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ABSTRACT

We investigate coding of multiple image sequences with video sen-
sors. The video sensors are arranged in an array to monitor the same
scene from different view points. Furthermore, the sensors are con-
nected to a central decoder via a network. Note that the video sensors
process highly view-correlated images. This correlation can be ex-
ploited if the video sensors operate in a collaborative fashion. On the
contrary, temporal correlation among the images of each sequence
can be exploited locally at each sensor. Collaborative coding of the
multi-view videos can be achieved by distributed processing of the
multi-view imagery. If the video sensor network utilizes a central de-
coder, the view-correlation can be exploited by centralized disparity
compensation at the decoder. But before the decoder is able to apply
disparity compensation efficiently, accurate disparity values have to
be estimated at the central decoder. This paper discusses the impact
of disparity fields at the central decoder and uses these estimates for
centralized disparity compensation at the decoder to improve the ef-
ficiency of the video sensor network.

Index Terms— Multi-view video coding, video sensors

1. INTRODUCTION

Video camera arrays can be used to sample dynamic scenes by gener-
ating multi-view image sequences. Such arrays may be part of three-
dimensional TV systems which enable users to view a distant 3D
world freely [1]. Unfortunately, the high processing and bandwidth
requirements of end-to-end 3D TV exceed the capabilities of most
systems [2]. A critical component of such systems is the coding en-
gine that compresses the multi-view video data into a rate-distortion
efficient representation. The most straightforward approach to the
multi-view coding problem is to temporally encode the individual
video streams independent of one another [2]. But efficient coding
can be achieved by exploiting the correlation in temporal direction
as well as the correlation among the views.

The correlation among the views can be exploited with two dif-
ferent approaches: In one possible compression scenario, encoders
of the sensor signals are connected and compress the signals jointly.
The disadvantage of this scenario is that the encoder have to share,
i.e., exchange, their information and that coding decisions of each
encoder are directly affected by several neighboring sensors. In an
alternative compression scenario, each encoder operates indepen-
dently but relies on a joint decoding unit that receives all coded sen-
sor signals. This is also known as distributed source coding. The
advantage of this scenario is that the encoder do not have to share
their information directly. A special case of this scenario is source

∗This work has been supported by the Max Planck Center for Visual Com-
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coding with side information. Wyner and Ziv showed that for cer-
tain cases the encoder does not need the side information to which
the decoder has access to achieve the rate-distortion bound [3].
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Fig. 1. Capturing multi-view sequences with video sensors.

Fig. 1 depicts the distributed source coding scenario where the
video sensors are connected to a central decoder via a network. The
central decoder is able to perform efficiently disparity estimation
on previously decoded images of the multi-view image sequences.
With this information available, highly efficient disparity compen-
sated side information can be generated to decode the current frames
of the multi-view image sequences more efficiently.

The paper is organized as follows: Section 2 outlines our coding
scheme with video sensors. We discuss the encoder of a video sen-
sor, the central decoder and the way it exploits the side information,
as well as the disparity compensation of the side information. Sec-
tion 3 studies the impact of the disparity compensation on the rate
efficiency of the distributed scheme. Experimental results with the
coding scheme are presented in Section 4.

2. CODING SCHEME WITH VIDEO SENSORS

Our coding scheme uses video sensors to capture multi-view image
sequences of a dynamic scene. The video sensors operate in a dis-
tributed source coding scenario where each video sensor is directly
connected to the central decoder. The temporal correlation within
each image sequence is exploited locally at the video sensor. The
inter-view correlation may be exploited at the central decoder to fur-
ther improve the efficiency of the coding scheme. The central de-
coder is able to perform efficiently disparity estimation on decoded
images of the multi-view image sequences. With this information
available, highly efficient disparity compensated side information
can be generated to decode the frames of the multi-view image se-
quences more efficiently.

Fig. 2 shows the distributed coding scheme with disparity com-
pensation at the central decoder. N multi-view image sequences are
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Fig. 2. Distributed coding scheme with disparity compensation at
the central decoder.

represented by u
(n)
k with k = 1, 2, . . . , K temporally successive

frames of n = 1, 2, . . . , N views. The coding scheme comprises N

encoder that operate independently as well as one central decoder.
The latter is made up of N − 1 “Wyner-Ziv” decoder n = 2, . . . , N

that are dependent on Decoder 1. The side information for Decoder
n with n = 2, . . . , N can be improved by performing disparity com-
pensation. As the video signals are not stationary, Decoder n with
n = 2, . . . , N is decoding with feed-back.

