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1

Overview

1.1 Introduction

The emergence of new technologies is associated with an ever-increasing need for the
transmission and storage of signals. Most of these signals are discrete-time (sampled)
signals1. The abundance of signals requiring transmission makes it natural to attempt
to reduce the bit rate required to represent a signal. Source coding refers to the
encoding of a source signal with a reduced bit-rate representation, the code, and the
decoding of this reduced bit-rate representation into an approximate or exact copy of
the original signal.

Particularly since about 1980, source coding has become an integral part of every day
life. Mobile phones and audio-playback devices use speech and audio-coding techniques.
Audio, video, and image compression are used for the Internet, digital television, and
video-playback devices. Without source coding, these technologies would be significantly
more expensive. The cost savings result from a reduction in bit rate that is typically an
order of magnitude for speech and audio coding and up to three orders of magnitude
for video and image coding when compared to the “raw” signal.

It is clear that there must be a lower bound on the bit rate that is required to char-
acterize a certain signal at a certain fidelity. Past work in source coding has brought
us significantly closer to such bounds. Unfortunately, it is generally difficult to provide
good estimates of the lower rate bounds since both the character of the signal (e.g., the
human voice) and the character of the receiver (e.g., the human auditory system and
the successive processing by the brain) are often not well understood. However, judging
by the speed at which bit rates are being reduced, the lower bound required to represent
many source signals is not yet close. It seems safe to state that much progress remains
to be made in the future, and that a significant fraction of this progress will be linked
to a better understanding of the generation of the signal and of the perception of the
signal by the receiver.

In this introductory chapter, we provide a brief outline of the fundamental principles

1In the following, the term “signal” refers to a discrete-time random process except where stated
otherwise.

1



2 1. OVERVIEW

that underlie the field of source coding. We end the chapter with an overview of the
remainder of the book.

1.2 Why Source Coding Works

Many signals can be represented at a lower bit rate without destroying their essential
character. Two fundamentally different reasons facilitate bit rate reduction:

1. The receiver tolerates distortion in the signal.

2. The original signal description contains redundancy.

The tolerance for distortion can be exploited by reducing the precision of the represen-
tation of a signal, and, thus, the number of bits required to describe it. Such coding is
called lossy coding. To minimize the impact of lossy coding, it is important to know
how distortion is interpreted by the final receiver of the signal. For many signals to
which source coding is applied, the final receiver is either the human visual or auditory
system. These sensory systems have varying sensitivity for different features of the sig-
nals. By decomposing the signal into a set of new signals describing different features of
the original signals, and by distributing the distortion selectively over these new signals,
it is often possible to have significant distortion (in a squared-error sense) without it
being perceived by the receiver. In many cases, certain features of the original signal
do not require transmission at all.

Example 1.1: Auditory masking

Audio signals that are audible if no other audio signals are present can become

inaudible in the presence of a louder signal. For example, when the sound of a

car engine is loud, a radio signal may be inaudible. The information transmitted

to the car radio is then irrelevant. Similarly, a low-amplitude tone nearby in

frequency to a tone of high amplitude is often not audible and the description of

the low-amplitude tone is not required for perceptually accurate reconstruction.

Next, we discuss redundancy. Let us consider the encoding of the realization of a sta-
tionary sequence of random variables (a process) into a sequence of bits. Redundancy
rate2 then refers to the average excess of bits per variable over that needed with the
most efficient code theoretically possible that allows perfect reconstruction. The redun-
dancy rate is greater than zero (it cannot be negative) if the statistics of a sequence
of random variables are not fully exploited by the code. For example, it can mean
that the dependencies between variables (samples) are not properly taken advantage
of. Information may be shared between variables that are encoded independently. The
shared information is sent multiple times, which is redundant. From another vantage
point, redundancy relating to dependencies originates from not accounting for the non-
uniformity of the multi-variational probability distribution of the data. Not accounting
for non-uniformity of the distribution is also the cause of redundancy in the case of scalar
variables. Consider, for example, a discrete random variable that has a non-uniform
probability distribution and all values are encoded with codewords (a codeword is the

2The term “redundancy” will be used to refer loosely to the excess bits.
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sequence of bits used to represent a particular value from the set of values that the
random variable can take) of equal length. The average bit rate can then usually be
reduced by assigning shorter codewords to high probability values and longer codewords
to low probability values. The operation of removing redundancy from a sequence of
discrete symbols (such as a sequence of text symbols) is called lossless coding.

Example 1.2: Redundancy in a discrete-time speech signal

Redundancy occurs in a sampled (discrete-time) speech signal. A one-sample-

at-a-time description of this signal ignores that the samples of the speech signal

are statistically interdependent. These interdependencies imply that if we know

something about one sample, then we know something about surrounding samples

as well. This information is repeated if we encode all samples separately and this

repetition corresponds to redundancy. In addition, the amplitude distribution of

speech is not uniform and as the samples are commonly encoded using a fixed

codeword length, which is a second cause of redundancy.

Example 1.3: Redundancy related to marginal distributions

Let us consider the transmission of written text, one letter at a time, by means

of a sequence of binary codewords. We assume that there are 128 distinct text

symbols. It seems then natural to use 7 bits to describe each of the text symbols.

However, certain text symbols, such as the letters “a” and “e”, are more likely than

text symbols such as “x” and “;”. It can be shown, with the methods discussed

in chapter 2, that we can save bits by assigning shorter codewords to the more

commonly occurring text symbols, and longer codewords to the less common text

symbols.

1.3 Source Coding Strategies

In this section, we provide a brief overview of source coding strategies that are used
for real-world signals such as video, images, speech, and audio. We assume the input
signal is a sampled signal with analog (infinite precision) amplitudes. In the lossy-coding
subsection, we discuss methods that exploit the tolerance of the receiver to distortion.
In the redundancy-removal subsection, we discuss methods that reduce the redundancy
rate.

1.3.1 Lossy Coding

Lossy coding methods decrease the coding rate at the expense of increased distortion.
The art of lossy coding is to minimize the distortion for a given rate or vice versa.
Theoretical results on the lower bound on the distortion for a given rate are discussed
in chapter 6. Here, we focus on the practical aspects of lossy coding. We briefly describe
scalar quantization, vector quantization, and the distortion criterion.
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Scalar Quantization

The simplest form of lossy coding is scalar quantization. It is used to encode scalar,
continuous random variables. Scalar quantization divides the real line, R, into distinct
regions called cells. Each cell has a reconstruction value, which normally lies within
the cell. Scalar quantization is the non-invertible mapping that maps, for all cells, all
points contained in the cell to the corresponding reconstruction value (the boundary
points can map into any bordering cell). The mapping is illustrated in figure 1.1.

Scalar quantization is useful since we can assign an index to each cell. We can transmit
or store this index and then look up the corresponding reconstruction value for the cell.
Scalar quantization is discussed in detail in chapters 7 and 8.

Q(x)

x

Figure 1.1: The mapping performed by a scalar quantizer from a value x to a (quan-
tized) value Q(x). The cell boundaries are indicated on the horizontal axis and the
reconstruction values on the vertical axis.

Vector Quantization

A generalization of scalar quantization is vector quantization. As the name suggests,
a vector quantizer has a vector as input and the quantizer cells are multi-dimensional.
An example of a two-dimensional vector quantizer is shown in figure 1.2. For a k-
dimensional vector quantizer, the cells partition Rk.

Assuming the joint statistics of the vector components are known, vector quantization
is asymptotically optimal. That is, for a given mean distortion per component, the bit
allocation per component (the rate) of an optimal vector quantizer converges asymptot-
ically with increasing vector dimensionality k to the rate-distortion bound, which is
the lower bound on the rate possible for the given distortion. This implies that vector
quantizers can remove both irrelevancy and redundancy. As a result, vector quantizers
have become an important tool in source coding.

To apply vector quantization to a discrete-time (sampled) signal, we can divide the signal
into subsequent blocks (vectors), and quantize each block separately. If the signal is a
stationary process, this application of vector quantization is asymptotically optimal.

The asymptotic optimality of vector quantization may lead one to believe that with
vector quantization one should be able to solve most practical source-coding problems.
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Figure 1.2: The mapping performed by a two-dimensional vector quantizer designed for
two-dimensional vectors of uncorrelated normal distributed elements. The cells and the
corresponding reconstruction points are shown.

Unfortunately, this is not the case. While vector quantizers are asymptotically optimal,
their computational complexity often increases exponentially with their dimensionality
(assuming a constant bit allocation per dimension). To prevent this problem, one can
add structure (e.g., a lattice structure of the cells) to the vector quantizer, but then
the asymptotic optimality may no longer be guaranteed. Structured and unstructured
vector quantization are discussed in chapters 7 and 8.

Example 1.4: Codebook size for direct vector quantization of speech

According to some estimates, based on certain assumptions, perceptually trans-

parent encoding of a continuous-time speech signal band-limited to about 3500 Hz

(i.e., telephone bandwidth) requires a bit rate of about 8000 bits per second. For

an 8000 Hz discrete-time speech signal, this corresponds to 1 bit per sample. We

furthermore know from the nearly periodic nature of speech, that dependencies

easily stretch over 10 ms, or 80 samples. To capture at least some of these de-

pendencies, the vector dimension would have to be at least 80 samples, and the

resulting codebook size would be 280 ≈ 1024. Such large codebooks can neither be

trained nor searched without including structure.

The Distortion Criterion

Lossy coding leads to distortion and, as mentioned before, the objective is to minimize
distortion given the rate (or vice versa). To make this optimization meaningful, the
distortion criterion must be relevant to the receiver. In practical source coding appli-
cations such as image and audio coding, the distortion criteria are designed to form an
approximation to human perception. Unfortunately, perceptually accurate distortion
criteria are often computationally complex.

In theorical work, as well as in many applications, so-called single-letter distortion
criteria are commonly used. A single-letter distortion criterion for a vector consists of
a sum over the distortions for the vector components. As a result, single-letter distor-
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tion criteria facilitate analytic manipulation and generally lead to a low computational
complexity for quantization. Indeed, the usage of single-letter distortion criteria is often
motivated by computational cost and not by relevance. Straightforward quantization
based on perceptually accurate distortion criteria that depend simultaneously on mul-
tiple samples generally leads to computational problems.

It is sometimes possible to transform the signal from a domain where perceptual accu-
racy leads to computationally complex distortion criteria to a domain where a single-
letter criterion is a good approximation. That is, the co-dependency of the distortion
on signal samples is removed or reduced. This effect should not be confused with statis-
tical independence of the vector components. For both visual and auditory perception,
cosine and Fourier transforms are used for this purpose (in addition to the purpose of
redundancy removal, which is discussed in section 1.3.2).

Example 1.5: Distortion criteria in audio coding

An example of a transformation simplifying the distortion criterion is the discrete

cosine transform used in many audio coders. Usage of a single-letter weighted

mean-squared error distortion criterion on the cosine transform coefficients per-

forms significantly better than a similar criterion used directly on the audio-signal

samples. In other words, for a given performance of the distortion criterion, the

cosine transform coefficients allow a computationally simpler form of the distortion

criterion.

1.3.2 Redundancy Removal

Redundancy can be removed in a number of ways. We have already mentioned that
vector quantization removes redundancy. However, in vector quantizers, we also remove
irrelevancy. Here, we will discuss methods that remove redundancy only: lossless coding
and signal-processing procedures.

We start with methods that are commonly referred to as lossless coding. These meth-
ods generally operate on discrete random variables (variables that can take a countable
set of values). We consider the case where each variable is encoded separately with a
binary codeword that specifies the value. The entire set of codewords is called a code.
The mean length of the codeword in bits determines the bit rate required to transmit
a sequence of the variables. It is often possible to find a code with a shorter mean
codeword length under the constraint that exact reconstruction is still possible, thus re-
ducing the bit rate. The task of finding a shorter code is performed by a lossless coder.
This type of lossless coding is commonly performed on quantizer indices in the context
of lossy coding. An example of this application is the MPEG-2 AAC audio coder [1].
A more general type of lossless coding also considers dependencies between samples of
a sequence. A simple manner to accomplish this is to group samples and code them
together with a single codeword. Procedures that perform lossless coding are described
in chapter 5.

Example 1.6: Lossless coding of a random variable

Consider a random variable X (a source) that maps into the values (has as al-

phabet) {a, b, c, d}. The probability distribution is P (X = a) ≡ pX(a) = 0.99,

pX(b) = pX(c) = pX(d) = 0.0033. The simple way of encoding X would be with
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the codewords c(a) = 00, c(b) = 01, c(c) = 10, and c(c) = 11. Clearly, encoding a

sequence of source symbols requires an average rate of 2 bits per source symbol (the

source sequence aaacaa is encoded by 000000100000). To make the encoding more

efficient, we would like to encode the symbol a with just one bit, e.g., c(a) = 0,

allowing us to approach a rate of 1 bit per symbol. To allow us to reconstruct the

original source sequence, this means that the other codewords cannot start with a

0. We can use, for example c(b) = 10, but now we cannot use a 0 as second bit for

c and d, so we use c(c) = 110 and c(d) = 111. It is easily verified that aaacaa is

now encoded by 00011000 and that the source symbols can be reconstructed from

this short bit sequence.

A major purpose of signal processing in coding is the removal of redundancy. Signal
processing is commonly used in combination with lossy coding procedures, but it can
also be used as part of a lossless coding procedure. In section 1.2, we noted that
the samples of signals are interdependent and this implies that coding each sample
independently from the others is inefficient. Doing so would mean that we transmit
the same information multiple times. This argument can be turned around: coding
samples or variables that are statistically independent with scalar quantizers (or vector
quantizers of low dimensionality) is relatively efficient. Although it can be shown that
scalar quantizers and vector quantizers of low dimensionality cannot quite reach the
rate-distortion bound, they can come quite close if the variables to be quantized are
statistically independent.

The above discussion suggests a commonly used strategy for source coding: use a signal-
processing algorithm to transform the signal samples into a set of statistically indepen-
dent variables (reducing redundancy). Assuming a simple distortion criterion that is not
affected by the transform, the independent variables can then be coded efficiently with
relatively straightforward, low-complexity quantizers, and upon decoding the inverse
transformation is applied. This basic principle provides the motivation for employing
transforms (including filter banks) and signal modeling (e.g., autoregressive modeling).

Using block transforms is one approach towards making the signal samples independent.
In this method, the signal is divided into blocks, and each block is then subjected to
an invertible transform aimed at reducing or removing the statistical dependencies. In
practice, it is difficult to remove all dependencies from the signal, but if the statistics
are known, it is relatively straightforward to remove correlations (decorrelate the signal
samples). In the case of normal (Gaussian) distributed samples, this is sufficient for
obtaining independent variables, and otherwise it can be seen as an approximation to
this situation. Often, the decorrelating transform (which is called the Karhunen-Loève
transform) is well approximated by the discrete cosine transform (DCT). An example
of a coding system that uses the DCT at least in part for decorrelation is the JPEG
image coder. More details about the procedure will be provided in chapter 9.

Another method to reduce dependencies between samples of a signal to be coded is
linear prediction, where each sample is predicted as a linear combination of previous
samples (the memory). The simplest example of a linear predictor is the subtraction of a
previous sample from a present sample in a differential quantizer3. It can be shown that,
for a stationary signal, the prediction error samples of a linear predictor converge to

3In a differential quantizer, the previous quantized sample value is subtracted from the current
sample prior to encoding.
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being uncorrelated with increasing memory length. As a result, encoding the prediction
residual4 rather than the original signal often results in a significant increase in coding
efficiency. Linear prediction is described in chapter 10.

Example 1.7: Linear prediction in speech coding

Linear prediction based source coders are particularly common in speech coding,

where it has two major advantages. First, a significant amount of the redundancy

of the speech signal can be removed with predictors of low order. This suggest

that an autoregressive model of the signal is relatively accurate. Second, linear

prediction performs (partial) decorrelation without requiring delay. This is a major

advantage of linear prediction over block-based transform methods. Having a low

delay in a transmission system means that echos integrate perceptually with the

original signal, and that, therefore, an echo canceler is not required. Low delays are

also desirable in situations where a receiver may hear the signal both as transmitted

through a network and through an acoustic path (e.g., flight-control rooms and

hearing aids). Examples of standardized low-delay coders (cf. [2]) based on linear

prediction are the adaptive differential pulse code modulation (ADPCM) algorithm

(the ITU G.726 standard) and the low-delay CELP coder (ITU G.728). The linear-

prediction based coders used in mobile telephone networks, generally operate on

large (10-25 ms) signal blocks, and do not exploit the low delay advantage of linear

prediction.

