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ABSTRACT

Wyner-Ziv coding of multiview images avoids communications be-
tween source cameras. To achieve good compression performance,
the decoder must relate the source and side information images.
Since correlation between the two images is exploited at the bit level,
it is desirable to map small Euclidean distances between coefficients
into small Hamming distances between bitwise codewords. This im-
portant mapping property is not achieved with the binary code but
can be achieved with the Gray code. Comparing the two mappings,
it is observed that the Gray code offers a substantial benefit for un-
supervised learning of unknown disparity but provides limited ad-
vantage if disparity is known. Experimental results with multiview
images demonstrate the Gray code achieves PSNR gains of 2 dB
over the binary code for unsupervised learning of disparity.

Index Terms— stereo vision, multiview images, Gray code

1. INTRODUCTION

Multiview images captured by a camera array are very similar, and
exploiting these similarities is desirable for efficient compression.
The conventional approach requires a joint encoder, but this method
is not practical if the cameras do not communicate with one another.
Distributed coding has emerged as an alternative, with separate en-
coders and a joint decoder. The information theoretic Slepian-Wolf
and Wyner-Ziv theorems suggest that distributed coding can be as
efficient in coding performance as conventional joint compression
[1][2].

A Wyner-Ziv multiview image codec in [3] proposes decoder-
side unsupervised learning of disparity between two multiview im-
ages using the Expectation Maximization (EM) algorithm. It is a
lossy extension of a lossless Slepian-Wolf codec reported in [4]. The
Wyner-Ziv encoder converts quantized transform coefficients of the
source image X into a low-density parity check (LDPC) bitstream
[5]. Using the received segments of the LDPC bitstream and a side
information image Y , the Wyner-Ziv decoder progressively learns
the disparity between X and Y , disparity-compensates Y , and de-
codes a lossy reconstruction of X .

An inefficiency in the existing Wyner-Ziv system of [3] is the
usage of the two’s complement binary code as the bit representa-
tion of transform coefficients. The binary code does not consistently
map small Euclidean distances between coefficients to small Ham-
ming distances between the corresponding codewords. Even two
consecutive integers may have codewords whose Hamming distance
is much larger than one. When small Euclidean differences between
the source and side information coefficients result in unnecessarily
large Hamming distances, decoding efficiency is reduced. Compar-
ing just the source and side information bitstreams, the decoder can

be misled into wrong conclusions about the proximity of the side
information to the source.

The Gray code is well known to have the desirable property of
mapping two consecutive integers into two codewords separated by
a Hamming distance of one [6]. Compared to the binary code, the
Gray code much more consistently maps small Euclidean distances
into small Hamming distances. This is a highly beneficial property
for distributed coding. The decoder is now limited by the accuracy
of the side information and not by any inherent deficiency of the bit
representation. Previously, the Gray code has been applied in [7]
to improve distributed video coding, but there conditional bitplane
coding is used rather than joint bitplane coding as in [3] and no un-
supervised learning at the decoder is employed.

In this paper, we improve the system in [3] by replacing the bi-
nary code with the Gray code and show that the Gray code has signif-
icant impact on unsupervised learning of unknown disparity. Section
2 reviews the existing disparity learning codec that uses the binary
code. Section 3 presents the improved codec with the Gray code.
A new joint bitplane encoder (decoder) is constructed in the Wyner-
Ziv encoder (decoder). In Section 4, experimental results with ac-
tual multiview images demonstrate that the Gray code enables PSNR
gains of 2 dB over the binary code. With the improved bit representa-
tion, the performance gap to a decoder that receives optimal disparity
information from an oracle is significantly reduced.

2. EXISTING CODEC WITH THE BINARY CODE

The Wyner-Ziv image codec from [3] can be summarized by the
block diagram in Fig. 1. One image Y is transmitted by conven-
tional coding. The other image X is encoded independently of Y
but decoded using Y as side information.

2.1. Wyner-Ziv Encoder

To exploit spatial correlation in the pixel domain, the Wyner-Ziv
encoder transforms X through an 8-by-8 blockwise discrete cosine
transform (DCT) and quantizes the DCT coefficients XT . The
integer-valued quantized coefficients XTQ are then converted into
a source bitstream X

TQ

bin using an eight-bit two’s complement bi-
nary code. The source bitstream is further encoded using an LDPC
accumulate (LDPCA) code [5]. An LDPCA code enables small
segments of the syndrome bitstream Sbin to be incrementally sent.

