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e 3-dimensional scene that
evolves in time

e QObserved by multiple video
cameras located at different
positions

e Each camera signal is coded
locally

e The cameras are connected
directly to the network

e One remote decoder is able
to reconstruct arbitrary views
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e Communication Scenario
e Coding of One Video Signal with Side Information

e Efficiency Study
— Model for Transform-Coded Video Signals
— Conditional Karhunen-Loeve Transform
— Relative Conditional Eigendensities

e Collaborative Coding of Multiple Video Signals
e Performance with Gaussian Assumption
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Communication Scenario

e Multiple video cameras that are connected to a
network and encode highly correlated signals

e Joint decoder recovers arbitrary views

e Scenarios:
— All encoders communicate with each other and
compress the signals jointly
— Encoders do not communicate with each other but rely
solely on joint decoding
— Combination of above scenarios

e At high rates, all scenarios may achieve the
same rate distortion bound
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Communication Scenario
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We are Interested in ...

the efficiency of
— collaborative motion-compensated transform
encoding/decoding

when compared to
— non-collaborative motion-compensated transform
coding

depending on

— the number of cameras

— the size of the MCT GOP at each sensor

— the correlation among the view-point signals
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Coding One Video Signal with Side Information

e Choose set s of K input pictures to be encoded
e Set w of (N-71)K side information pictures
e At high rates:

— Reconstructed side information at the decoder
approaches the original side information, i.e.,
W — W

— Wyner-Ziv coding scheme

— Rate distortion function of chosen encoder is
bounded by the conditional rate distortion function
and the bound is achieved for Gaussian Signals
[Wyner & Ziv, 1976]
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Coding One Video Signal with Side Information
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Signal Model for Subband Coding of Video

Inl Model for coding with motion-
P 4 compensated lifted wavelets
[Flierl & Girod, 2003]
ns
e | A, JI Uz v model picture

Ay k-th displacement error

n; k-th model error of
motion compensation

Ap b . 1, k-th motion-compen-
sated signal
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Signal Model for Subband Coding of Video

e Basic idea:
— Reversible true motion trajectories
— Reversible estimated motion trajectories
— Identical accuracy of motion compensation

e Power spectral densities of K pictures:
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Coding One Video Signal with Side Information

e \ery accurate disparity compensation
e Consider model error z of disparity compensation

e Side information is a noisy version of the video
signal to be encoded:

W,y —u + Zy
e The set of model error images z is statistically
independent of the set of input pictures u.

e Matrix of conditional power spectral densities:
Py = Pun [(N — 1) Duy + Pzz] * Dz
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Conditional Karhunen-Loeve Transform

o Conditional KLT of @, (w) for K motion-
compensated pictures u given (N-71)K side

information pictures w:

— First eigenvector adds all components and scales
with 1/ K

— For the remaining eigenvectors, any orthonormal
basis can be used that is orthogonal to the first
eigenvector

e |Independent of side information, i.e., side
information is not required at the encoder

e Motion-compensated Haar wavelet meets these
requirements
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Relative Conditional Eigendensities

e Compare the conditional eigendensities for

collaborative coding Az(w) to the corresponding

for non-collaborative coding Ap{(w).
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Collaborative Coding of Multiple Video Signals

e Power of each camera signal is the same

e Signal of the current sensor always serves as a
reference view-point for disparity compensation

e The model error of disparity compensation has
the same variance independent of the current
sensor/reference view-point

— Each sensor shows the same rate distortion
performance
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Performance Bounds via Conditional Eigendensities

e Rate difference to non-collaborative MCT coding
for each picture k of the 1~th sensor:

| AT ()
ARy =1 [ [ Liog, (M) 4,
kT g | ] 20 (ﬂk(u}) {
— Measures maximum bit-rate reduction
— Compares to optimum non-collaborative motion-
compensated transform coding

— For the same mean squared reconstruction error
— For Gaussian signals

e Average rate difference for each camera:
1 N K
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Rate Difference with Gaussian Assumption at High Rates
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Rate Difference with Gaussian Assumption at High Rates
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Conclusions

e For N video sensors, we have compared the
efficiency of collaborative motion-compensated
coding to non-collaborative motion-compensated
coding in terms of rate difference at high rate.

e For a large number of cameras,
— doubling the number decreases the rate difference at

most by 0.5 bit per sample per camera.
— quadrupling the number compensates the correlation-

SNR at least by 6 dB.
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