It is interesting to note that methods to remove redundancy can, in general, also be
interpreted as being part of a structured vector-quantization procedure. Let us consider
blockwise coding of a signal based on adaptive linear prediction, where the predictor is
transmitted as side information. The information contained in a signal block is decom-
posed into the specification of an adaptive linear prediction-error filter, usually described
by an index into a codebook of prediction coefficient vectors, and a specification of the
excitation signal, usually described by an index into an excitation vector codebook. If we
invert the prediction-error filter we obtain the the autoregressive filter structure. Given
the past reconstructed signal, the combination of a particular index for the excitation-
vector codebook, and a particular index for the codebook of linear prediction coefficient
vectors, we obtain a particular reconstruction of the signal block. Thus, each combina-
tion of an excitation specification and an autoregressive model specification describes
an entry in a vector codebook of signal segments. Because of the recursive structure of
the autoregressive model, this vector codebook changes each coding block.

Signal processing is commonly used in source coding. Indeed, it is striking that much
of the literature on practical source coding methods appears in journals on signal pro-
cessing, and not in journals dedicated to information theory. This is a clear indication
that signal processing plays an important role in practical source coding algorithms.

1.4 Outline of the Remainder of Book

The goal of this book is to provide an understanding of the main principles on which
modern source coders are based. The contents of this book are applicable to any type

4It will be shown in chapter 10 that the standard mean squared-error distortion criterion is invariant
with the prediction operation only if we use so-called closed-loop prediction.
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of signal, with many of the examples drawn from audio coding.

We start with two chapters on information theory, which have as main purpose to define
what information is. (Appendix A provides background information on probability
theory.) For variables that can take a countable number of values, the definition implies
a lower bound on the bit rate that can be obtained when using lossless coding (coding
that allows perfect reconstruction).

The information-theory chapters are followed by a chapter on estimating probability
distributions. Probability distributions are used extensively in information theory and
for practical applications we have to know how to estimate these distributions.

Next is a chapter on lossless coding of sequences of discrete symbols. In this chapter
the knowledge of information theory for discrete variables and probability distribution
estimation is used for practical applications.

The focus then shifts to the background and techniques of lossy coding. Chapter 6 de-
scribes rate-distortion theory, which provides bounds on the performance of lossy source
coders. While these bounds are obtained for conditions that are not commonly met in
the physical world (for example stationarity, the squared error criterion), they provide
useful insights for the design of practical lossy source coders. The next chapter discusses
high-rate quantization theory. Though, strictly spoken, the high-rate conditions are not
satisfied in most practical quantizers, the theory provides insight in how quantizers op-
erate and, moreover, leads to practical design procedures that performe well in many
applications, even at low rates. Chapter 8 provides practical procedures for the design
of low-rate scalar and vector quantizers, which are commonly used for practical source
coders.

The next two chapters focus on signal processing methods to remove redundancy. They
describe the basics of the two signal processing procedures most commonly used in
source coding: transforms (including filter banks) and linear prediction. In addition
to providing the practical implementations for these procedures, the motivation for the
usage of the procedures in source coding is given. Particularly in the case of transform
coding, there are a number of different motivations for its usage in source coding, and,
naturally, these different motivations lead to different flavors of the method.

In the final chapter, chapter 11, the encoding of a speech signal is used as an example
application of the various methods described in the earlier chapters. It illustrates that
the signal properties are important in the selection of the coding techniques.

1.5 Problems

1. A sampled signal has a bandwidth that is much less than half the sampling fre-
quency. Give at least three alternative methods for coding that are more efficient
than straight scalar quantization of the samples.

2. Obviously, it is efficient not to transmit redundancy and irrelevancy. Yet speech
contains such redundancies at at least two levels.

(a) Give a motivation for the existence of redundancy and irrelevancy in a sample
sequence representing a speech sound.
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(b) Give a motivation for the existence of redundancy and irrelevancy at a linguis-
tic level (the redundancy in a sequence of symbols, each symbol representing
a particular speech sound).

3. Using a computer, create a Gaussian signal with sample variance σ2 and which
has a low-pass character with a bandwidth of one quarter of the sampling rate.
Solve the following problems using your computer.

(a) Determine the approximate bit rate required (assuming uniform codeword
length) for a uniform scalar quantizer with a maximum amplitude of 4σ2,
and a signal-to-noise ratio of 10 dB.

(b) Approximate the next sample as the previous quantized sample, multiplied
by α < 1, plus an error. For α = 0.9 again determine the bit rate required
for a signal-to-noise ratio of 10 dB.

(c) Determine the optimal value of α if we can assume that the quantization
error is zero. Again determine the bit rate required for a signal-to-noise ratio
of 10 dB.

4. Figure 1.3 contains two illustrative sections of the reconstruction-point grids of
a two-dimensional quantizer. We consider a mean squared error criterion and a
uniform data density.

(a) Plot the optimal quantizer cells in the grid.

(b) Argue which quantizer is more efficient (do not consider the effect of the
outer, dashed bounds).

Figure 1.3: The two reconstruction-point grids for problem 4.
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Introduction to Information
Theory: Discrete Variables

2.1 Introduction

Information theory provides results relating to the average bit rate required for the
encoding of a random process (a source). Typically, these results provide the lowest
achievable average bit rate or a lower bound on the average bit rate. While information-
theoretic results are often obtained under particular assumptions that are not always
valid or cannot be validated (e.g., the stationarity assumption), they are of great value
in the development of practical communication systems.

Information theory is a relatively young discipline. It is generally agreed upon that
information theory was born in 1948 with the publication of Shannon’s classic papers
[3, 4]. Its birth coincides with the invention of the transistor1. The transistor made
information theory relevant to society by providing us with the computational power to
remove redundancy from audio and video signals. Much of the modern telecommunica-
tion infrastructure is based on insights gained from information theory.

The basic concepts of information theory have their roots in the ensemble theory of
statistical physics, which was developed between 1870 and 1910 by, amongst others,
Maxwell, Boltzmann, and Gibbs. This relationship is reflected in the fact that entropy
plays a central role in both information theory and statistical physics. In the first section
of this chapter, we discuss the meaning of entropy in physics in some more detail.

This chapter provides an introduction to the information theory of discrete random
variables2 from the perspective of source coding. Thus, the emphasis is on aspects of
information theory that facilitate understanding of coding sampled signals.

1Interestingly, both information theory and the transistor were developed in the same building at
AT&T Bell Laboratories in New Jersey.

2For a brief review of probability theory, see Appendix A.

11
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2.2 Relation to Statistical Physics

We briefly discuss the meaning of entropy in physics before embarking on a discussion
of information theory. Entropy was introduced by Clausius in 1850 as a macroscopic
quantity useful to the definition of the second law of thermodynamics. Using entropy,
this law can be stated as follows: in every process taking place in an isolated system,
the entropy of the system either increases or remains constant (e.g., [5, 6]).

Shortly after the introduction of the concept of entropy, the groundwork for statistical
physics was laid. The basic premise of statistical physics is that, for an isolated system,
all accessible (micro-) states are equally likely. Macroscopic observables, such as pressure
and concentration are simply the average values of these quantities over the system
states. Boltzmann showed that entropy H and the number of accessible states, Ω, are
related by

H = k log(Ω), (2.1)

where k is the Boltzmann constant. In this light, entropy can be interpreted as a
measure of uncertainty about the state of the system.

Example 2.1: The second law of thermodynamics

The second law states that the entropy of an isolated system cannot decrease.

From a statistical-mechanics viewpoint, this means simply that states that cor-

respond to a decrease in entropy are extremely unlikely to occur. Consider, for

example, two containers, connected by a small opening, each containing two ideal

classical gasses, one with red molecules and one with blue molecules. There are M

molecules of each. What is the probability that the gasses spontaneously separate

into the two containers? Separation means that for each molecule only half of the

total space is available. The probability of having each molecule in a specified

container is 2−2M . In contrast, the probability that the molecules are precisely

equally distributed over the container is a factor
(

M!
(M/2)!

(M/2)!
)2

larger. In other

words, the states corresponding to the mixed situation are much more likely than

the states corresponding to separated gasses. Thus, if we start with the gasses

separated in each container, and connect the container, then over the time the

system will progress towards mixing, and higher entropy, simply because that is

much more likely.

To predict physical properties, it is often advantageous to perform an analysis through
an ensemble of a large number of identical systems, which together form an isolated
system. In a canonical ensemble the overall energy of the ensemble is constrained
and energy can be exchanged between the systems. In the grand-canonical ensemble
the overall energy and the overall number of particles is constrained and energy and
particles can be exchanged between the systems. The basic premise of statistical physics
is that all possible ensemble configurations have equal probability. To be more precise:
all distinguishable and jointly accessible configurations of states of the systems of the
ensemble have equal probability.

Let the states of each system form a discrete set, A = {1, 2, · · · , |A|}. N1 systems
of ensemble are in state 1, N2 systems are in state 2, etc., with

∑

x∈ANx = N . The
numbers Ni/N , i ∈ A describe the empirical distribution of the system states. The set of
jointly accessible states (and, therefore, the empirical distribution) is constrained by the
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ensemble (macroscopic) constraints (the total number of particles in the ensemble, the
total energy). Let us evaluate the logarithm of the number of configurations accessible to
the entire ensemble (by exchanging energy or energy and particles between the systems
of the ensemble) for a given empirical distribution of the system states, normalized to
a per system basis:

1

N
log(ΩpX

) =
1

N
log

(

N !

N1! · · ·N|A|!

)

≈ log(N)−
∑

x∈A

Nx

N
log(Nx)

= −
∑

x∈A

pX(x) log(pX(x)), (2.2)

where we used the Stirling approximation log(M !) ≈ M log(M) − M (valid only for
large integer M), and where X is a random variable with the probability mass function
pX(x) = Nx/N . The distribution pX corresponding to the largest number of config-
urations (largest entropy) is referred to as the maximum-entropy distribution. It
can be shown that essentially all accessible ensemble configurations are associated with
the maximum-entropy distribution pX for very large ensembles (large N). As a conse-
quence, the distribution of the system states is unambigious; although we set out with a
notion of all ensemble configurations being equally likely, for essentially all observations
the empirical probability mass function is the maximum-entropy distribution. More-
over, to predict any macroscopic variables describing a system, we can simply assume
that the ensemble has a maximum-entropy distribution. The corresponding entropy is
equivalent to the entropy as defined in thermodynamics.

The system states of statistical physics correspond to the symbols of an alphabet in
information theory. The generic system used in the ensemble is the random variable.
The specific system states correspond to realizations of the random variable. Thus, the
ensemble of identical systems in statistical physics corresponds to a sequence of identi-
cally distributed random variables. The number of systems is the length of the message.
The number of configurations of the ensemble corresponds to the number of possible
messages. If the entropy of the system is small, then relatively few configurations of the
states in the ensemble are possible. The uncertainties about a symbol and about the
message are small. Little information is contained within such a message. If the entropy
of the system is large, then the ensemble of systems has many possible configurations
of its states. The uncertainty about a symbol and about a sequence of such symbols is
then large. More information is contained in the message.

As we have seen above, statistical physics starts from the notion that all accessible
configurations of the ensemble are equally likely and this leads to an unambiguous
distribution of the system states. If we translate this to communication, this means that
we assume all possible messages of a certain (long) length are equally likely and this in
turns leads to an unambiguous probability distribution for the alphabet of symbols. In
contrast, information theory generally starts from the definition of a random variable
with a probability distribution and we do so in section 2.3. We show in section 2.8 that
this starting point implies that almost all long sequences are equally likely. Thus, the
two approaches are essentially equivalent, but start at opposite ends.

Example 2.2: Simple canonical ensemble

Consider a system consisting of one idealized atom that can take the discrete energy
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levels {0, 1, 2, · · · }. We create a canonical ensemble by simultaneously considering
a very large set of of these atoms that can exchange energy. The macroscopic
constraint is that the average energy of the systems in the ensemble is E. The most
likely distribution of the energy over the systems in the ensemble is the distribution
pX(x) that maximizes the entropy under the constraint that the mean energy is

E =
∞
∑

x=0

pX(x)x,

where the x are the discrete energy levels. We also have the constraint that pX(x)
is a probability distribution. That is

1 =
∞
∑

x=0

pX(x)

and all pX(x) must be non-negative. For the derivation we can ignore the second
constraint; it can be checked that our answer satisfies it. Using the method of
Lagrange multipliers (see Appendix B), we obtain as extended criterion

η =
∞
∑

x=0

pX(x) log(pX(x)) + λ1(1−
∞
∑

x=0

pX(x)) + λ2(E −
∞
∑

x=0

pX(x)x),

where λ1 and λ2 are the Lagrange multipliers. Taking the derivative with respect
to a particular pX(x) and setting the result to zero, we obtain

0 = log(pX(x)) + 1 + λ1 + λ2x.

Since pX(x) is a probability distribution and must sum to unity, the distribution
of the energy of an atom is of the form

pX(x) =
e−λ2x

∑∞
x=0 e

−λ2x
.

This implies that

E =
∞
∑

x=0

pX(x)x

=

∑∞
x=1 xe

−λ2x

∑∞
x=0 e

−λ2x

= e−λ2

∑∞
x=1 xe

−λ2(x−1)

∑∞
x=0 e

−λ2x

=
e−λ2

1− e−λ2
,

which shows that λ2 = − log( E
1+E

). For sufficiently large E >> 1 it is reasonable

to write λ2 = 1
E

and we then obtain a so-called canonical distribution:

pX(x) =
e−

x
E

∑∞
x=0 e

− x
E

.

This energy distribution corresponds to the largest number of configurations for

the canonical ensemble.
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2.3 Information-Theoretic Definition of Entropy

Consider a random variable3 X that can take any one of a set of values from a discrete
alphabet (countable set) A with probability pX(x) ≡ P (X = x). The entropy of the
random variable in bits is defined as

H(X) = −
∑

x∈A

pX(x) log2(pX(x)). (2.3)

When using a base-2 logarithm, the entropy is specified in bits. It is often convenient for
mathematical manipulation to use the natural logarithm instead. The unit of entropy
is then called the nat. In this text, we sometimes use bits, and sometimes nats.

Entropy is never less than zero. This follows immediately from the fact that pX(x) ∈
[0, 1]4.

The entropy of a random variable can be interpreted as the uncertainty about the
random variable prior to observation. Zero entropy implies no uncertainty and a high
entropy implies strong uncertainty.

Example 2.3: Entropy of a constant

What is the entropy for a random variable, X, with an alphabet A containing

only one entry, pX(x) = 1? In this case the outcome of an observation is known

a-priori, there is no uncertainty, and the entropy is zero (since log(pX(x)) = 0).

Example 2.4: Entropy of uniform distribution

What is the entropy of a random variable Y with an alphabet B with N entries
and a uniform probability mass over these entries? In this case:

H(Y ) = −
∑

y∈B

1

N
log2(

1

N
) = log2(N). (2.4)

As expected, the entropy, and thus the uncertainty, increases with an increase in

the number of possible outcomes of the observations. We note also that if we

index the elements of B by 1, · · · , N , and if N is a power of 2, then we can specify

each index uniquely with a codeword of log2(N) bits. As we will see below, this

similarity of the required codeword length and the entropy is no coincidence.

Let us consider a random variable that has not yet been observed. Naturally, we can
remove the uncertainty about the variable by specifying a description of its value. That
is, the uncertainty about the variable can be removed by specifying its value in some
agreed-upon format: a code. Such a code can be given in the form of bits and is
then called a binary code. It would seem that there should be a relation between the
entropy of the variable and the effort to specify the value of the variable. Indeed, as will
be shown below, if we use a uniquely decodable code (which will be defined precisely
later) to describe the variable, the entropy is a lower bound on the minimum required
average codeword length. The most efficient codes can get within one bit of the entropy.
If we code a sequence of variables in one codeword instead of one at a time, then we can

3Following common convention, we use capital letters to indicate random variables.
4Differential entropy, an information measure for continuous variables, which will be introduced in

chapter 3, can be negative.
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encode variables at a bit rate that is arbitrarily close to the entropy. Loosely speaking,
entropy is the infimum average number of bits required to encode a random variable.

Example 2.5: American Standard Code for Information Interchange

The American Standard Code for Information Interchange (ASCII) code is a sim-

ple code used to describe keyboard entries. It uses 8 bits to represent the symbols.

Only 7 of the 8 bits are actually used.

Since pX(X) is a random variable, the entropy can also be written as an expectation:

H(X) = −E[log(pX(X))]. (2.5)

The entity − log(pX(x)) can be interpreted as the information in nats provided by the
observation of a symbol associated with an event X = x for the random variable. Thus,
events with low probability carry more information than events with high probability.
This is consistent with intuition: in guessing someone’s name, it is more valuable to be
told that a name contains the (low probability) letter “x”, than to be told it contains
the (high probability) letter “a”. The entropy of a random variable is then simply the
expectation of the information in the variable.