2.1. Encoder of a Video Sensor

As mentioned before, the video sensor is able to exploit the tempo-
ral correlation. In our scheme, K temporally successive images of
a sequence are encoded with a motion-compensated lifted wavelet
transform [4]. Each temporal subband is decorrelated by a spatial
transform. The coefficients of this transform are encoded with nested
lattice codes. Fig.3 provides an overview of the encoder of a video
sensor.
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Fig. 3. Encoder of a video sensor exploiting temporal correlation.

The temporal transform performs a dyadic decomposition with
a motion-compensated lifted Haar wavelet. It provides K output
pictures that are decomposed by a spatial 8 × 8 DCT. The motion
information that is required for the motion-compensated wavelet

transform is estimated in each decomposition level depending on
the results of the lower level. The correlation of motion informa-
tion between two image sequences is not exploited. For the motion-
compensated lifted Haar wavelet, the even frames of the image se-
quence are used to predict the odd frames with the estimated motion
vectors. The prediction step is followed by an update step which
uses the negative motion vectors as an approximation. We use a
block-size of 16 × 16 in the prediction step and select the motion
vectors such that they minimize a Lagrangian cost function based on
the squared error in the high-band. Additional scaling factors in low-
and high-band are used to normalize the transform.

Encoder 1 in Fig. 2 encodes the side information for all De-
coder n, n = 2, . . . , N , and does not employ distributed source
coding principles. A scalar quantizer is used to represent the DCT
coefficients of all temporal bands. The quantized coefficients are
simply run-level encoded. On the other hand, each Encoder n,
n = 2, . . . , N is designed for distributed source coding and uses
nested lattice codes to represent the DCT coefficients of all temporal
bands. In particular, a 1-dimensional nested lattice code [5] is used
where the cosets are constructed in a memoryless fashion [6].
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Fig. 4. Coset-coding of transform coefficients where Encoder 2
transmits at a rate RTX of 1 bit per transform coefficient.

Fig. 4 explains the coset-coding principle. Assume that Encoder
N transmits at a rate RTX of 1 bit per transform coefficient and uti-
lizes two cosets C1,0 = {o0, o2, o4, o6} and C1,1 = {o1, o3, o5, o7}
for encoding. Now, the transform coefficient o4 shall be encoded
and the encoder sends one bit to signal coset C1,0. With the help
of the side information coefficient z, the decoder is able to decode
o4 correctly. If Encoder N does not send any bit, the decoder will
decode o3 and we observe a decoding error.

Consider the 64 transform coefficients ci of the 8 × 8 DCT at
Encoder N . The correlation between the i-th transform coefficient
ci at Encoder N and the i-th transform coefficient of the side infor-
mation zi depends strongly on the coefficient index i. In general, the
correlation between corresponding DC coefficients (i = 0) is very
high, whereas the correlation between corresponding high-frequency
coefficients decreases rapidly. To encounter the problem of varying
correlation, we adapt the transmission rate RTX to each transform
coefficient. For weakly correlated coefficients, a higher transmission
rate has to be chosen.

Adapting the transmission rate to the actual correlation is ac-
complished with nested lattice codes [5]. The idea of nested lattices
is, roughly, to generate diluted versions of the original coset code. As
we use uniform scalar quantization, we consider the 1-dimensional
lattice. The fine code shall have a minimum Euclidean distance Q.
The nested codes are coarser and the union of their cosets gives the
fine code.

The binary representation of the quantized transform coefficients
determines its coset representation in the nested lattice. If the trans-
mission rate for a coefficient is RTX = µ, then the µ least significant
bits of the binary representation determine the ν-th coset Cµ,ν . For
highly correlated coefficients, the number of required cosets and,
hence, the transmission rate is small. To achieve efficient entropy
coding of the binary representation of all 64 transform coefficients,
we define bit-planes. Each bit-plane is run-length encoded and trans-
mitted to Decoder N upon request.
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2.2. Decoder using Side Information

At Encoder N , the quantized transform coefficients are represented
with 10 bit-planes, where 9 are used for encoding the absolute value,
and one is used for the sign. Encoder N is able to provides the full
bit-planes, independent of any side information at the Decoder N .
Encoder N is also able to receive a bit-plane mask to weight the
current bit-plane. The masked bit-plane is run-length encoded and
transmitted to Decoder N .

