
 - N=8 views
 - GOP size K=8
Experimental Results

- **Uli**
 - 256x192
 - 30 fps
 - 240 frames
 - N=8 views
 - GOP size K=8

![Graph showing average PSNR Y (dB) vs. R [Mbit/s/camera]](graph)

- with disp. comp. side info. (curr.)
- with disp. comp. side info. (prev.)
- with side info.
- w/o side info.
Model Study for Stereoscopic Images

- Let the image \(u[l_x,l_y] \) be a scalar Gaussian random field
- Let \(u'(x,y) \) be its space-continuous ideal reconstruction
- Let \(w[l] \) be a shifted and noisy version of the image \(u[l] \) with the deterministic 2D real-valued shift \(\Theta_c \)
 \[
 w[l] = u'(l - \Theta_c) + n[l]
 \]
- Let \(s[l] \) be a shifted and noisy version of the image \(u[l] \) with the uncertain shift \(\Theta \), distributed with the PDF \(f_{\Theta}(\Theta) \)
 \[
 s[l] = u'(l - \Theta) + n[l]
 \]
- Compare conditional differential entropy rate differences:
 \[
 H(u|s)-H(u) \quad \text{vs.} \quad H(u|w)-H(u)
 \]

estimated white noise
Model Study for Stereoscopic Images

Image u: scalar Gaussian random field

Image w: $f_{\Theta}(\Theta) = \delta(\Theta - \Theta_c)$

Image s: $f_{\Theta}(\Theta) = \frac{1}{2a} 1_{[-a,a]}(\Theta)$

Note: deterministic disparity does not affect $H(u|w)$
Conclusions

- Exploit view-correlation of multi-view image sequences
- Operate video sensors in a collaborative fashion
- Centralized decoder performs disparity compensation
- Our experiments show that:
 - Disparity-compensated side information reduces bit-rate up to 10%
 - Without disparity compensation, gain is limited to 3%
- The uncertainty of the estimated disparity at the decoder causes a **entropy rate loss** when compared to centralized encoding