It is instructive to determine the probability mass function for a random variableX with
maximum entropy given the number, N , of possible events in the event set A. In other
words, X can be any one of N symbols. First, we find the extremum of the expression
−
∑

x∈A pX(x) log(pX(x)) as a function of the entities pX(x) under the constraint that
∑

x∈A pX(x) = 1. (The condition that pX(x) is nonnegative should also be satisfied, but
the solution does this without invoking the constraint.) Using the method of Lagrange
multipliers, we obtain as criterion

η = −
∑

x∈A

pX(x) log(pX(x)) − λ(1 −
∑

x∈A

pX(x)), (2.6)

where λ is the Lagrange multiplier. Differentiating towards pX(x) (note that we consider
the entity pX(x) as a variable) and equating the results to zero we obtain

log(pX(x)) = λ− 1 (2.7)

for all x ∈ A. This result is identical for all pX(x) and this means that all pX(x)
are identical in value at the extremum. Furthermore, the constraint

∑

x∈A pX(x) = 1,

which sums over the N terms, shows that this value must be 1/N . The corresponding
entropy is Hext(X) = −

∑

A 1/N log(1/N) = log(N). What remains to be shown is that
this solution corresponds to a maximum. This can be done by a second differentiation
or by using inequalities; we will not do so here. To summarize, we conclude that, for a
given cardinality (number of elements) of the alphabet, the entropy of a random variable
is highest for a uniform distribution.

2.4 Entropy and Optimal Codes

Probably the most important aspect of entropy is that it provides bounds on the mean
code lengths required to encode a random variable. To be more precise: the entropy
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provides bounds on the average length of a uniquely decodable code. We define a
code as uniquely decodable if any finite concatenation of codewords maps into a unique
sequence of source symbols.

Consider a random variable with alphabet A to be encoded with a uniquely decodable
code with codewords of length l(x). (To simplify notation, we will only consider bits in
this section.) It is natural to search for the code with the shortest average codeword
length, i.e., the code for which

L = E[l(X)] =
∑

x∈A

pX(x)l(x) (2.8)

is minimized. The fact that a code is uniquely decodable introduces a constraint on
the minimum expected code length. The mathematical formulation of this constraint is
called the Kraft inequality, which was first proven in the context of uniquely decodable
codes by McMillan [7]. We will show that, given the Kraft inequality, the entropy is a
lower bound for L. In a separate proof we can then show that we always can get within
one bit of this lower bound.

In the next subsection we describe and prove the Kraft inequality. In subsection 2.4.3
we then prove the inequality relations between entropy and L.

2.4.1 The Kraft Inequality

Our proof of the Kraft inequality follows Karush [8, 7]. As before, x is a realization of a
random variable with alphabet A. In the present context, x represents a source symbol.
Then, let xk denote a sequence of k source symbols x and let Ak denote the associated
k-dimensional alphabet of source symbols (created from all possible concatenations of k
source symbols x). The codeword length (we measure in bits) for a particular sequence
of k symbols is denoted by l(xk). The codeword lengths of the individual symbols and
those of the entire sequence of k concatenated symbols satisfy

(
∑

x1∈A

2−l(x1))k =
∑

xk∈Ak

2−l(xk). (2.9)

Equation 2.9 is simple to interpret. Let us denote the cardinality of A by |A|. Then,
there are |A|k = |Ak| terms on the right-hand side of equation 2.9, each corresponding
to a particular sequence of k codewords from A. The exponent of each term just adds
(minus) the length of all k codewords corresponding to the sequence to render (minus)
the overall length of the particular codeword sequence.

Example 2.6: Illustration of equation 2.9

Consider a random variable with an alphabet of cardinality three. We use a code
with codewords 0, 10, 11. We then have

∑

x1∈A

2−l(x1) = 2−1 + 2 · 2−2.

Now consider the concatenation of two source symbols. We then have

(
∑

x1∈A

2−l(x1))2 = (2−1 + 2 · 2−2)(2−1 + 2 · 2−2)

= 2−2 + 4 · 2−3 + 4 · 2−4,
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which corresponds to the codewords 00, 010, 011, 100, 1010, 1011, 110, 1110 1111.

The terms gather codewords of identical length.

Defining lmax = maxx∈A(l(x
1)), we can also write for a concatenation of k symbols

(
∑

x1∈A

2−l(x1))k =
∑

xk∈Ak

2−l(xk) =

klmax
∑

m=1

c(m)2−m, (2.10)

where the c(m) are constants. Each c(m) in equation 2.10 just represents the number
of symbol sequences with concatenated codeword length m. However, by the definition
of a uniquely decodable code, each concatenation of codewords of length l must be
uniquely decodable. This implies that a sequence of m bits can represent no more than
2m symbol sequences, i.e., c(m) ≤ 2m. Thus:

(
∑

x1∈A

2−l(x1))k ≤
klmax
∑

m=1

2m2−m = klmax. (2.11)

Taking the k’th root of both sides of this equation provides the inequality

∑

x1∈A

2−l(x1) ≤ (klmax)
1
k , (2.12)

which is true for all k. The bound is tightest for the case where k approaches infinity,
when the right hand side converges to unity. Thus, we have the following theorem:

Theorem 1 Kraft inequality: for a uniquely decodable code, with codeword lengths l(x)

∑

x∈A

2−l(x) ≤ 1. (2.13)

2.4.2 How to Construct a Code Satisfying the Kraft Inequality

It is always possible to define a uniquely decodable code for a set of lengths {l(x)}
satisfying the Kraft inequality. This can be shown by construction of an actual code.
We use a so-called prefix or instantaneous code. A prefix is simply an initial segment
of a codeword. A prefix code is a code where a codeword cannot be a prefix to another
codeword.

Example 2.7: A prefix code

Consider a code with three codewords 0, 10, 11. The shorter codeword 0 is not a

prefix to the codewords 10 and 11, and the code is therefore a prefix code.

Consider a set of codeword lengths {li} = l1, · · · , lm that satisfy the Kraft inequality.
We assume our code to be specified in bits and, without loss of generality, we also
assume that the codeword lengths are ordered: l1 ≤ l2 · · · ≤ lm. We note that the Kraft
inequality can be rewritten as

∑

x∈A

2lm−l(x) ≤ 2lm . (2.14)
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Figure 2.1: Binary tree and corresponding binary code.

Equation 2.14 facilitates the visualization of the code in a tree format. Consider a binary
tree with each branching representing a bit and a codeword being the concatenation of
the bits along the branches as shown in figure 2.1. Now consider a codeword of length
l(x). The term 2lm−l(x) represents the number of codewords of length lm for which
this codeword is a prefix. We will call these codewords of length lm the descendants
of the codeword of length l(x). The Kraft inequality then states that the sum of the
number of descendants of length lm of all codewords in a uniquely-decodable code must
be less than 2lm . A code satisfying this constraint is easily constructed with the binary
tree structure. Figure 2.1 shows how to create a uniquely decodable code for the given
codeword lengths 2, 2, 3, 3, 3.

2.4.3 The Source-Coding Theorem

Using the Kraft inequality, we can now show that a uniquely decodable code can be no
shorter in expectation than the entropy. We first define

pL(x) ≡
2−l(x)

∑

x∈A 2−l(x)
(2.15)

and note that this quantity is a probability mass function since it sums to unity. In the
derivation we will exploit two inequalities: log(x) ≤ x− 1 (or log2(x) ≤ (x− 1)/ log(2))
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and the Kraft inequality in the form log2(
∑

x∈A 2−l(x)) ≤ 0. Then we have

L =
∑

x∈A

pX(x)l(x)

= −
∑

x∈A

pX(x) log2(2
−l(x))

≥ −
∑

x∈A

pX(x) log2(2
−l(x)) +

∑

x∈A

pX(x) log2(
∑

x∈A

2−l(x))

= −
∑

x∈A

pX(x) log2(pL(x))

= H(X)−
∑

x∈A

pX(x) log2(
pL(x)

pX(x)
)

≥ H(X)−
∑

x∈A

pX(x)

(

pL(x)

pX(x)
− 1

)

/ log(2)

= H(X)−
(

∑

x∈A

pL(x) −
∑

x∈A

pX(x)

)

/ log(2)

= H(X). (2.16)

We see thus that a uniquely decodable code cannot be shorter, on average, than the
entropy.

Next, we show that a uniquely decodable code can, in fact, get within 1 bit of the entropy
for an encoding in bits. To this purpose, we select a code with l(x) = ⌈− log2(pX(x))⌉,
where ⌈·⌉ rounds to the next higher integer. Such a code satisfies the Kraft inequality:

∑

x∈A

2−l(x) =
∑

x∈A

2−⌈− log2(pX (x))⌉

≤
∑

x∈A

2log2(pX(x))

=
∑

x∈A

pX(x) = 1, (2.17)

and can, therefore, be made to be a uniquely decodable code using the method provided
in section 2.4.2. This type of uniquely-decodable code is called a Shannon code and
will be discussed in more detail in section 5.2.1. For a Shannon code we have

L =
∑

x∈A

pX(x)l(x)

=
∑

x∈A

pX(x)⌈− log(pX(x))⌉

< −
∑

x∈A

pX(x) log(pX(x)) + 1

= H(X) + 1. (2.18)

From this inequality and inequality 2.16 we obtain the source coding theorem:



2.5. OTHER ENTROPY MEASURES 21

Theorem 2 The uniquely decodable code that minimizes the average codeword length,
L, satisfies

H(X) ≤ L < H(X) + 1. (2.19)

Note that the proof of this theorem was constructive and that Shannon codes can be
used for practical applications (although there are better codes).

At first sight, the upper bound H(X)+ 1 may not seem very tight for random variables
with an entropy of, say, 1 bit or less. However, this problem is easily mitigated simply
by combining symbol sequences into new symbols of higher entropy.

2.5 Other Entropy Measures

2.5.1 Joint Entropy

The definition of the entropy of a random variable is valid independently of the di-
mensionality of the variable. Thus, the joint entropy of a set of k random variables,
{Xi}0<i≤k, is implicitly defined by our first entropy definition. However, for practical
purposes, it is convenient to define a notation for the joint entropy of a set of random
variables:

H(X1, · · · , Xk) = −E[log(pX1···Xk
(X1, · · · , Xk))]

= −
∑

x1∈A1

· · ·
∑

xk∈Ak

pX1···Xk
(x1, · · · , xk) log(pX1···Xk

(x1, · · · , xk)),

where we used the alphabets Ai and where we note that the subscripts label the different
variables.

Next, we prove the following theorem:

Theorem 3 The joint entropy of a set of variables can never be more than the sum of
the entropies of the individual variables:

H(X1, · · · , Xk) ≤ H(X1) + · · ·+H(Xk). (2.20)

We will first prove the theorem for two variables. Using nats as units and the fact that
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log(x) ≤ x− 1, we have:

H(X,Y ) = −
∑

x∈A

∑

y∈B

pXY (x, y) log(pXY (x, y))

= −
∑

x∈A

pX(x) log(pX(x)) −
∑

y∈B

pY (y) log(pY (y))

−
∑

x∈A

∑

y∈B

pXY (x, y) log(
pXY (x, y)

pX(x)pY (y)
)

= H(X) +H(Y ) +
∑

x∈A

∑

y∈B

pXY (x, y) log(
pX(x)pY (y)

pXY (x, y)
)

≤ H(X) +H(Y ) +
∑

x∈A

∑

y∈B

pXY (x, y)

(

pX(x)pY (y)

pXY (x, y)
− 1

)

= H(X) +H(Y ) +
∑

x∈A

∑

y∈B

pX(x)pY (y)−
∑

x∈A

∑

y∈B

pXY (x, y)

= H(X) +H(Y ). (2.21)

By recursive application of this method, we can prove the theorem for any number of
variables.

Note that inequality 2.21 becomes an equality if pXY (x, y) = pX(x)pY (y), i.e., if the
variables X and Y are independent. This suggests that, if coding is to be performed
individually on a set of variables, it is useful to search for a transform that results in
variables that are independent. The inverse transform can then be performed upon
decoding. (Transform coding will be the topic of chapter 9.)

Example 2.8: Joint entropy of dependent variables

Let us compute the joint entropies H(X1, X2) and H(X1, Y = X1 + X2) and
compare them to the entropy sums. X1 and X2 are independent with probability
mass functions pX1(0) = pX1(1) = 0.5 and pX2(0) = pX2(1) = 0.5. From example
2.4, we know that H(X1) = H(X2) = 1 bit. The vector [X1, X2], which has four
states of equal probability, has entropy H([X1, X2]) = H(X1, X2) = 2 bits and
this equals the sum of the entropies of the individual variables.

The vector Y takes the values 0, 1, 2 with the probability mass function pY (0) =
0.25, pY (1) = 0.5, pY (2) = 0.25. Thus H(Y ) = 0.25 ∗ 2 + 0.5 ∗ 1 + 0.25 ∗ 2 = 1.5
bits. The probability mass function of the vector [X1, Y ] is

pX1Y (0, 0) = pX1X2(0, 0) = 0.25

pX1Y (0, 1) = pX1X2(0, 1) = 0.25

pX1Y (0, 2) = 0

pX1Y (1, 0) = 0

pX1Y (1, 1) = pX1X2(1, 0) = 0.25

pX1Y (1, 2) = pX1X2(1, 1) = 0.25

which leads to the joint entropy H([X1, Y ]) = H(X1, Y ) = 2 bits. This is signifi-
cantly less than H(X1) +H(Y ) = 2.5 bits.

The results illustrate theorem 3. The sum of the entropies of independent variables

equals their joint entropy. For dependent variables the joint entropy is less than

the sum of the entropies of the variables.
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2.5.2 Conditional Entropy

The conditional entropy is defined as

H(Y |X) ≡ −E[log(pY |X(Y |X))] = −
∑

x∈A

∑

y∈B

pXY (x, y) log(pY |X(y|x)). (2.22)

A first interpretation of the conditional entropy can be obtained from writing it in the
following form:

H(Y |X) = −
∑

x∈A

∑

y∈B

pXY (x, y) log(pY |X(y|x))

= −
∑

x∈A

pX(x)
∑

y∈B

pY |X(y|x) log(pY |X(y|x))

=
∑

x∈A

pX(x)H(Y |X = x). (2.23)

Thus, the conditional entropy H(Y |X) corresponds to the entropy of the random vari-
able Y given that X is X = x, averaged over the alphabet A of X . More informally,
the conditional entropy H(Y |X) is the average uncertainty in Y after observation of X .
This viewpoint suggests that the conditional entropy H(Y |X) equals the entropy H(Y )
for the case that Y and X are independent.

From the definitions of joint and conditional entropy we note that

H(X,Y ) = −E[log(pXY (X,Y ))]

= −E[log(pY |X(Y |X)) + log(pX(X))]

= −E[log(pY |X(Y |X))]− E[log(pX(X))]

= H(Y |X) +H(X). (2.24)

Equation 2.24 allows a second interpretation of the conditional entropy, sinceH(Y |X) =
H(X,Y ) −H(X). In words: the conditional entropy H(Y |X) is the remainder uncer-
tainty after the uncertainty of the random variable X has been subtracted from the
joint uncertainty in the random variables X and Y .

It follows immediately from theorem 3 and equation 2.24 that conditioning never in-
creases the entropy, an intuitive result:

Theorem 4 Conditional entropy is bound from above by the corresponding uncondi-
tional entropy:

H(Y |X) ≤ H(Y ). (2.25)

The inequality in theorem 4 becomes an equality when X and Y are independent.

Example 2.9: Conditioning

What is the conditional entropy of a random parameter given itself? We note that

H(X,X) = H(X). Thus, we have that H(X|X) = 0.
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The so-called chain rule is particularly useful for the study of random processes. By
recursive application of equation 2.24 we see that, for a sample block X1, X2, · · · , Xk

we have

H(X1, X2, · · · , Xk) = H(X1) +H(X2|X1) +

k
∑

i=3

H(Xi|X1, · · · , Xi−1)

=

k
∑

i=1

H(Xi|X1, · · · , Xi−1). (2.26)

If the samples are independent, then the conditionals can be dropped, and the joint
entropy is just the sum of the entropies of the samples.