2.2. Wyner-Ziv Decoder

The Wyner-Ziv decoder iteratively learns the quantized coefficients
XTQ from the received segments of the syndrome bitstream Sbin and
the side information image Y . When XTQ cannot be losslessly re-
covered, another small segment of Sbin is requested by the decoder
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Fig. 1. Wyner-Ziv image (a) encoder and (b) decoder.

Fig. 2. LDPC joint bitplane decoder graph.

via a feedback channel. A significant bit rate saving over conven-
tional lossless transmission of XTQ occurs when the disparity D
between X and Y is accurately estimated and only a short portion
of Sbin needs to be sent. After XTQ is decoded, the coefficients XT

are reconstructed as X̂T and image X is reconstructed as X̂ .
The loop comprising the LDPC decoder, the disparity estimator,

and the side information generator is an instance of the EM algo-
rithm, as formally presented in [4]. Given θ, which is a probabilistic
estimate of XTQ

bin , the disparity estimator calculates a distribution on
D. Then, given the distribution on D, the side information genera-
tor synthesizes ψ, which is a probabilistic estimate of the quantized
transform coefficients of disparity-compensated Y . Finally, given ψ
and Sbin, the LDPC decoder updates θ by joint bitplane decoding [4].

In this system, joint bitplane decoding is preferred over condi-
tional bitplane decoding because disparity estimation requires hav-
ing a distribution over all bitplanes simultaneously. Joint bitplane
decoding can be visualized using the graph in Fig. 2. First, the
syndrome nodes are filled with the received bits of the syndrome bit-
stream Sbin. Second, the bit nodes contain probabilistic distributions
of the source bitstreamX

TQ

bin . Third, the symbol nodes contain prob-
abilistic distributions of the quantized coefficients of the disparity-
compensated side information. Belief propagation between the syn-
drome and bit nodes represents classical LDPC decoding subject
to syndrome constraints, while belief propagation between the bit
and symbol nodes represents joint bitplane decoding. The additional

level of symbol nodes enables the relationship between bits of the
same coefficient to be exploited.

An example of joint bitplane decoding for a three-bit binary code
(eight levels of coefficient values) is presented in [4]. The bottom
two levels of Fig. 2 show a close-up view of the interaction be-
tween three bit nodes and their common symbol node. Before itera-
tion t of the EM algorithm, bit node bi contains a single probability
α

(t−1)
i ≡ P

(t−1)
prior {bi = 1}, an a priori belief remaining from pre-

vious message passing between bi and connected syndrome nodes.
The symbol node contains ψ(t−1)

bin , an eight-leveled a priori distribu-
tion derived from the disparity-compensated side information,

ψ
(t−1)
bin ≡ (p000, p001, p010, p011, p100, p101, p110, p111) , (1)

where the binary codewords 000 through 111 count consecutively
from 0 to 7 in most significant bit (MSB) first notation. In Fig. 2,
b1 is the MSB. Passing information from the symbol node to, say,
bit node b2, enables us to calculate an a posteriori belief β(t

2 ≡

P
(t)
post{b2 = 1}. The update is

Lk := p0k0 ·
“

1 − α
(t−1)
1

” “

1 − α
(t−1)
3

”

+ p0k1 ·
“

1 − α
(t−1)
1

”

α
(t−1)
3

+ p1k0 · α
(t−1)
1

“

1 − α
(t−1)
3

”

+ p1k1 · α
(t−1)
1 · α

(t−1)
3 , k ∈ {0, 1},

β
(t)
2 :=

L1

L1 + L0
. (2)

Here, we do not use α(t−1)
2 to avoid recycling information. The in-

dices 010, 011, 110 and 111 of ψ(t−1)
bin contribute to L1, correspond-

ing to the event {b2 = 1}, while the indices 000, 001, 100, and 101

of ψ(t−1)
bin contribute to L0, corresponding to the event {b2 = 0}.