Given the side information at Decoder N , masked bit-planes are
requested from Encoder N . For that, Decoder N sets the bit-plane
mask to indicate the bits that are required from Encoder N . De-
pendent on the received bit-plane mask, Encoder N transmits the
weighted bit-plane utilizing run-length encoding. Decoder N at-
tempts to decode the already received bit-planes with the given side
information. In case of decoding error, Decoder N generates a new
bit-plane mask and requests an additional weighted bit-plane.

Decoder N has the following options for each mask bit: If a bit
in the bit-plane is not needed, the mask value is 0. The mask value is
1 if the bit is required for error-free decoding. If the information at
the decoder is not sufficient for this decision, the mask is set to 2 and
the encoded transform coefficient that is used as side information is
transmitted to Encoder N . With this side information zi for the i-
th transform coefficient ci, Encoder N is able to determine its best
transmission rate µ = RTX [i]. This information is incorporated
into the current bit-plane and transmitted to Decoder N : Bits that
are not needed for error-free decoding are marked with 0. Further, 1
indicates that the bit is needed and its value is 0, and 2 indicates that
the bit is needed with value 1.

Decoder N aims to estimate the i-th transform coefficient ĉi

based on the current transmission rate µ = RTX [i], the partially
received coset Cµ,ν , and the side information zi.

ĉi = argmin
ci∈Cµ,ν

[ci − zi]
2 given µ = RTX [i] (1)

With increasing number of received bit-planes, i.e. increasing trans-
mission rate RTX [i], this estimate gets more accurate and stays defi-
nitely constant for rates beyond the critical transmission rate R∗

TX [i].
Therefore, a simple decoding algorithm is as follows: An additional
bit is required if the estimated coefficient changes its value when the
transmission rate increases by 1. An unchanged value for an esti-
mated coefficient is just a necessary condition for having achieved
the critical transmission rate. This condition is not sufficient for
error-free decoding and, in this case, Encoder N has to determine
the critical transmission rate to resolve any ambiguity.

Note that Decoder N receives the coded information in bit-plane
units, starting with the plane of least significant bits. With each new
bit-plane, Decoder N utilizes a coarser lattice where the number of
cosets as well as the minimum Euclidean distance increases expo-
nentially.

2.3. Disparity-Compensated Side Information

To improve the efficiency of any Decoder n, n = 2, . . . , N , the side
information from Decoder 1 is disparity compensated in the image
domain. Disparity estimation can be performed on previously de-
coded images of the multi-view image sequences as they are avail-
able at the central decoder. With this information, disparity compen-
sated side information can be generated to decode the current frames
of the multi-view image sequences n = 2, . . . , N more efficiently.
As long as temporally previous frames are not available, the side
information for Decoder n, n = 2, . . . , N , is less correlated and
Encoder n has to transmit at a higher bit-rate.

3. IMPACT OF DISPARITY COMPENSATION

We consider briefly the general problem of coding a pair of multi-
view images. Two coding scenarios are compared - the centralized
and the distributed scenario. In the centralized scenario, both multi-
view images are known to the encoder. The encoder is able to esti-
mate the disparity between the two images arbitrarily accurate. That
is, the disparity between a pair of images is known at the encoder for
encoding both images. In the distributed scenario, the true disparity
is unknown to each encoder as only one image is available at each
encoder. The encoder / decoder may assume an uncertainty interval
for the expected disparity. Due to this uncertain disparity informa-
tion at the distributed encoder / decoder, we will observe a rate loss
for distributed coding.

We study this problem with the assumption that the images are
scalar Gaussian random fields over a two-dimensional orthogonal
grid [4]. Let u and w be two such model images. We charac-
terize their relationship by considering the conditional entropy rate
H(u|w). We consider their relationship if the disparity between the
images is known, i.e., if the disparity is a deterministic value. We
compare to the case where the disparity is uncertain due to a dis-
tributed coding scenario.