The addition of independent random variables is common and where such additions
occur, a simple relation between entropy and conditional entropy is often helpful. Let
us consider the random variables X , Y , and Z with alphabets A, B, and C respectively.
Z is the addition of the independent variables X and Y : Z = X + Y . The following
relation then holds:

H(X + Y |Y ) = H(Z|Y ) = −
∑

y∈B

∑

z∈C

pZY (z, y) log(pZ|Y (z|y))

= −
∑

y∈B

pY (y)
∑

z∈C

pZ|Y (z|y) log(pZ|Y (z|y))

= −
∑

y∈B

pY (y)
∑

x∈A

pZ|Y (x+ y|y) log(pZ|Y (x+ y|y))

= −
∑

y∈B

pY (y)
∑

x∈A

pX(x) log(pX(x))

=





∑

y∈B

pY (y)



H(X) = H(X). (2.27)

2.5.3 Entropy Rate and Redundancy Rate

In the coding of random processes, we deal with sequences of random variables (the
samples). We can use the concept of joint entropy to study the properties of these
sequences. The theory is usually limited to (strict-sense) stationary processes and we
will also make this assumption. For a process it is often useful to consider not only
the entropy of an individual sample, which is referred to as the first-order entropy of
the process, H1(Xi) ≡ H(Xi), but also the entropy of blocks of samples. The order-k
entropy is defined as

Hk(Xi) ≡
1

k
H(Xi+1, · · · , Xi+k) =

1

k
H(X1, · · · , Xk), (2.28)

where we showed explicitly that the block selection is immaterial because of the station-
arity assumption. The limiting case of this sequence of entropies is called the entropy
rate:

H∞(Xi) ≡ lim
k→∞

1

k
H(X1, · · · , Xk). (2.29)
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Next, we show that the order-k entropy is a monotonically nonincreasing function of
k. Since the conditioned entropy of a random variable can not be more than the un-
conditioned entropy of a random variable, we see that for a stationary process Xi we
have

H(Xk|X1, · · · , Xk−1) ≤ H(Xi|X1, · · · , Xi−1), i ≤ k, (2.30)

and H(Xk|X1, · · · , Xk−1) ≤ H(X1). Using these properties, we can prove that the
per-sample average entropy is a nonincreasing function of the order (to simplify nota-
tion, conditioning is not active for reverse-time order of the conditioning variables, i.e.,
H(X1|X1, X0) = H(X1)),

Hk(Xi) =
1

k

k
∑

j=1

H(Xj |X1, · · · , Xj−1)

=
1

k − 1

k−1
∑

j=1

H(Xj|X1, · · · , Xj−1)

− 1

k





1

k − 1

k−1
∑

j=1

H(Xj |X1, · · · , Xj−1)−H(Xk|X1, · · · , Xk−1)





= Hk−1(Xi)−
1

k

1

k − 1

k−1
∑

j=1

(H(Xj |X1, · · · , Xj−1)−H(Xk|X1, · · · , Xk−1))

≤ Hk−1(Xi), (2.31)

since the terms in the last summation are all nonnegative. Thus, the order-k entropy
for samples of a stationary signal generally decreases with increasing block size. This
is intuitively reasonable since the samples may share information, i.e., they may be
statistically dependent.

Inequality 2.31 also shows that the order-k entropies form a decreasing sequence of
nonnegative numbers, which must have a limit. It then follows from theorem 2 that the
average codeword length normalized to a per sample basis can be made to be arbitrarily
close to the entropy rate by increasing the block size, k, sufficiently. Coding at a higher
average codeword length per sample (average bit rate) implies redundancy.

We have now seen that the order-k entropy is nonincreasing with increasing order (in-
equality 2.31) and we saw earlier in theorem 4 that the entropy is nonincreasing with
increasing conditioning. It is useful to connect the bounds of the two sequences for a
stationary process. For ease of notation let us write Hc ≡ H(Xi|X−∞, · · · , Xi−1). Then
we can write (again, to simplify notation conditioning is not active for reverse-time order
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of the conditioning variables)

Hk(Xi) =
1

k

k
∑

i=1

H(Xi|X1, · · · , Xi−1)

=
1

k

k
∑

i=1

H(X1|X−i+2, · · · , X0)

=
1

k

N
∑

i=1

H(X1|X−i+2, · · · , X0) +
1

k

k
∑

i=N+1

H(X1|X−i+2, · · · , X0)

=
1

k

N
∑

i=1

H(X1|X−i+2, · · · , X0) +
k −N

k
Hc +

1

k

k
∑

i=N+1

(H(X1|X−i+2, · · · , X0)−Hc) (2.32)

Now let us consider the individual terms on the right-hand side of equation 2.32 for
the case that k → ∞ and N is finite. The term 1

k

∑N
i=1H(X1|X−i+2, · · · , X0) vanishes

because of the 1/k factor. The term k−N
k Hc becomes Hc when k approaches infinity.

Finally, since the terms H(X1|X−i+2, · · · , X0) approach Hc with increasing i, we can

always find an N that makes the term 1
k

∑k
i=N+1(H(X1|X−i+2, · · · , X0)−Hc) smaller

than any arbitrary small number. We write the result as a theorem.

Theorem 5 For a stationary sequence the entropy rate equals the sample entropy con-
ditioned by the infinite past.

H∞(Xi) = H(X1|X−∞, · · · , X0). (2.33)

Having defined a lower bound for the bit rate required for encoding a stationary signal,
it is straightforward to define an excess bit rate required when the dependencies between
samples are not accounted for. The redundancy rate (the redundancy per sample)
of a stationary signal is defined as the difference between the entropy and the entropy
rate:

ρ(Xi) = H1(Xi)−H∞(Xi). (2.34)

Example 2.10: Entropy and redundancy rate of iid process

It is interesting to consider the relation between H∞(Xi) and H1(Xi) for a signal
consisting of independent, identically distributed (iid) samples with a discrete al-
phabet A. Theorem 5 immediately shows that H∞(Xi) = H(X1). In this case,
this is also easily obtained directly from the defining equation for entropy rate



2.5. OTHER ENTROPY MEASURES 27

(equation 2.29):

H∞(Xi) ≡ lim
k→∞

1

k
H(X1, · · · , Xk)

= − lim
k→∞

1

k

∑

x1∈A
· · ·

∑

xk∈A
pX1···Xk

(x1, · · · , xk) log(pX1···Xk
(x1, · · · , xk))

= − lim
k→∞

1

k

∑

x1∈A
· · ·

∑

xk∈A
pX1(x1) · · · pXk

(xk) log(pX1(x1) · · · pXk
(xk))

= − lim
k→∞

1

k

k
∑

i=1

∑

xi∈A
pXi(xi) log(pXi(xi))

= lim
k→∞

1

k

k
∑

i=1

H1(Xi)

= H1(Xi).

Thus, if the samples are iid distributed, then the first-order entropy is equal to the

entropy rate, and the redundancy rate is zero. In fact, all higher-order entropies

are equal to the first-order entropy in this case.

Example 2.11: Entropies of Markov chain process

In a first-order Markov process (denoted here by Xi), the system state at time i

1

2 3

Figure 2.2: The three-state Markov process of example 2.11.

depends only on the system state at time i− 1, i.e.,

P (Xi = xi|Xi−1 = xi−1, Xi−2 = xi−2, · · · ) = P (Xi = xi|Xi−1 = xi−1).

Let us consider a stationary three-state Markov process illustrated in figure 2.2.
The transition probabilities between the states are specified by the state transition
matrix,

T =





0.5 0.0 0.5
0.5 0.5 0.0
0.0 0.5 0.5



 ,

where Tnm = P (Xi = n|Xi−1 = m).

We want to compute the H(Xi), H2(Xi), and H∞(Xi) of the three-state Markov
process. We first conclude from symmetry of the transition matrix that the prob-
lem is symmetric in the states, and that, therefore, all states must have equal
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probability. Using the basic formula for entropy with probability 1/3 for all states
gives H(Xi) = log2(3). Furthermore, we note

Hk(Xi) =
1

k

k
∑

i=1

H(Xi|X1, · · · , Xi−1)

=
1

k
H(X1) +

1

k

k
∑

i=2

H(Xi|Xi−1)

=
1

k
H(X1) +

k − 1

k
H(Xi|Xi−1).

The conditional entropy is easy to evaluate:

H(Xi|Xi−1) = −
∑

xi∈A,xi−1∈A
pXiXi−1(xi, xi−1) log(pXi|Xi−1

(xi|xi−1))

= −
∑

xi∈A,xi−1∈A
pXi−1(xi−1)pXi|Xi−1

(xi|xi−1) log(pXi|Xi−1
(xi|xi−1))

= −
∑

xi∈A
pXi|Xi−1

(xi|xi−1 = 1) log(pXi|Xi−1
(xi|xi−1 = 1))

= − log2(0.5) = 1,

where we denoted the set of states by A and used the state symmetry extensively.
Combining this result with equation 2.33 we obtain

H2(Xi) =
1

2
H(X1) +

1

2
H(Xi|Xi−1) =

1

2
log2(3) +

1

2
,

H∞(Xi) = H(Xi|Xi−1) = 1.

2.6 Mutual Information

So-far, we have defined entropy, joint entropy, and conditional entropy. Next we define
mutual information, a quantity that is central to information theory and particularly
to rate-distortion theory (to be discussed in chapter 6). The mutual information between
two random parameters X and Y is defined as

I(X ;Y ) ≡ H(X) +H(Y )−H(X,Y )

= H(X)−H(X |Y )

= H(Y )−H(Y |X). (2.35)

Recall that H(Y |X) is the expectation of the uncertainty in Y after observation of
X . Thus, the mutual information I(X ;Y ) is the expectation of the reduction in the
uncertainty of Y after observation of X or vice versa.

Using the definitions of entropy and mutual information, it is possible to express mutual
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−1
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y

Figure 2.3: Probability mass function of example 2.12. Each point has probability 1/4.

information in terms of the probability mass functions:

I(X ;Y ) ≡ H(X) +H(Y )−H(X,Y )

= −
∑

x∈A

pX(x) log(pX(x))−
∑

y∈B

pY (y) log(pY (y)) +

∑

x∈A

∑

y∈B

pXY (x, y) log(pXY (x, y))

=
∑

x∈A

∑

y∈B

pXY (x, y) log(
pXY (x, y)

pX(x)pY (y)
). (2.36)

Example 2.12: Mutual information of a discrete distribution

We compute the mutual information of the probability mass function in figure
2.3:

I(X;Y ) =

2
∑

x=1

2
∑

y=1

pXY (x, y) log2(
pXY (x, y)

pX(x)pY (y)
)

= 4
1

4
log2(

1
4

1
2

1
4

)

= 1.

This mutual information is 1 bit. This is intuitive since, if we know X we only
know if Y is positive or negative, but no more. Similarly, if we know Y , we know
whether X is -1 or +1, which again is 1 bit.

We can also find the mutual information by computing

H(X) = log2(2) = 1

H(Y ) = log2(4) = 2

H(X,Y ) = log2(4) = 2

and using these results to obtain

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= 1 + 2− 2 = 1.
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Similarly to entropy, mutual information is always nonnegative and this property is
often used. This result immediately follows from the definition of mutual information
in equation 2.36 and theorem 3. To emphasize its importance, we write this result as a
theorem:

Theorem 6 The mutual information of two random variables is always nonnegative,

I(X ;Y ) ≥ 0. (2.37)

For clarity, we note that the nonnegativity of mutual information does not carry over
to mutual information of more variables (using the standard definition). A direct proof
of the nonnegativity of mutual information using probability mass functions is simple:

I(X ;Y ) =
∑

x∈A

∑

y∈B

pXY (x, y) log(
pXY (x, y)

pX(x)pY (y)
)

= −
∑

x∈A

∑

y∈B

pXY (x, y) log(
pX(x)pY (y)

pXY (x, y)
)

≥ −
∑

x∈A

∑

y∈B

pXY (x, y)(
pX(x)pY (y)

pXY (x, y)
− 1)

= −
∑

x∈A

∑

y∈B

pX(x)pY (y) +
∑

x∈A

∑

y∈B

pXY (x, y)

= −1 + 1 = 0, (2.38)

where we used log(x) ≤ x− 1.

The derivation in 2.38 shows that the inequality becomes an equality if the variables are
independent, i.e., when pXY (x, y) = pX(x)pY (y). This is quite intuitive; independent
variables do not share mutual information. The fact that mutual information is non-
negative forms a convenient basis for proving many other properties, including some of
the properties we derived earlier.

For completeness, we mention that it is sometimes useful to define conditional mutual
information:

I(X ;Y |W ) ≡ H(X |W ) +H(Y |W )−H(X,Y |W ). (2.39)

The understanding of the relation between the various information-theoretic measures
is facilitated by the bubble diagram shown in figure 2.4. It is important to realize that
the bubble diagram illustration is correct only for two variables.

2.7 Relative Entropy

We now introduce the definition of the relative entropy (also known as Kullback-
Leibler distance). The relative entropy is a measure of the dissimilarity of two prob-
ability mass functions, say pX and pY :

H(pX ||pY ) ≡
∑

x∈A

pX(x) log(
pX(x)

pY (x)
). (2.40)
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I(X ;Y )H(X |Y )

H(Y |X)

H(X)
H(Y )

Figure 2.4: Bubble diagram showing various measures of information theory. The
left bubble represents H(X), the right bubble H(Y ); their union is the joint entropy
H(X,Y ), and their intersection is the mutual information I(X ;Y ). Note: this diagram
does not generalize to more variables.

Note that the name Kullback-Leibler distance is misleading: in general H(pX ||pY )
does not equal H(pY ||pX). Comparing equations 2.36 and 2.40, it is seen that mutual
information can be written as a relative entropy:

I(X ;Y ) = H(pXY ||pXpY ). (2.41)

Let us consider a given probability mass function pX(x); which probability mass function
pY (x) minimizes the relative entropy? We will provide two solutions, the first using
regular calculus. Using the calculus-based approach, we aim to find the discrete function

pY (x) that makes
∑

x∈A pX(x) log(pX (x)
pY (x) ) an extremum, under the constraint that

∑

x∈A

pY (x) = 1. (2.42)

Using Lagrange multipliers, we want to find the extremum of the extended criterion

η =
∑

x∈A

[

pX(x) log(
pX(x)

pY (x)
) + λpY (x)

]

, (2.43)

where we opted to leave out the constant term. Differentiating equation 2.43 towards
pY (x) results in

pX(x)

pY (x)
= λ. (2.44)

Combining this with the constraint, we see that the relative entropy takes an extreme
value for pY (x) = pX(x). We note that the relative entropy takes the value zero at this
extremum. To show that this is a minimum one can use inequalities, and this leads to
an altogether more elegant approach for finding the minimum, where we can omit the
calculus based approach.

We now show the strict nonnegativity of the relative entropy with inequalities. We use
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natural logarithms and the familiar property log(x) ≤ x− 1:

H(pX ||pY ) =
∑

x∈A

pX(x) log(
pX(x)

pY (x)
)

= −
∑

x∈A

pX(x) log(
pY (x)

pX(x)
)

≥ −
∑

x∈A

pX(x)(
pY (x)

pX(x)
− 1)

= −
∑

x∈A

(pY (x)− pX(x))

= 0, (2.45)

and it is immediately seen that the minimum is at pY (x) = pX(x). We have now proven
the following theorem:

Theorem 7 The relative entropy of two probability mass functions is nonnegative.

Example 2.13: The marginal density of Y minimizes H(pXY ‖pXqY )

We want to find the qY (y) that minimizes H(pXY ‖pXqY ). We constrain qY (y)
to be a probability mass function (to sum to unity; we ignore the nonnegativity
constraint and check that it holds at the end). The expression to be minimized
can be written as

H(pXY ||pXqY ) =
∑

x,y

pXY (x, y) log(
pXY (x, y)

pX(x)qY (y)
)

=
∑

x,y

pXY (x, y) log(
1

qY (y)
) +

∑

x,y

pXY (x, y) log(pY |X(y|x))

=
∑

y

pY (y) log(
1

qY (y)
) +

∑

x,y

pXY (x, y) log(pY |X(y|x)).

Naturally, the result of the minimization is not affected by adding and subtracting
anything that does not involve qY (y). To get a nice expression, we subtract the
term

∑

x,y pXY (x, y) log(pY |X(y|x)) and add the term
∑

y pY (y) log(pY (y)). We
now search for the qY (y) that minimizes

∑

y

pY (y) log(
1

qY (y)
) +

∑

y

pY (y) log(pY (y)) =
∑

y

pY (y) log(
pY (y)

qY (y)
)

= H(pY ||qY ),

which, under the constraint that qY (y) is probability mass function, is minimized

by qY (y) = pY (y) (which implies that qY (y) is indeed nonnegative). Thus, we

obtain the result that the marginal density of Y minimizes the relative entropy

H(pXY (x, y)||pX(x)qY (y)). This result will be used in the derivation of the Blahut

algorithm in section 6.5.2.
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2.8 Asymptotic Equipartition and Typical Sets

In section 2.2 we saw that statistical physics starts from the notion that all configurations
of an ensemble (corresponding to all sequences of iid variables with a given large length)
are equally likely and this naturally leads to the definition of a probability distribution.
In contrast, information theory starts with the assumption of the existence of a random
variable with a probability distribution. In this section, we will show that, for large
sequence lengths, this leads to almost all sequences having identical probability, and we
have come to a full circle.