Analogous updates are defined for β(t)
1 and β(t)

3 .
To pass messages in the other direction, from bit nodes to the

symbol node, a similar update is defined. The a posteriori coefficient
distribution is θ(t)

bin , which is also eight-leveled and of the form

θ
(t)
bin ≡ (q000, q001, q010, q011, q100, q101, q110, q111) . (3)

The update for θ(t)
bin is defined to be:

q000 := p000 ·
“

1 − α
(t−1)
1

”

·
“

1 − α
(t−1)
2

”

·
“

1 − α
(t−1)
3

”

,

q001 := p001 ·
“

1 − α
(t−1)
1

”

·
“

1 − α
(t−1)
2

”

· α
(t−1)
3 ,

...

q111 := p111 · α
(t−1)
1 · α

(t−1)
2 · α

(t−1)
3 , (4)

where θ(t)bin is properly normalized after (4). The updates in (2) and
(4) are repeated for each group of three bit nodes and their common
symbol node. Generalization of joint bitplane decoding for where
eight bit nodes share a common symbol node follows in a straight-
forward fashion. In Section 3, we revisit this example and develop
joint bitplane decoding for the Gray code.

3. IMPROVED CODEC WITH THE GRAY CODE

The same block diagram of Fig. 1 applies for the proposed codec.
Important differences lie in the LDPC encoder and decoder, where
the Gray code replaces the binary code to improve the efficiency of
the bit representation.



Table 1. Coefficient values around zero, binary codewords, and Gray
codewords.

Coefficient Binary Code Gray Code

-2 11111110 10000001
-1 11111111 10000000
0 00000000 00000000
1 00000001 00000001
2 00000010 00000011

3.1. Wyner-Ziv Encoder

The binary code used in the existing Wyner-Ziv codec often maps
transform coefficients separated by small Euclidean distances into
codewords separated by large Hamming distances. Consider some
coefficient values near zero, such as those listed in the first column
of Table 1, which are highly probable values for AC transform coef-
ficients. The second column shows the corresponding binary code-
words. Suppose the coefficient for the source image is 0 and the
corresponding coefficient for the side information image is −1. The
Euclidean distance between these coefficients is only 1, indicating
a close match, but their binary codewords have Hamming distance
of 8, which misleadingly suggests a larger mismatch than actually
exists. Gray encoding solves this problem.

Among the different flavors of Gray codes, we chose the original
binary-reflected Gray code [6]. If nbin is the binary codeword for
integer n, then the Gray codeword nGray is calculated as

nGray = nbin XOR (nbin � 1) , (5)

where the XOR is bitwise and � represents rightward bitshift. The
Gray codewords are shown in the third column of Table 1. For values
0 and −1, the Hamming distance of their Gray codewords reduces to
1 as desired, significantly better than the binary-coded case. Smaller
Hamming distance implies a lower bit error rate (BER) in correlat-
ing the source and side information bitstreams and improved coding
efficiency [7]. In the proposed codec, the encoder described in Sec.
2.1 is modified so that the Gray code replaces the binary code for
the bit representation of the transform coefficients. The Gray-coded
bitstream X

TQ

Gray is then LDPCA-encoded into a syndrome bitstream
SGray.

3.2. Wyner-Ziv Decoder

A new joint bitplane decoder must be created, similar to that de-
scribed in Sec. 2.2. In the decoding graph of Fig. 2, the syndrome
and symbol nodes retain their original meanings, but the bit nodes
have a new interpretation. Instead of representing bits in binary
codewords, the bit nodes now represent bits in Gray codewords. The
example of three-bit codewords from Sec. 2.2 is revisited to illustrate
the key changes.

Each symbol node still contains an a priori eight-leveled distri-
bution, now of the form

ψ
(t−1)
Gray ≡ (p000, p001, p011, p010, p110, p111, p101, p100) (6)

which resembles (1) except for the different ordering of codewords.
The Gray codewords 000 to 100 count consecutively from 0 to 7.
Message passing from the coefficient node to bit node b2 is the same
as in (2), except the meaning of terms such as p010 has changed.
Whereas p010 previously represented the probability for a coefficient

(a) (b)

Fig. 3. Image X from multiview sets (a) Teddy and (b) Barn, each
of size 176-by-144 and bit depth 8.

value of 2 = 010bin, p010 now represents the probability for a coef-
ficient value of 3 = 010Gray. The update steps for bit nodes b1 and
b3 are modified analogously.