We model the second image as a shifted version of u, corrupted
by additive white Gaussian noise. First, we assume that the disparity
is known and, hence, the shift is deterministic. In this case, the mu-
tual information rate between the images u and w is independent of
the value of the shift, given a constant variance of the additive noise.
That is, a deterministic shift does not change the mutual information
rate. Second, we assume uncertain disparity information and assign
a probabilistic distribution to the shift. Let the resulting image be s.
In this case, the mutual information rate between the images u and
s depends strongly on the variance of this distribution.

-3 -2.5 -2 -1.5 -1 -0.5 0
-3

-2.5

-2

-1.5

-1

-0.5

0

H(u|w) - H(u) [bit/sample]

H
(u

|s)
 - 

H
(u

) [
bi

t/s
am

pl
e]

uncertain disparity, a=1
uncertain disparity, a=0.2
known disparity

Fig. 5. Conditional entropy rate difference H(u|s) − H(u) that is
gained when knowing the disparity up to the uncertainty a over the
conditional entropy rate difference H(u|w)−H(u) when knowing
the disparity exactly. For a given uncertainty a, the components of
the disparity vector are uniformly distributed in the interval [−a, a].

Fig. 5 depicts the conditional entropy rate difference H(u|s) −
H(u) that is gained when knowing the disparity up to the uncertainty
a over the conditional entropy rate difference H(u|w)−H(u) when
knowing the disparity exactly. Only if the disparity is exactly known
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Fig. 6. Average luminance PSNR vs. bit-rate per camera at the
Wyner-Ziv encoder / decoder for the multi-view sequence Jun-
gle with N = 8 views. Compared is decoding with disparity-
compensated side information, decoding with coefficient side infor-
mation only, and decoding without side information. K = 8 is used.

at the distributed decoder, then there is no rate loss when compared
to the centralized coding scenario. If the side information at the
distributed decoder is altered due to uncertain disparity information,
the conditional entropy rate difference H(u|s)−H(u) increases up
to zero, where the side information is not helpful at all. This happens
when increasing the disparity uncertainty interval [−a, a].

4. EXPERIMENTAL RESULTS

For the experiments, we choose the MPEG-3DAV multi-view image
sequences Jungle and Uli, each with N = 8 views, at a spatial reso-
lution of 256 × 192 [7]. We divide each view with 240 frames at 30
fps into groups of K = 8 pictures. The GOPs of view 4 are encoded
with Encoder 1 at high quality by setting the quantization parameter
QP = 2. This coded version of view 4 is used for disparity com-
pensation. The compensated frames provide the side information for
Decoder n, n = 2, . . . , N , to decode the remaining views.

Figs. 6 and 7 show the average luminance PSNR over the bit-
rate per camera of the distributed codec Encoder n, n = 2, . . . , N ,
for the multi-view sequences Jungle and Uli, respectively. The rate-
distortion points are obtained by varying the quantization parame-
ter for the nested lattice in Encoder n, n = 2, . . . , N , where the
minimum lattice distance is Q = 2QP . Disparity estimates derived
from previously decoded images (prev.) are less accurate and, hence,
less efficient than estimates derived from current image pairs (curr.).
When compared to decoding without side information, decoding
with coefficient side information reduces the bit-rate of both multi-
view sequences by up to 3%. Decoding with disparity-compensated
side information reduces the bit-rate of both by up to 10%.

5. CONCLUSIONS

This paper investigates coding of multi-view image sequences with
video sensors that are connected to a central decoder. The video
sensors process highly view-correlated images. To take advantage
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Fig. 7. Average luminance PSNR vs. bit-rate per camera at the
Wyner-Ziv encoder / decoder for the multi-view sequence Uli with
N = 8 views. Compared is decoding with disparity-compensated
side information, decoding with coefficient side information only,
and decoding without side information. K = 8 is used.

of this correlation, the video sensors operate in a collaborative fash-
ion. The coding scheme utilizes a central decoder which exploits
the view-correlation by centralized disparity compensation at the de-
coder. We have found that distributed coding results in an uncer-
tainty of the disparity information at the Wyner-Ziv decoder. This
degrades the coding efficiency when compared to centralized encod-
ing. In the experiments, disparity-compensated side information re-
duces the bit-rate by up to 10% over decoding without side informa-
tion. Without disparity compensation, this gain decreases to 3%.
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