In section 2.4, it was shown that the entropy forms a lower bound on the bit allocation
required for a uniquely decodable code and that we could make that bound arbitrarily
tight by coding sequences of such variables with a single codeword. In this section, we
will elaborate on that statement. We start with a random variable X . We consider iid
sequences of such random variables, denoted as [X1, · · · , Xk]. We divide the realizations
of the random sequences into sequences [x1, · · · , xk] that fall in the so-called typical set
and sequences [x1, · · · , xk] that are atypical and thus do not fall in the typical set. We
will then show that the probability of observing an atypical sequence vanishes with
increasing sequence length k, and that the probability of all typical sequences converges
toward being the same (equipartition). If the probabilities are the same, we must encode
the sequences with equal-length codewords. We will see that the typical sequences
require a fixed codeword length of kH(X) + 1 bits. In other words, we can always find
a k such that all sequences can be encoded at a rate arbitrarily close to H(Xi) at an
arbitrarily small probability of error.

We start with describing the laws of large numbers. Here, we will focus on the simpler
results on sequences that are derived from the weak law of large numbers (also called
Bernoulli’s theorem). The weak law of large numbers is formulated in the following
theorem:

Theorem 8 For a sequence of independent random variables Xi, each with the distri-
bution of the random variable X, and for a given δ and ǫ there is always an integer k0
such that for k ≥ k0

P (|E[X ]− 1

k

k
∑

i=1

Xi| < ǫ) ≥ 1− δ. (2.46)

The proof of the weak law of large numbers is based on the Chebychev inequality. For
notational clarity, let us consider a continuous random variable Y rather than a discrete
random variable; the proof is identical for discrete random variables. We have

σ2
Y = E[(Y − E[Y ])2]

=

∫ ∞

−∞

pY (y)(y − E[Y ])2dy

≥
∫ E[Y ]−ǫ

−∞

pY (y)(y − E[Y ])2dy +

∫ ∞

E[Y ]+ǫ

pY (y)(y − E[Y ])2dy

≥ ǫ2(

∫ E[Y ]−ǫ

−∞

pY (y)dy +

∫ ∞

E[Y ]+ǫ

pY (y)dy), (2.47)



34 2. INTRODUCTION TO INFORMATION THEORY: DISCRETE VARIABLES

where ǫ is arbitrary. This result immediately implies the Chebychev inequality:

P (|Y − E[Y ]| ≥ ǫ) ≤ σ2
Y

ǫ2
. (2.48)

We can then also write

P (|Y − E[Y ]| < ǫ) ≥ 1− σ2
Y

ǫ2
. (2.49)

Selecting Y = 1
k

∑k
i=1Xi, we obtain

P (|E[X ]− 1

k

k
∑

i=1

Xi| < ǫ) ≥ 1− σ2
X

kǫ2
, (2.50)

which completes the proof.

The convergence of 1
k

∑k
i=1Xi towards E[X ] in the weak law of large numbers is called

convergence in probability5.

Let us write Xk = [X1, · · · , Xk] and xk = [x1, · · · , xk]. We define a weakly typical
set, or simply typical set, Ak

ǫ , as the set of length-k sequences of the form

Ak
ǫ ≡ {xk : |1

k
log(pXk(xk)) +H(X)| < ǫ}

= {xk : |1
k

k
∑

i=1

log(pX(xi)) +H(X)| < ǫ}

= {xk : |1
k

k
∑

i=1

log(pX(xi))− E[log pX(X)]| < ǫ}, (2.51)

where we remember that X has the same distribution as Xi. From the weak law of
large numbers, setting δ = ǫ, we see immediately that we can choose a sufficiently large
k such that we have

P (Xk ∈ Ak
ǫ ) > 1− ǫ. (2.52)

In other words, for sufficiently large k almost all sequences are in the typical set.

From the definition of the typical set it immediately follows that for the sequences in
the typical set

2−kH(X)−kǫ < pXk(xk) < 2−kH(X)+kǫ. (2.53)

We can now bound the cardinality (the number of elements) of the typical set, denoted
as |Ak

ǫ |, as follows. An upper bound can be derived from

1− ǫ <
∑

x∈Ak
ǫ

pXk(xk)

< |Ak
ǫ |2−kH(X)+kǫ. (2.54)

5For completeness, we also list the strong law of large numbers. It can be written as P (E[X] =

limk→∞
1
k

∑k
i=1 Xi) = 1. This type of convergence is called “convergence with probability 1” or “con-

vergence almost everywhere”. It can be used to define strongly typical sets.
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A lower bound can be found from

1 ≥
∑

x∈Ak
ǫ

pXk(xk)

> |Ak
ǫ |2−kH(X)−kǫ. (2.55)

We conclude that the cardinality of the typical set is bounded by

(1− ǫ)2kH(X)−kǫ < |Ak
ǫ | < 2kH(X)+kǫ. (2.56)

By selecting ǫ such that H(X) >> ǫ we see that the cardinality of the typical set is
approximately 2kH(X) for large k.

Let us now code the sequences with a fixed codeword length. We create a table for the
typical set. Since the cardinality of the typical set is less than 2kH(X)+kǫ, we can code
all its entries with a fixed codeword length ⌈log2(2kH(X)+kǫ)⌉ = ⌈k(H(X) + ǫ)⌉, where
we rounded up to get an integer codeword length. When an atypical sequence appears,
we can use different strategies. We can simply make an error and use a codeword for
a sequence from the typical set. With this strategy, we can always find a k such that
we can code any set at a rate less than kH(X) + kǫ + 1 with a probability of error δ,
for any arbitrary ǫ and δ. Alternatively, we can code the entries not in the typical set,
at a slight increase in rate. We add one bit to the codewords describing the typical
set to indicate that this codeword describes an sequence in the typical set. Codewords
not in the typical set can then be coded with ⌈k log2(N)⌉ + 1 bits, where N is the
cardinality of the random variable X . Since the probability of all sequences not in the
typical set decreases as 1/k (cf. equation 2.50), the average codeword contribution of
these sequences is independent of k, which means their contribution per sample vanishes
asymptotically. We have thus created an independent proof of the source coding theorem
(theorem 2).

Example 2.14: The typical set for a binary distribution

Let us consider the case where pX(0) = 0.2 and pX(1) = 0.8, which has a (first-
order) entropy H(X) = 0.722 bit. For a sequence, xk, of length k with k−n zeros
and n ones, we define the normalized (negative) log probability,

GX(n, k) ≡ −k − n

k
log(pX(0))− n

k
log(pX(1)).

The value of GX(n, k) ranges between log2(pX(0)) = 2.32 bit and log2(pX(1)) =
0.32 bit. The typical set is defined as all sequences xk for which | − GX(n, k) +
H(X)| < ǫ.

To visualize the typical set, we select a particular k. We can then computeGX(n, k)
for all n ∈ {0, · · · , k}. For a given n and k there are k!

n!(k−n)!
sequences, each

with probability pX(0)k−npX(1)n. The probability mass function for GX(n, k) is,
therefore, a binomial distribution:

PG(GX) =
k!

n!(k − n)!
pX(0)k−npX(1)n.

In figure 2.5 we plot the smoothed and normalized probability mass function for
several values of k. It is seen that almost all sequences fall in the typical set for
sequences of length 1000 with ǫ = 0.1 bit.

From the figure, we conclude that the typical set provides us with a theoretical
understanding, but not with a practical coding procedure. To get good results



36 2. INTRODUCTION TO INFORMATION THEORY: DISCRETE VARIABLES

GX(n, k) (bits)

P
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0 1 2

Figure 2.5: The probability mass functions of GX(n, k) of example 2.14 for k = 10,
k = 100, and k = 1000 (increasing sharpness). The values for H(X) − ǫ, H(X), and
H(X) + ǫ are shown as vertical dotted lines, with ǫ set to 0.1 bit.

using typical sets, we need for our example sequences that are significantly longer
than 1000 source symbols, and such long sequences require a very large codebook,
rendering the method computationally impractical.

Similarly to the typical set, we can also define a jointly typical set for elements with
a joint probability density pXk,Y k(xk, yk) =

∏k
i=1 pX,Y (xi, yi). The jointly typical set

has as definition

Ak
J,ǫ ≡ {(xk, yk) : |1

k
log pXk(xk) +H(X)| < ǫ,

|1
k
log pY k(yk) +H(Y )| < ǫ,

|1
k
log pXkY k(xk, yk) +H(X,Y )| < ǫ}, (2.57)

where the subscript j in Ak
J,ǫ denotes “joint”. We note from equation 2.46 that it follows

from the weak law of large numbers that there must be a k that is sufficiently large such
that simultaneously

P (|1
k
log pXk(Xk) +H(X)| > ǫ) < ǫ/3, (2.58)

P (|1
k
log pY k(Y k) +H(Y )| > ǫ) < ǫ/3, (2.59)

P (|1
k
log pXkY k(Xk, Y k) +H(X,Y )| > ǫ) < ǫ/3, (2.60)

where we picked ǫ/3 to make the next expression look nicer. It follows that

P ([Xk, Y k] ∈ Ak
J,ǫ) ≥ 1− ǫ. (2.61)

This means that there is a k for which the probability that a sequence pair [Xk, Y k],

drawn from the density fXk,Y k(xk, yk) =
∏k

i=1 fX,Y (xi, yi) is in the jointly typical set,
is 1− ǫ, where ǫ can be chosen arbitrarily close to zero.
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From the definitions, it is easy to provide bounds on the probabilities for the sequences
in the jointly typical set:

2−kH(X)−kǫ < pXk(xk) < 2−kH(X)+kǫ, (2.62)

2−kH(Y )−kǫ < pY k(yk) < 2−kH(Y )+kǫ, (2.63)

2−kH(X,Y )−kǫ < pXkY k(xk, yk) < 2−kH(X,Y )+kǫ. (2.64)

An interesting result on the conditional probability density pXk|Y k(xk|yk) follows from
the relations 2.62 through 2.64. We first recall that

pXk|Y k(xk|yk) = pXk(xk)
pXkY k(xk, yk)

pY k(yk)pXk(xk)
. (2.65)

We furthermore recall that I(X ;Y ) = H(X) + H(Y ) − H(X,Y ). Then, combining
equation 2.65 with the inequalities 2.62 through 2.64 results in:

pXk(xk) 2kI(X;Y )−3kǫ ≤ pXk|Y k(xk|yk) ≤ pXk(xk) 2kI(X;Y )+3kǫ. (2.66)

This result will be used in the proof of the rate-distortion theorem in section 6.2.6.

2.9 Problems

1. Consider a random variable X that can take the values 0 and 1 with probability
mass function pX(0) = p and pX(1) = 1− p. Plot H(X) as a function of p.

2. Consider an alphabet A = {a, b, c, d}. In this problem we encode sequences of
variables from this alphabet with either a binary or a ternary code, using a separate
codeword for each variable.

(a) Outline the complete proof that we can obtain L < H(X)+1 for the ternary
code, where L is the average code length per (input) symbol and where H(X)
is expressed in ternary units.

(b) Define a reasonable conversion factor for codeword length from bits to ternary
units so that you can compare them.

(c) Find a probability distribution for A where the ternary code is more efficient
than the binary code.

(d) Find a probability distribution for A where the binary code is more efficient
than the ternary code.

(e) Argue that, in general, a binary code is more efficient than a ternary code.

3. Prove that H(X + bY |Y ) = H(X |Y ), where b is a constant (X and Y are not
independent).

4. Prove that log(x) ≤ x− 1 for x ∈ [0,∞).

5. Show, using probability mass functions, that H(X) ≥ H(X |Y ).

6. Consider a symbol set with probabilities 0.05, 0.05, 0.1, 0.8.

(a) Construct a Shannon prefix code for this symbol set.
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Figure 2.6: Probability mass function for problem 10. The three points each have
probability 1/3.

(b) Evaluate the advantage of this prefix code over using equal codeword lengths
for all symbols.

7. Consider two random variables, X ∈ {a, b} and Y ∈ {c, d}. Let
pXY (a, c) = 0.25,
pXY (a, d) = 0.25,
pXY (b, c) = 0.50,
pXY (b, d) = 0.0.

(a) Compute H(X) and H(Y ).

(b) Compute H(X,Y ), H(X |Y ), and H(Y |X).

(c) Compute I(X ;Y ).

(d) You have to transmit pairs of X and Y . Construct a Shannon prefix code,
for transmitting the pair X,Y .

8. Express the conditional mutual information in terms of probability mass functions.

9. Construct a binary prefix code with the following codeword lengths: 2,2,3,3,4,4,4.

10. Consider figure 2.6.

(a) Compute H(X), H(Y ), and H(X,Y ).

(b) Compute the mutual information between X and Y .

11. In figure 2.7, all four points in the X,Y plane have equal probability 1/4.

(a) Compute H(X), H(Y ), H(X,Y ), H(X |Y ), H(Y |X), and I(X ;Y ).

(b) Given that the sample space consists of four separate discrete points in the
x, y plane, each with probability 1/4, describe configurations of these points
that result in maximum and minimum mutual information. Compute the
numerical values for the mutual information in both cases.
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Figure 2.7: Probability mass function for problem 11.

12. You were to compute the entropy rate in a sequence. You approximated the
probability mass densities and found the order-k entropies H1(Xi), H2(Xi), and
H3(Xi) for the sequence. Unfortunately, you don’t remember which is which. The
numerical values are 4.0, 3.0, and 3.5 bits.

(a) Provide a qualitative reasoning for the ordering of the order-k entropies and
use this to assign the numbers to the correct order-k entropy.

(b) Express the conditional entropiesH(Xi|Xi−1) andH(Xi|Xi−1, Xi−2) in terms
of the known order-k entropies.

(c) Each of the conditional entropies and order-k entropies discussed above forms
an upper bound on the entropy rates. Which of them provides the lowest
upper bound for the entropy rate?

13. Provide an example of a random variable for which L = H(X) and an example of
a random variable for which the optimal code satisfies L > H(X) + 1 − ǫ, where
ǫ is an arbitrarily small positive number.

14. Compute H(Xi), H2(Xi), H∞(Xi), I(Xi;Xi−1), and I(Xi;Xi−2) for a stationary
Markov process with two states and state-transition matrix,

T =

[

0.75 0.5
0.25 0.5

]

,

where Tij = P (s(n) = i|s(n− 1) = j), s(n) being the state at time n.

15. Describe a coding procedure that, by selecting a sufficiently long sequence length,
codes iid sequences at a rate arbitrarily close to the entropy rate of the sequence.
The code should use codewords of only two lengths: one for the typical set and
one for the remaining sequences.

16. Consider the normalized probability of example 2.14. In the following problems
exploit the Stirling approximation log(n!) = n log(n)− n.

(a) Prove PG(GX(xk)), has an asymptotic maximum at H(X).

(b) Derive an equation for the variance (GX(Xk)−H(X))2.

(c) For the numbers in the example, find the sequence length for which a fixed-
length codeword can operate within 0.01 bit of the entropy, with small error
probability.

(d) Find the probability of error when operating within 0.01 bit of the entropy.
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17. Consider a random variable with alphabet {0, 1, 2} and pX(0) = 0.2, pX(0) = 0.3,
pX(0) = 0.4.

(a) For a sequence of length k, what is the probability of the most probable
sequence and of the most improbable sequence? Do these sequences usually
fall in the typical set?

(b) Plot the probability density for 1
k log(pXk(xk)) for k = 10, 100, 1000.

(c) To have a typical set with ǫ = 0.01 (in equation 2.51), how large should k
be?

18. Consider an iid sequence with two source symbols, 0 and 1.

(a) Show that for the case pX(0) = pX(1) = 0.5 all sequences are in the typical
set.

(b) For the case pX(0) = 0.4 and pX(1) = 0.6, compute the entropy. Estimate
(by approximation or computer) the fraction of sequences not in the typical
set, using ǫ = 0.1 bit, for a sequence length of 100, 1000, and 10000.

19. Conditioning affects mutual information differently from entropy. Provide an ex-
ample where the mutual information increases and an example where the mutual
information decreases as a result of conditioning.

20. The objective of a television game is for panel members to determine a person’s
profession. The person can only answer yes or no and the panel is assumed to ask
“optimal” questions. If it takes on average 15 questions to determine the person’s
profession, what can you say about the probability distribution of the professions?

21. For many codes satisfying the Kraft inequality, the inequality is strict.

(a) Prove that for {0, 10, 1100, 1101, 1110} the inequality is strict.

(b) Provide an example of an undecodable sequence for this code.

(c) Relate the strict inequality to the fact that there exist sequences of code
symbols that cannot be decoded.

22. Consider a discrete variable X with alphabet {−1, 0, 1}.

(a) Write down all constraints that are imposed on the probability-mass function
that satisfies E[X2] = 1

2 .