In the other direction, source-to-coefficient message updates the
a posteriori distribution θ(t)

Gray, which has the form

θ
(t)
Gray ≡ (q000, q001, q011, q010, q110, q111, q101, q100) (7)

which is similar to (3) except with a new ordering of the codewords
that reflects the change from the binary code to the Gray code. Up-
date of θ(t)Gray is the same as in (4), with the proper reinterpretation of
codewords. From an algorithmic point of view, joint bitplane decod-
ing for the Gray code very much resembles joint bitplane decoding
for the binary code. Decoding efficiency, however, is significantly
improved, as demonstrated in Sec. 4.

4. EXPERIMENTAL RESULTS

The performance of the disparity-learning codecs with the binary
code and the Gray code are evaluated using two sets of multiview
images from [8], which we name Teddy and Barn. One image from
each set is shown in Fig. 3(a-b) and takes the role of the image X
which is Wyner-Ziv coded. One other image in each set is chosen
to serve as the reference image Y . We assume a high-quality ver-
sion of Y resides at the decoder, having been previously transmitted
using conventional coding. To simplify the experiment, X and Y
are approximately related by a horizontal, integer-pel disparity field,
measured at block resolution and limited to the range [-5,5]. Our
system also works for larger, non-horizontal, non-integer disparities,
but at the expense of longer decoding times.

The rate-distortion performance of different codecs are com-
pared. First, an impractical system called disparity oracle allows
the decoder to know the optimal blockwise disparities between X
and Y . The disparity oracle is meant to measure an upper perfor-
mance bound for practical disparity learning codecs. Second, the
disparity learning codec with the binary code is tested. Last, the dis-
parity learning codec substitutes the Gray code for the binary code.
At the decoder, the EM algorithm is permitted to run for 50 iterations
at each incremental rate of the LDPCA code. If after 50 iterations
convergence is not achieved, the LDPC decoder requests additional
bits to advance to the next higher incremental rate.

Rate-PSNR plots for Teddy and Barn are presented in Fig. 4.
For Teddy, the learning system with the Gray code achieves 2 dB
increase in PSNR over the disparity learning system with the binary
code. Similarly for Barn, the Gray code performs better than the bi-
nary code, resulting in 2.5 dB higher PSNR for disparity learning. At
high rates, disparity learning with the Gray code even outperforms
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Fig. 4. Rate-PSNR performances for three different Wyner-Ziv de-
coders, evaluated for test image sets (a) Teddy and (b) Barn.

disparity oracle with the binary code. The application of the Gray
code significantly narrows the gap between disparity learning and
oracle, which is not accomplished with the binary code.

The reason for the superior performance of the Gray code over
the binary code, particularly for disparity learning, is the property of
mapping small Euclidean distances into small Hamming distances.
Fig. 5 shows the Hamming distance between bitstreams of source
coefficients XTQ and disparity-compensated side information coef-
ficients Y TQ

D , for the first 10 iterations of EM, at high rate. When
disparityD is known perfectly, as for disparity oracle, the Euclidean
distance betweenXTQ and Y TQ

D is relatively small. When disparity
D is unknown, however, as in the early iterations of EM for dispar-
ity learning, the Euclidean distance between XTQ and Y TQ

D can be
very large. As a consequence, the gap between the binary and Gray
disparity learning curves in Fig. 5 is much greater than the gap be-
tween the binary and Gray disparity oracle curves. Thus, Hamming
distance savings achieved with the Gray code are much more evident
in disparity learning than in disparity oracle. This explains why in
Fig. 4 the Gray code outperforms the binary code by only 0.2 dB for
disparity oracle but by 2 dB for disparity learning.

5. CONCLUSION

This paper has presented an improved Wyner-Ziv multiview image
codec that uses a Gray code instead of the binary code for bit repe-
sentation of transform coefficients. The Gray code exhibits a desir-
able property of mapping small Euclidean distances between coeffi-
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Fig. 5. Hamming distance between bitstreams of source XTQ and
disparity-compensated side information Y TQ

D , evaluated for first 10
iterations of EM and for test image sets (a) Teddy at rate = 0.68 bpp,
and (b) Barn at rate = 0.88 bpp.

cients into small Hamming distances between codewords. This prop-
erty is highly beneficial for unsupervised learning of unknown dis-
parity in distributed coding. For actual multiview images, the Gray
code produces 2 dB gain in PSNR compared to the binary code and
at high rates enables disparity learning to perform nearly as well as
disparity oracle.
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