(b) Find the maximum-entropy probability-mass function if E[X2] = 1
2 .

(c) Find the minimum-entropy probability-mass function if E[X2] = 1
2 .

(d) Find the maximum and minimum entropy of the constrained variable X .

(e) Find the maximum and minimum entropy of the variable if the constraint is
removed.

23. Consider a two-state Markov process Xi with states A and B state-transition
matrix,

T =

[

1− α β
α 1− β

]

,

where Tnm = P (xi = n|xi−1 = m), xi being the state at time i.
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(a) Find the probabilities P (xi = A) and P (xi = B) for the stationary solution
in terms of α and β. Hint: realize that the net flow to each state should
balance (alternatively solve the eigenvalue problem).

(b) Express the entropy rate of the two-state Markov process in terms of α and
β.

(c) Find the values for α and β that maximize the entropy rate. Then find the
values for α and β that minimize the entropy rate. Give both entropy rates.

(d) Assume you have a sequence of observed states [x0, x1, · · · , xk−1]. Explain a
sound procedure to find estimates of α and β.

24. We define I(X ;Y ;W ) = H(X)+H(Y )+H(W )−H(X,Y )−H(X,W )−H(Y,W )+
H(X,Y,W ).

(a) Show that I(X ;Y ;W ) = I(X ;Y )− I(X ;Y |W ).

(b) Show that, in contrast to I(X ;Y ), I(X ;Y ;W ) can be negative.
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3

Continuous-Alphabet
Variables

3.1 Introduction

In chapter 2, information theory was discussed in the context of discrete alphabets. This
provided us with bounds on the mean rate required to encode a sequence of discrete
alphabet variables. In practice, we often want to encode signals that are analog in
nature. Again, we would like to determine bounds for the rates at which such signals
must be encoded. It is, however, obvious that, in general, the exact description of a
random variable that can take any value within a continuous alphabet is not possible
with a finite number of bits.

We could take a practical approach to measuring information in an analog random
variable by rounding the realizations of the random variable to a set of uniformly spaced
values. In other words, we quantize the signal with a uniform scalar quantizer prior to
measuring its information content. This type of quantization operation is what is done
in an analog-to-digital converter. We can now compute the entropy of the discrete-
alphabet variable, which, unfortunately, depends on the quantizer step size. It seems
that we gained practicality at the expense of generality. However, there is a saving grace
to this approach: it turns out that, in the limit of high resolution, the dependency of
the entropy on the quantization step size resides in an additive term. Thus, by simply
subtracting this term we obtain an intrinsic information measure of the random variable
that has practical value and is independent of the quantization step size. This measure
is called the differential entropy. We will return to this argument at the end of
section 3.2.

In the above description, differential entropy was described as a measure of information
for a random variable with a continuous alphabet. This information measure has ob-
vious practical significance if we use a high-resolution uniform scalar quantizer as first
encoding step. However, its use is more general. A quantizer inherently leads to distor-
tion, and this leads to the more general problem of finding the best trade-off between
distortion and bit rate. This question is addressed by rate-distortion theory and high-

43
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rate theory, which are discussed in later chapters. We will find that differential entropy
plays a central role in the determination of bounds on the best trade-off between dis-
tortion and rate. We will also find that, in the high-resolution limit, uniform quantizers
are often optimal. The discussion of differential entropy in this chapter forms, therefore,
a prerequisite for chapters 6 and 7.

3.2 Differential Entropy

Entropy is not defined for variables with continuous alphabets. By simply replacing
the summation in the definition of entropy with an integral, we define a new measure,
differential entropy, for a random variable X with probability density fX(x):

h(X) = −
∫

fX(x) log(fX(x))dx

= −E[log(fX(x)], (3.1)

where we assume that fX(x) log(fX(x)) is integrable. While the definition of differential
entropy is motivated by that of entropy, its properties differ significantly. For example,
while entropy is guaranteed to be nonnegative, it is easy to construct a random variable
with a negative differential entropy, as will be illustrated in examples 3.1 and 3.2.

Although differential entropy has properties different from those of entropy, it is common
to omit the specifier “differential” when there is no confusion and the precise description
is cumbersome. We will follow this convention and omit the specifier “differential”
occasionally.

Example 3.1: Differential entropy for variable with rectangular density

Consider a density

fX(x) =

{

1/a, x ∈ [0, a),
0 elsewhere.

Its differential entropy is

h(X) = −
∫ a

0

1

a
log(

1

a
)dx = log(a). (3.2)

The differential entropy increases with a, which is consistent with the uncertainty

about X increasing with the size of the interval [0, a). However, somewhat less

intuitive is that h(X) is negative for a < 1.

Example 3.2: Random variable with Laplace density

In this example we compute the differential entropy of a random variable with
Laplace density, i.e., with fX(x) = a

2
e−a|x|. The differential entropy is

h(X) = −
∫ ∞

−∞
fX(x) log(

a

2
e−a|x|)dx

= − log(
a

2
) +

1

2

∫ ∞

−∞
a2|x|e−a|x|dx

= log(
2

a
) + a2

∫ ∞

0

xe−axdx

= log(
2

a
) + 1

= log(
2e

a
).
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It is seen that the differential entropy of the random variable decreases with in-

creasing a. This is consistent with the decreased uncertainty about the value the

random variable will take when a is larger. We observe that the differential entropy

becomes negative for large values of a.

In both examples 3.1 and 3.2, a scaling by a positive factor α changes the differential
entropy by log2(α) bits. We now show that this is a general result. Let us consider a
density fX(x) and let us note that fαX(αx) = 1

αfX(x). Then we have that

h(αX) = −
∫

fαX(y) log(fαX(y))dy

= −α
∫

fαX(αx) log(fαX(αx))dx

= −α
∫

1

α
fX(x) log(

1

α
fX(x))dx

= h(X) + log(α). (3.3)

The effect of scaling on differential entropy is included in the more general theorem 9,
which will be discussed in section 3.3.

While scaling of a continuous-alphabet random variable affects its differential entropy,
translation does not. This is easily verified:

h(X + b) = −
∫

fX+b(y) log(fX+b(y))dy

= −
∫

fX+b(x+ b) log(fX+b(x+ b))d(x + b)

= −
∫

fX(x) log(fX(x))dx

= h(X). (3.4)

So-far in this section, we have defined differential entropy, discussed some of its proper-
ties, and computed its value for some examples. However, we have not shown directly
that the measure is relevant for encoding a signal. Thus, we now return to the motiva-
tion for differential entropy presented in the introduction of this chapter. We consider a
continuous random variable, X , with a density fX(x), which we assume to be Riemann
integrable1. We define a set, A, of numbers on the real line spaced by ∆ and also

define the probability mass function pΞ(ξ) ≡
∫ ξ+∆

ξ fX(x)dx, ξ ∈ A. We quantize the
random variable X to obtain a discrete random variable, Ξ, with the discrete-alphabet
A. We assume that ∆ is sufficiently small that the relation between the density and
the probability-mass function can be approximated by fX(ξ)∆ ≈ pΞ(ξ) for ξ ∈ A. The
entropy of the discrete variable can then be written as

H(Ξ) = −
∑

A

pΞ(ξ) log(pΞ(ξ))

≈ −
∑

A

pΞ(ξ) log(fX(ξ)∆)

≈ −
∑

A

fX(ξ) log(fX(ξ))∆− log(∆). (3.5)

1A function is Riemann integrable if it is continuous almost everywhere.
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In the limit of vanishing ∆, the term
∑

A fX(ξ) log(fX(ξ))∆ defines a Riemann integral.
We thus obtain for small ∆:

H(Ξ) ≈ −
∫

fX(x) log(fX(x))dx − log(∆)

= h(X)− log(∆). (3.6)

It follows from equation 3.6 that the differential entropy describes the part of the entropy
of the discrete alphabet that is independent of the quantization step size. It is also seen
that, for small ∆, the entropy approaches infinity while the differential entropy remains
finite.

For the approximate equality 3.6 to hold, we only need to have that the function fX(x)
is smooth with respect to the step size ∆. It is sometimes convenient to select ∆ = 1;
then the entropy of the discrete-amplitude signal equals the differential entropy of the
continuous-amplitude signal. This situation is often representative of the output of A/D
converters. In example 3.3, we discuss under what conditions the differential entropy
(approximately) equals the entropy for the case of the Laplace density.

Example 3.3: Uniform quantization, entropy, and differential entropy

We consider a random variable with the Laplace density of example 3.2. We want
to know for what range of the Laplace-density parameter a we can use the unity
step-size quantizer for which the entropy and differential entropy are approximately
equal. We will use rather crude methods in our estimates.

Let fX(ξ)∗ and fX (ξ)∗ denote the supremum and infimum values of fX (x) for
x ∈ [ξ, ξ +∆]. Then we have that

fX(ξ)∗ log(fX(ξ)∗) ≤ fX(ξ) log(fX (ξ)) ≤ fX (ξ)∗ log(fX(ξ)∗)

and, similarly, for all x ∈ [ξ, ξ +∆]

fX(ξ)∗ log(fX(ξ)∗) ≤ fX (x) log(fX(x)) ≤ fX (ξ)∗ log(fX(ξ)∗).

This implies the following bound:

|fX (x) log(fX(x))− fX(ξ) log(fX(ξ))| ≤ fX(ξ)∗ log(fX(ξ)∗)− fX(ξ)∗ log(fX(ξ)∗).

We want a quantizer for which the approximate equality 3.6 is valid with a frac-
tional error of less than η. To be below this error, we require that for each interval

fX(ξ)∗ log(fX(ξ)∗)− fX(ξ)∗ log(fX(ξ)∗)

fX (ξ) log(fX(ξ))
≤ η.

We assume that the logarithmic factors vary slowly and can be omitted. For the
Laplace density and x ≥ 0 (similar results are obtained for negative x) we obtain
then

e−aξ − e−a(ξ+∆)

e−aξ
= 1− e−a∆ ≤ η.

This implies that

e−a∆ ≥ 1− η

−a∆ ≥ log(1− η)

∆ ≤ −1

a
log(1− η).
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From the inequality log(1 + η) ≤ η for small η, we obtain finally

∆ ≤ η

a
.

If we select ∆ = 1, then the entropy equals the differential entropy. For the

Laplace density, this is the case when η
a

≥ 1, i.e., when a ≤ η is sufficiently

small. In particular, if we assume an accuracy of 1/1000 is sufficient then we set

η = 1/1000 and we must have a ≤ 1/1000. Such values can always be achieved by

simply scaling the signal appropriately.

3.3 More Information Measures

Measures corresponding to those derived from entropy in chapter 2 can also be defined
for continuous variables. Joint differential entropy, higher-order differential en-
tropy, differential entropy rate, redundancy rate, conditional differential en-
tropy, mutual information, and relative entropy (as we will see later, there is
no reason to add “differential” to redundancy rate, mutual information, and relative
entropy) are all defined similarly as for the discrete alphabet case:

h(X1, · · · , Xk) ≡ −E[log(fX1···Xk
(X1, · · · , Xk))], (3.7)

hk(Xi) ≡ 1

k
h(X1, · · · , Xk), (3.8)

h∞(Xi) ≡ lim
k→∞

1

k
h(X1, · · · , Xk), (3.9)

ρ(Xi) ≡ h1(Xi)− h∞(Xi), (3.10)

h(Y |X) ≡ h(X,Y )− h(X), (3.11)

I(X ;Y ) ≡ h(X) + h(Y )− h(X,Y ), (3.12)

h(fX ||fY ) ≡
∫

fX(x) log(
fX(x)

fY (x)
)dx. (3.13)

It is useful to relate the various measures for the discrete variables to those for the
continuous variables. The joint entropy, the conditional entropy, and the entropy rate
have similar relations to the corresponding continuous measures as the relation between
entropy and differential entropy given in equation 3.6 (the relations will be worked out
in problem 1). However, the situation is different for redundancy rate, relative entropy
and mutual information.

The case of redundancy rate is very straightforward. As is seen in equation 3.10, re-
dundancy rate is defined as a difference between differential entropies. Thus the term
− log(∆) in equation 3.6 cancels, and the redundancy rate of a stationary discrete-
alphabet discrete process converges to that of the corresponding continuous alphabet
case with decreasing step size.

Next, we consider the relation between the discrete-case and the continuous-case for
relative entropy and mutual information. Since mutual information can be written as a
relative entropy we discuss only the latter in detail. We consider two densities, fX(x) and
fY (x), both Riemann integrable. We define a set, A, of numbers on the real line spaced

by ∆ and also define the probability mass functions pΞ(ξ) ≡
∫ ξ+∆

ξ
fX(x)dx, ξ ∈ A and
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pΥ(ξ) ≡
∫ ξ+∆

ξ
fY (x)dx, ξ ∈ A. We quantize the random variables X and Y to obtain a

discrete random variable, Ξ and Υ, both with a discrete-alphabet A. We assume that ∆
is sufficiently small that the relations fX(ξ)∆ ≈ pX(ξ) with ξ ∈ A and fY (ξ)∆ ≈ pY (ξ)
with ξ ∈ A are sufficiently accurate. We can now write for the relative entropy

H(PΞ||PΥ) =
∑

ξ∈A

pΞ(ξ) log(
pΞ(ξ)

pΥ(ξ)
)

≈
∑

ξ∈A

fX(ξ)∆ log(
fX(ξ)

fY (ξ)
)

≈
∫

fX(x) log(
fX(x)

fY (x)
)dx

= h(fX ||fY ). (3.14)

Thus, with decreasing ∆ the relative entropy of the variables Ξ and Υ converges to the
corresponding relative differential entropy of the variables X and Y .

It is useful to generalize the result on the effect of scaling (equation 3.3) to the vector
case. Let us consider the linear transformation

Y k = AXk, (3.15)

where A is a matrix. From elementary probability theory we have that

fY k(yk) =
1

| det(A)|fXk(xk)

and that

dyk = | det(A)|dxk .

This implies that

h(Y k) = −
∫

fY k(yk) log(fY k(yk))dyk

= −
∫

fXk(xk) log(
fXk(xk)

| det(A)| )dx
k

= h(Xk) + log(| det(A)|), (3.16)

which we capture in a theorem:

Theorem 9 Consider a matrix multiplication Y k = AXk. The differential entropies
of Y k and Xk are related by h(Y k) = h(Xk) + log(| det(A)|).

Example 3.4: Relative entropy of two-level and uniform distribution

We will confirm that the relative entropy between distributions with two proba-
bility levels and with one level is the same for the (high-resolution) discrete and
the continuous cases for a particular example. We discuss the discrete case first.
We assume the random variables Ξ and Υ have an alphabet A = {1, · · · , |A|} with
even cardinality |A|. We consider the probability mass functions

pΞ(ξ) = 1/|A|, ξ ∈ A

pΥ(ξ) =

{

(1 + α)/|A|, ξ ∈ {1, · · · , |A|/2}
(1− α)/|A|, ξ ∈ {|A|/2 + 1, · · · , |A|}
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pΞ(ξ)

1/8

0
0

2 4 6 8
ξ

Figure 3.1: Probability mass functions PΞ(ξ) and PΥ(ξ) of example 3.4 for the case
|A| = 8.

where α ∈ [0, 1].

The relative entropy H(Ξ||Υ) is

H(PΞ||PΥ) =
∑

ξ

pΞ(ξ) log(
pΞ(ξ)

pΥ(ξ)
)

=

|A|/2
∑

ξ=1

1

|A| log(
1/|A|

(1 + α)/|A| ) +
|A|
∑

ξ=|A|/2+1

1

|A| log(
1/|A|

(1− α)/|A| )

= −1

2
log(1 + α)− 1

2
log(1− α)

= −1

2
log(1− α2)

The relative entropy vanishes when α = 0, i.e., when the probability mass functions
are equal.

In this particular case, the relative entropy is not dependent on the cardinality
of the alphabet. This already suggests that we must get the same answer for
the continuous case. To confirm this, we first define uniform and stepped density
functions on [0, a):

fX(x) = 1/a, x ∈ [0, a)

fY (x) =

{

(1 + α)/a, x ∈ [0, a/2)
(1− α)/a, x ∈ [a/2, a)

The relative entropy h(fX ||fY ) is easily computed by splitting the integral into

x

1/8

0
0 2 4 6 8

fX(x)

Figure 3.2: Probability density functions fX(x) and fY (x) of example 3.4 for the case
a = 8.
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two segments:

h(fX ||fY ) =

∫

fX(x) log(
fX(x)

fY (x)
)dx

=

∫ a/2

0

1

a
log(

1/a

(1 + α)/a
)dx+

∫ a

a/2

1

a
log(

1/a

(1− α)/a
)dx

= −1

2
log(1 + α)− 1

2
log(1− α)

= −1

2
log(1− α2)

which, as expected, equals the result for the discrete case.

Example 3.5: Mutual information for a simple joint density

We compute the mutual information between the random variables X and Y
whose density is shown in figure 3.3. The bar shape has length

√
2 and width b.

We assume that b is small, so that we can avoid having to deal carefully with the
end regions. In its region of support, the density fXY (x, y) = 1√

2b
. Similarly, in

their regions of support, the marginal densities are fY (y) = fX(x) = 1. The joint
entropy is

h(X,Y ) = −
∫ ∫

fXY (x, y) log fXY (x, y)dxdy

= log(
√
2b)

=
1

2
log(2b2).

The marginal differential entropy h(X) is

h(X) = −
∫ 1

2

− 1
2

fX(x) log(fX (x))dx

= −
∫ 1

2

− 1
2

1 log(1)dx

= 0

and furthermore h(Y ) = h(X). The mutual information is now

I(X;Y ) = h(X) + h(Y )− h(X, Y )

= −1

2
log(2b2).

The example illustrates several issues. First, since b << 1, the differential entropy

h(X,Y ) is negative, but the mutual information is positive (as it should be).

Second, the mutual information between X and Y is finite whenever b is finite,

i.e., whenever we have some remaining uncertainty about Y if we knowX (and vice

versa). The mutual information increases when this uncertainty decreases. This

is natural: with decreasing b more information is shared between the variables. In

the limit of vanishing b the mutual information becomes infinite since then X = Y

and the entropy of the continuous variables X and Y is infinite.

Since the relative differential entropy and relative entropy are closely related, we expect
that the nonnegativity property carries over. This is easily confirmed, using the same



3.3. MORE INFORMATION MEASURES 51

−1

−1

1

1
x

y

b

Figure 3.3: Joint density function for example 3.5. The bar has a length of
√
2.

procedure as that used in equation 2.45 for the discrete case:

h(fX ||fY ) =

∫

fX(x) log(
fX(x)

fY (x)
)dx

= −
∫

fX(x) log(
fY (x)

fX(x)
)dx

≥ −
∫

fX(x)(
fY (x)

fX(x)
− 1)dx

= −
∫

(fY (x) − fX(x)) dx

= 0. (3.17)

We write this result as a theorem:

Theorem 10 The relative (differential) entropy of two probability densities is nonneg-
ative.

A corollary of this theorem is that the nonnegativity of mutual information (theorem
6) is also valid for continuous variables.

It is also of practical interest to consider the effect of scaling on mutual information.
Since mutual information of two variables cannot be negative, we know that scaling
cannot affect mutual information like it does differential entropy. Let X and Y be
continuous-alphabet random variables and α a scaling factor. Then we have

I(X ;αY ) = h(αY )− h(αY |X)

= h(Y ) + log(α) − (h(Y |X) + log(α))

= h(Y )− h(Y |X) = I(X ;Y ). (3.18)

Since mutual information can be written as a difference of the unconditioned and con-
ditioned differential entropy of a variable, it is not affected by scaling.

Many practical problems have continuous random variables that themselves are sums
of two continuous variables. The following simple theorem is useful in this type of
situation:
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Theorem 11 The differential entropy of the variable X +αY conditioned on Y equals
the differential entropy of X conditioned on Y :

h(X + αY |Y ) = h(X |Y ). (3.19)

The discrete case was treated in problem 3 of chapter 2. The theorem is easily proven:

h(X + αY |Y ) =

∫

fY (y)h(X + αY |Y = y)dy

=

∫

fY (y)h(X |Y = y)dy

= h(X |Y ). (3.20)

If X and Y are independent continuous-alphabet random variables, then the theorem
reduces to h(X + αY |Y ) = h(X).

3.4 Gaussian Densities

Processes and variables with a Gaussian (also called normal) distribution play an
important role in source coding. Many processes have a distribution that is nearly
Gaussian, a fact that can be explained from the central-limit theorem2. More-over, in
source-coding theory, the Gaussian distribution often leads to convenient upper bounds
on achievable rates. For example, as we will see below, for a given variance the Gaussian
distribution is the continuous distribution that leads to the highest differential entropy.
Obviously, the combination of practical applicability and ease of analysis makes studying
the properties of Gaussian densities very worthwhile.

The normal, or Gaussian, density for a random variable X is

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (3.21)

where µ and σ2 are the mean and variance of X . The differential entropy of a Gaussian
variable is easy to compute if we use nats as unit (i.e., we use the natural logarithm):

h(X) = −
∫

fX(x) log(fX(x))dx

=

∫

fX(x) log(
√
2πσ2)dx +

∫

fX(x)
x2

2σ2
dx

=
1

2
log(2πσ2) +

1

2

=
1

2
log(2πeσ2). (3.22)

Example 3.6: A simple finite-impulse-response filter

We want to compute the first-order entropy, the entropy rate, and the mutual
information between samples for the process

Xi = Ei +Ei−1,

2The central-limit theorem states that, under certain common conditions, the density of the sum-
mation of independent random variables with arbitrary distributions tends to a normal distribution as
the number of variables approaches infinity (e.g., [9]).
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where the process Ei is iid normal with unit variance. We first determine the first-
order differential entropy of Xi. A standard result of probability theory is that
the summation of two Gaussian variables is a Gaussian variable with a variance
that is the sum of the variances of the two original variables. Indeed, the marginal
density of Xi is:

fXi(xi) =

∫

fXi|Ei−1
(xi|ei−1) fEi−1(ei−1) dei−1

=

∫

fEi|Ei−1
(xi − ei−1|ei−1) fEi−1(ei−1) dei−1

=

∫

fEi(xi − ei−1) fEi−1(ei−1) dei−1

=
1

2π

∫

e−
(xi−ei−1)2

2 e−
e2i−1

2 dei−1

=
1

2π

∫

e−
(x2

i −2xiei−1+2e2i−1)

2 dei−1

=
1

2π
e−

x2
i
4

∫

e−
(ei−1− 1

2
xi)

2

1 dei−1

=
1√
4π

e−
x2
i
4 ,

which confirms that Xi has a Gaussian density with variance 2. From equations
3.21 and 3.22 it then follows that the first-order differential entropy of the signal
is h1(Xi) =

1
2
log(4πe).

Next, we determine the differential entropy rate. We do this by first considering
a sequence of k samples. Assuming a particular choice at the sequence endpoints,
the relation between the vector ek and the vector xk can be written as xk = Aek

where

A =



















1 0 0 · · ·
1 1 0 · · ·
0 1 1 · · ·
...

...
...

. . .
...

...
...

· · · 1 1 0
· · · 0 1 1



















.

We note that the determinant of A is unity, det(A) = 1. Then, using theorem 9,
we see that

1

k
h(Xk) = h(E) +

1

k
log(det(A))

= h(E)

=
1

2
log(2πe).

When k approaches infinity, the vectors approach the stationary process Xi and

we have, therefore, shown that h∞(Xi) =
1
2
log(2πe).

Next, we derive the differential entropy for the multi-variate normal distribution. This
differential entropy is important as such, but it also forms the basis for obtaining the
differential entropy of Gaussian processes. Since translation does not affect the differen-
tial entropy, (see equation 3.4) we assume the multi-variate distribution to be zero-mean
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without loss of generality. The k-dimensional multi-variate normal density is then
defined as

fXk(xk) =
1

√

(2π)k det(R)
e−

1
2x

kTR−1xk

, (3.23)

where R is the k-dimensional covariance matrix3 of the random vector and det(·) indi-
cates determinant. The evaluation of the differential entropy (in nats) is straightforward.
We note that R is symmetric and, in general, full rank. Thus, an invertible matrix B
exists such that BTB = R. The vector yk = B−1xk has a diagonal covariance matrix
and

h(Xk) = −
∫

fXk(xk) log(fXk(xk))dxk

= − log(
1

√

(2π)k det(R)
) +

1

2

∫

fXk(xk)xkTR−1xkdxk

= − log(
1

√

(2π)k det(R)
) +

1

2

∫

fY k(yk)ykTBTR−1Bykdyk

= − log(
1

√

(2π)k det(R)
) +

1

2

∫

fY k(yk)ykT ykdyk

=
1

2
log((2π)k det(R)) +

1

2
k

=
1

2
log((2πe)k det(R)), (3.24)

where we used that dxk = | det(B)|dyk and fXk(xk) = fY k(yk)/| det(B)|. We write this
as a theorem:

Theorem 12 The differential entropy of a Gaussian random vector Xk with covariance
matrix R is

h(Xk) =
1

2
log((2πe)k det(R)). (3.25)

Since the determinant is invariant under unitary transforms [10], we can also write
equation 3.25 as

h(Xk) =
1

2
log

(

(2πe)k
k
∏

i=1

λi

)

, (3.26)

where the λi are the eigenvalues of the k-dimensional covariance matrix R. On a per-
dimension basis, we can write this as

1

k
h(Xk) =

1

2
log(2πe) +

1

2k

k
∑

i=1

log(λi). (3.27)

Example 3.7: Mutual information of components of bi-variate Gaussian

We consider a two-dimensional vector X2 = [X1, X2]
T with a covariance matrix

R =

[

σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]

,

3The covariance matrix of Xk is defined as Rij = E[(Xi −E[Xi])(Xj −E[Xj ])]. Thus, a covariance
matrix R must be positive semidefinite, i.e., ykHRyk ≥ 0 for all yk ∈ Rk.
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where ρ12 is a correlation coefficient. The mutual information between the com-
ponents of the Gaussian vector is then

I(X1;X2) = h(X1) + h(X2)− h(X1, X2)

=
1

2
log(2πeσ2

1) +
1

2
log(2πeσ2

2)−
1

2
log((2πe)2 det(R))

=
1

2
log(2πeσ2

1) +
1

2
log(2πeσ2

2)−
1

2
log((2πe)2σ2

1σ
2
2(1− ρ212))

= −1

2
log(1− ρ212).

Example 3.8: A simple FIR filter, continued

Theorem 12 facilitates the computation of additional information measures for
the output of the FIR filter of example 3.6. To compute the second-order entropy,
we note that the covariance matrix of two sequential samples of the process Xi is

A =

[

E[XiXi] E[Xi−1Xi]
E[XiXi−1] E[Xi−1Xi−1]

]

=

[

E[EiEi] + E[Ei−1Ei−1] E[Ei−1Ei−1]
E[Ei−1Ei−1] E[Ei−1Ei−1] + E[Ei−2Ei−2]

]

.

=

[

2 1
1 2

]

,

which has eigenvalues 3 and 1. It then follows from equation 3.27 that

h2(Xi) =
1

2
h(X2) =

1

2
log(2πe

√
3).

As it should be, h∞(Xi) ≤ h2(Xi) ≤ h1(Xi). Furthermore, we see that

h(Xi|Xi−1) = h(Xi, Xi−1)− h(Xi)

=
1

2
log((2πe)23) − 1

2
log(4πe).

=
1

2
log(2πe

3

2
).

Finally, we discuss the case of a discrete zero-mean Gaussian process,Xi, with memory4.
To this purpose, we first consider some properties of discrete-time stationary processes
in more detail. For a (wide-sense) stationary discrete-time process, we have that Rij =
Ri−j . We note that the equivalent of multiplication of a vector by the covariance matrix
is now the convolution operation

∑

n∈Z Ri−nfn where fn is a discrete-time function.
Eigenfunctions gn of the time-invariant convolution operation must satisfy

∑

n∈Z

Ri−ngn = λgi (3.28)

or, equivalently, by taking the discrete-time Fourier transform,

R(ejω)g(ejω) = λg(ejω), (3.29)

where R(ejω) is the power spectrum5 of the stationary process Xi,

R(ejω) =
∑

n∈Z

Rne
−jωn. (3.30)

4A discrete-time process is said to have memory when its samples are not independent.
5Note that, with this notation, R(z) is the z-transform of Ri.
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For the general case that R(ejω) is not constant, only functions that are nonzero at
a single point can satisfy equation 3.29. Such functions integrate to zero and are of
no practical use for our purpose. To eliminate this problem, we resort to generalized
functions: the Dirac delta functions, which have the property that they integrate to
one, but have vanishing support. The eigenfunctions of 3.28 are thus the complex
exponentials gn = ejωn and their eigenvalues are R(ejω).

The above reasoning suggests how we can generalize equation 3.27 to the case of a
Gaussian process with memory. For this we need a theorem that was first proven by
Szegö [11, 12], and that is natural in light of our above, mathematically nonrigorous,
discussion. A less general form of Szegö’s theorem states:

Theorem 13 Let {λi}i∈{1,··· ,k} be the eigenvalues of a Hermitian Toeplitz matrix, with
as first column [R0, · · · , Rk], let R(e

jω) be the discrete-time Fourier transform of that
first column, and let R(ejω) be a Riemann integrable and bounded power spectrum on
[−π, π]. Then, for any function F (·) continuous on the range of R(ejω), we have that

lim
k→∞

1

k

k
∑

i=1

F (λi) =
1

2π

∫ π

−π

F (R(ejω))dω. (3.31)

Theorem 13 states that the distribution of the discrete eigenvalues of the matrix R is
asymptotically equal to the distribution of the power spectrum R(ejω). That is, if a is
the support for a certain range of power-spectrum values, then a/2π is asymptotically
identical to the fraction of eigenvalues of R that fall within that same range. This is
illustrated in figure 3.4.

1 k

c

λi

i → ω →

R(ejω)

π0

Figure 3.4: The essence of the Szegö’s theorem, obtained by letting F (·) approximate
a square window. On the left the (ordered) eigenvalues of R, on the right the power
spectrum R(ejω). The fraction of the eigenvalues having values in a range c (four out of
a total of k=16) is asymptotically (that is, for k → ∞) identical to the fraction of the
support on the interval [0, 2π] of the power-spectrum falling in the same range, indicated
by the bold sections on the horizontal axis. Since the power spectrum is symmetric, we
selected to display the spectrum over [0, π], rather than [0, 2π].

It is now straightforward to extend our earlier result. We start with equation 3.27 and
take the limit k → ∞ for both sides. Using Szegö’s theorem, with the function log(·)
for F (·), we obtain the differential entropy rate for a Gaussian process with
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memory:

h∞(Xi) =
1

2
log(2πe) +

1

4π

∫ π

−π

log(R(ejω))dω. (3.32)

We will use this result in section 4.4, when we discuss spectral estimation.

Example 3.9: Entropy rate of iid Gaussian process

The autocorrelation function of an iid Gaussian process with variance σ2 is

Ri =

{

σ2, i = 0
0, i ∈ Z − {0}.

We thus have

R(ejω) = σ2

and equation 3.32 becomes

h∞(Xi) =
1

2
log(2πe) +

1

2
log(σ2)

=
1

2
log(2πeσ2).

Naturally, the same result is more easily obtained by realizing that for an iid

process h1(Xi) = h∞(Xi) and that h1(Xi) =
1
2
log(2πeσ2).

It is straightforward to obtain the redundancy rate of a Gaussian process:

ρ(Xi) ≡ h1(Xi)− h∞(Xi)

=
1

2
log(σ2)− 1

4π

∫ π

−π

log(R(ejω))dω

=
1

2
log(

1

2π

∫ π

−π

R(ejω)dω)− 1

4π

∫ π

−π

log(R(ejω))dω. (3.33)

Equation 3.33 states that the redundancy rate is half the difference between the log
of the mean of the power spectrum and the mean of the log of the power spectrum.
It is easily seen that this measure is zero for a flat power spectrum and takes positive
values for a colored power spectrum. Thus, for Gaussian signals a flat power spectrum
corresponds to no redundancy rate, while a strongly colored power spectrum generally
corresponds to a high redundancy rate. We return to this subject in section 10.2.9.

Example 3.10: Redundancy rates of vowel sounds

In table 3.1, the redundancy rate associated with the spectral envelope of vowel

sounds in speech sampled at 8 kHz is shown, assuming that the signal is Gaussian.

The spectral envelope is associated with the vocal-tract configuration. The spectral

envelope was modeled based on resonance specifications given by Fant [13] (shown

in table 3.2). In addition to these formant frequencies, a tilt of approximately -6

dB per octave (doubling of the frequency) was applied by adding a zero at 0.90.

It is seen that there is typically a redundancy of about 2 bits per sample and that

the “o” sound contains a particularly high level of redundancy. The redundancy

rates should be compared to coding rates of between 1 and 2 bit per sample for

typical mobile telephone coding systems and the coding rate of 8 bit per sample

for the conventional wireline telephone network.
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Table 3.1: Redundancy rates (in bits per sample) associated with the spectral envelopes
of some vowel sounds assuming Gaussianity for 8 kHz sampling rate.

sound “a” “e” “i” “o” “y”
ρ(Xi) 2.1 1.1 2.1 5.6 1.9

Table 3.2: Center frequencies, c(i), and bandwidths, bw(i), of the four resonances of
vowel sounds [13].

sound c(1) bw(1) c(2) bw(2) c(3) bw(3) c(4) bw(4)
“a” 582 94 940 91 2480 107 3290 199
“e” 415 54 1979 101 2810 318 3450 50
“i” 256 43 2066 59 2960 388 3400 174
“o” 232 53 596 59 2395 388 3850 174
“y” 256 61 1928 57 2421 65 3300 43

3.5 Problems

1. Assuming Riemann integrability of all required densities, write a relation between
the discrete and continuous measures for joint entropy, higher-order entropy, and
entropy rate. Specify for each the conditions under which the relation is valid.

2. Consider the random vector X = [X1, X2] with the density shown in figure 3.5
(dark areas have uniform density).

x1

x2

1

1

2

2

−1

−1

−2

−2

Figure 3.5: The density function of problem 2.

(a) Compute the differential entropies h(X1) and h(X2).

(b) Compute h(X1, X2).

(c) Compute h(X1|X2) and h(X2|X1).

(d) Compute the mutual information I(X1;X2). Give an explanation for your
result.

3. Figure 3.6 shows the joint probability distribution for the inputs and outputs of
two three-level quantizers. In the right figure the density is uniform in the dark
areas.



3.5. PROBLEMS 59

x1

x2

0

0 1

1

2

2

3

3

y1

y2

0

0 1

1

2

2

3

3

Figure 3.6: Three-level quantizer with noise-free and noisy reconstruction, respectively.

(a) Compute the entropy or differential entropy (select what is appropriate) for
X1, X2, Y1 and Y2.

(b) Compute the conditional (differential) entropy of X2 givenX1 and vice versa.

(c) Compute the conditional (differential) entropy of Y2 given Y1 and vice versa.

(d) Compute the mutual informations I(X1;X2) and I(Y1;Y2). Give an inter-
pretation of the results.

4. Find the probability densities that maximize the differential entropy for the fol-
lowing cases:

(a) The density can be nonzero only on the intervals [2n, 2n+1], n = 0, · · · , N−1.

(b) The density is nonzero in the interval [0, 1] and the expected value of the
random variable is 1/4.

5. Show examples with continuous distributions where I(X ;Y |W ) > I(X ;Y ) and
I(X ;Y |W ) < I(X ;Y ).

6. By means of inequalities show that, given a fixed variance, the normal density has
maximum differential entropy.

7. Consider the filter with transfer function H(z) = α1 + α2z
−1. Let Ei be the

input process and Xi the output process. Since one Ei−2 and H(Xi) are indepen-
dent, we have h(Xi) = h(Xi|Ei−2). This leads one to think that h(Xi|Xi−1) =
h(Xi|Xi−1, Ei−2) might hold and that this may be a simpler way to solve example
3.8. Prove that this equality is incorrect.

8. Consider a Markov chain where pXn,Xn+1(xn+1|xn) is the transition probability
from xn to xn+1. Let pX(xn) be a stationary distribution for the Markov chain.

(a) Prove that for any distribution qXn
(xn) we have that

H(qXn
(xn)||pX(xn)) ≥ H(qXn+1(xn+1)||pX(xn+1))

Hint: consider first the joint distributions,H(qXn,Xn+1(xn, xn+1)||pXn,Xn+1(xn, xn+1)).

(b) Give examples where the entropy of qXn
(xn) increases and decreases with

time.

(c) Are your results consistent with an increasing entropy in the universe?
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9. The µ-law compression characteristic used in North-America to compand the am-
plitude x of the samples of a discrete speech signals prior to coding is

c(x) = xmax
loge(1 + µ|x|/xmax)

loge(1 + µ)
sign(x),

with µ = 255. In the following, model the speech signal as a Gaussian sequence
that repeats every 5 ms.

(a) Create a set signals consisting of six signal levels of your periodic signal, in-
creasing loudness in steps of 12 dB, the lowest being at your hearing thresh-
old. Add white noise with a uniform amplitude distribution to model quanti-
zation noise and provide an estimate at what SNR (in dB) the noise becomes
inaudible for each of the levels.

(b) You want to estimate the bit rate required for a coding method which does
not account for dependencies between signal samples. Using your previous
audibility-threshold and assuming a Gaussian signal distribution, what is the
minimum bit rate required for transparent quality at each of the signal levels
with a uniform quantizer? Derive explicitly any equations you require and
add your results to the table of SNR values from the previous question.

(c) Estimate the minimum bit rate required to ensure transparency if all input
levels occur with equal probability and you have to use a fixed encoder and
decoder?

(d) Explain how you can use the µ-law compander to reduce the rate if you don’t
know the incoming signal level. Without further experiments, estimate the
rate required for transparent µ-law companded speech for the dynamic range
of 60 dB you experimented with.

10. Consider a discrete stationary speech process Xi, a discrete stationary noise pro-
cess Ni, and a contaminated signal Yi = Xi + Ni. Xi and Ni are Gaussian and
independent.

(a) Derive an expression for the mutual information rate between the signals Xi

and Yi in terms of their spectral power densities RX(ejω) and RN (ejω).

(b) The noise variance is σ2
N . You can, however, control the shape of the noise

power spectrum. Your objective is to maximize the mutual information rate
between Xi and Yi by a proper shaping of RN (ejω). For your derivations you
may assume that the signal-to-noise ratio is very high and your answer may
be in the form of a simple algorithm.

11. This problem deals with entropy vs differential entropy and its relation to sam-
pling and quantization. Consider a continuous-amplitude, discrete-time, Gaussian,
white-noise (flat power spectrum) process, Xi, sampled at 8 kHz. The process has
a variance σ2

X = 106.

(a) Compute the first-order differential entropy and the differential entropy rate
of the process Xi.

(b) The samples are quantized with a uniform quantizer that has step size 2
(two). We denote the quantized discrete process as Yi = Q(Xi). Compute
(or find a good approximation) of the first-order entropy and the entropy
rate of the process Yi.
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(c) The processXi is upsampled to 16 kHz, then low-pass filtered with 4 kHz cut-
off (assume an ideal filter) to render the process Vi. Provide the first-order
differential entropy and the differential entropy rate of Vi.

12. Consider two real variables X , Y , both with rectangular distribution with unit
support (fX(x) = 1 over region of length 1).

(a) Plot two joint distributions for X and Y : one where the mutual information
is minimized, and one where the mutual information is maximized.

(b) Compute both the minimum and maximum mutual information between X
and Y .

(c) Consider now a third variable Z with alphabet {0, 1}. Both X and Y are
dependent on Z. Without changing the unit support marginal distributions
for X and Y , describe and plot a joint distribution for X , Y , and Z, where
knowing Z increases the mutual information between X and Y.

(d) Under the same conditions, describe and plot a joint distribution for X , Y ,
and Z, where knowing Z decreases the mutual information between X and
Y .
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4

Estimation of Probability
Distributions

4.1 Introduction

Probability distributions play a central role in source coding. Information-theoretical
measures of a random variables, or sets of random variables, are fully determined by their
probability distributions. As is seen in chapters 5 and 7, many practical coding methods
require knowledge of the probability distribution. However, in practical applications,
the probability distribution is generally not known a-priori. In this chapter we discuss
methods to estimate the probability distribution from a set of data.

To permit a discussion on the estimation of distributions, we must first define their de-
scription. To facilitate practical estimation, it is convenient to specify the distribution
with a countable set of parameters. As is common practice, we assume the random
variables to be either discrete or continuous. For discrete random variables the descrip-
tion is straightforward: the parameter set is simply the countable set of probabilities of
the alphabet. To describe probability density functions, we assume a model and then
estimate the discrete set of model parameters. In this case, the error in the estimated
distribution will be due to both the range of the model and the error in the estimated
parameters.

Our first discussions of probability distribution estimation will be based on three meth-
ods. The first is the maximum likelihood method. This results in that distribution
(within the range of modeled distributions) for which the observed data have the high-
est probability. The second method is the maximum-a-posteriori (MAP) estimation
method, which determines the set of parameters that have the highest probability given
the data. As is shown in this chapter, this is equivalent to an extension of the maximum
likelihood method that accounts for prior knowledge about the probability distribution.
If no prior knowledge exists, then the MAP method reduces to the maximum likelihood
method. The third estimation method is a further generalization. In this third method,
a penalty is assigned to the severity of the estimation error (of the probability distribu-
tion) and we then find the probability distribution that minimizes this error, given the

63



64 4. ESTIMATION OF PROBABILITY DISTRIBUTIONS

observed data.

Occam’s razor effectively states that one should always select the simplest solution pos-
sible. In information theory this naturally leads to the maximum-entropy distribution
(the distribution with the highest uncertainty about the random variable) for a given
set of constraints on the probability distribution. The constraints are generally formu-
lated in terms of known expectations of functions of the random variables. In practice,
the expectations are often set equal to the corresponding observed averages over a data
base.

The estimation of probabability distributions leads to so-called plug-in estimators of
information-theoretical measures. Naturally, the quality of the resulting estimates de-
pend on the quality of the probability distribution. While this chapter is dedicated to
the estimation of probability distributions, it should be noted that competitive alterna-
tives to plug-in estimators exist. For example, methods exist for the estimation of the
differential entropy that directly relate differential entropy to nearest neighbor distances
observed on data [14, 15].

In this chapter, we first discuss the estimation of probability mass functions in section
4.2. We then discuss the estimation of probability density functions in section 4.3, and
conclude with a discussion of maximum-entropy distributions in section 4.4.

4.2 Probability-Mass Estimation

In this section, we describe methods for estimating the probability-mass function from
the processed data. We discuss three methods for estimating the probability-mass func-
tion. We use the following notation. The symbols have alphabet A. The random
variable Kx counts the number of appearances of x in an independent identically dis-
tributed (iid) sequence of k symbols. For the observed sequence we have Kx = kx. For
a probability mass function of the random variable X we write px ≡ pX(x). In two of
the methods, the probabilities themselves are random variables, which we indicate by
using the notation Px.

4.2.1 Maximum-Likelihood Estimation

In maximum-likelihood estimation, the probability mass distribution is interpreted as a
deterministic set of values. We denote by P (Kx = kx|px) the probability of observing
the value x for kx observations from of a total of k observations, given the probability
mass function px. The resulting probability distribution is the binomial distribution:

P (Kx = kx|px) = Ck
kx
pkx
x (1− px)

k−kx , (4.1)

where

Ck
kx

=
k!

kx!(k − kx)!
. (4.2)

The maximum-likelihood estimate for px is the value that maximizes the likelihood of
the observations, argmax

px∈[0,1]

P (Kx = kx|px). We first determine a stationary point for px
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in [0, 1]. We first differentiate the binomial distribution with respect to px, and set the
result equal to zero:

0 = kxp
kx−1
x (1− px)

k−kx − (k − kx)p
kx
x (1 − px)

k−kx−1

= (kx(1− px)− (k − kx)px) p
kx−1
x (1− px)

k−kx−1, (4.3)

where we omitted the factor Ck
kx
. The stationary point we are looking for is the solution

of this equation. It is straightforward to show that this stationary point is a maximum,
thus forming the maximum-likelihood estimate. It is

p̂(ML)
x =

kx
k
. (4.4)

The maximum-likelihood method justifies using straightforward empirical probability
mass functions in adaptive codes. However, the estimate is not very useful for small k,
where it varies strongly from one set of observed data to another.

4.2.2 Maximum A-Posteriori (MAP) Estimation

The maximum a-posteriori (MAP) estimate can be considered a generalization of the
maximum-likelihood procedure. In the MAP estimate, each value of the probability
distribution Px is a random variable. The goal of the MAP procedure is to find the px
that maximizes the a-posteriori probability P (Px = px|Kx = kx). Using Bayes rule we
have

p̂(MAP )
x = argmax

px∈[0,1]

P (Px = px|Kx = kx)

= argmax
px∈[0,1]

P (Kx = kx|Px = px)P (Px = px)

P (Kx = kx)

= argmax
px∈[0,1]

P (Kx = kx|Px = px)P (Px = px), (4.5)

where we omitted the a-priori probability P (Kx = kx) since it does not depend on the
specific value px. The probability P (Kx = kx|Px = px) is identical to P (Kx = kx|px)
of equation 4.1. However, we must determine an expression for P (Px = px) to find the

estimate p̂
(MAP )
x .

We now determine an a-priori density P (Px = px) appropriate for the case that we have
no specific knowledge about the probability mass function. Probability mass functions
are discrete functions that sum to unity and have a range [0, 1]. The set of probability
mass functions of an alphabet A defines a set of points (region) GA in a subspace of
|A| − 1 dimensions of the space defined by p1, · · · , p|A| (where we assume a trivial
alphabet):

GA = {{Px}x∈A : Px ∈ [0, 1],
∑

x∈A

Px = 1}. (4.6)

The constraints on the sum and the range of the probability mass function facilitate a
simple geometric interpretation of GA. Consider an A-dimensional linear space spanned
by p1, · · · , p|A|. The range constraint means that GA lies in the hypercube that has the
unit vectors as edges. The sum constraint implies that GA lies in the dimension |A| − 1
hyperplane that includes all unit vectors (i.e., [1, 0, · · · , 0], [0, 1, · · · , 0], lie in this plane).
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GA is the intersection of the hyperplane and the cube. Figure 4.1 illustrates the set of
admissabile probability mass functions for an alphabet with three symbols. Note that
there are more probability mass functions with near-uniform probability distribution
than with nonuniform probability distribution.

1

1

1 0

0

pa pb

p
c

Figure 4.1: The set of admissable probability mass functions for the alphabet {a, b, c}.

Since we have no a-priori knowledge about the probability mass functions, we assume
that the admissable probability mass functions (those in GA) are equally probable. This
starting point is similar in philosophy as that used in ensemble theory discussed in 2.2.

At least in principle, we can compute the probability P (Px = px), by means of inte-
grating the probability density of the probability mass functions over the remaining
dimensions {py}y∈A,y 6=x. We evaluate the integral using geometric considerations. We
note that if symbol x has probability one, Px = 1, then all other symbols have zero
probability, Py = 0, y 6= x, y ∈ A. Thus, Px = 1 corresponds to a single point in GA

and we must have P (Px = 1) = 0. It is also easily seen that the unity-sum constraint
implies that P (Px = 1− ǫ) ∝ ǫ|A|−2. Thus, the marginal density P (Px = px) is

P (Px = px) = (|A| − 1)(1− px)
|A|−2, (4.7)

where the normalization constant was determined using
∫ 1

0
P (Px = px)dpx = 1.

From equations 4.1 (which equals P (Kx = kx|Px = px) for the random Px case) and
4.7 we see that

P (Kx = kx|Px = px)P (Px = px) = (|A| − 1)Ck
kx
pkx
x (1− px)

k−kx+|A|−2. (4.8)

We note that this equation is of the same form as equation 4.1 and that we, thus, can

find p̂
(MAP )
x in the same manner. The MAP estimate is

p̂(MAP )
x =

kx
k + |A| − 2

. (4.9)

This simple MAP estimate is somewhat unsatisfactory for our purpose, since the esti-
mated probability mass function does not sum to unity. It can, thus, not be used for
coding without modifications. Unfortunately, simply adding the unity-sum constraint
leads to a nonlinear problem.
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4.2.3 Bayesian Inference

The MAP solution gives the maximum in the a-posteriori probability density P (Px =
px|Kx = kx). Alternatively, we can define a Bayes cost function and minimize the mean
cost, which is referred to as Bayes risk. For the squared error (p̂x − Px)

2 the Bayes
risk is

E[(p̂x − Px)
2|Kx = kx] =

∫ 1

0

(p̂x − px)
2P (Px = px|Kx = kx)dpx. (4.10)

This criterion is minimized by the mean value of Px,

p̂(Laplace)
x = E[Px|Kx = kx] =

∫ 1

0

pxP (Px = px|Kx = kx)dpx. (4.11)

We rewrite the probability in the argument of the integral with Bayes rule:

P (Px = px|Kx = kx) =
P (Kx = kx|Px = px)P (Px = px)

P (Kx = kx)
. (4.12)

Assuming no specific prior knowledge, P (Kx = kx|Px = px) and P (Px = px) are given
by equations 4.1 and 4.7. We evaluate the a-priori probability P (Kx = kx):

P (Kx = kx) =

∫ 1

0

P (Kx = kx|Px = px)P (Px = px)dpx

= (|A| − 1)Ck
kx

∫ 1

0

pkx
x (1 − px)

k−kx+|A|−2dpx

= (|A| − 1)Ck
kx

Γ(kx + 1)Γ(k − kx + |A| − 1)

Γ(k + |A|)

= (|A| − 1)Ck
kx

kx! (k − kx + |A| − 2)!

(k + |A| − 1)!
, (4.13)

where we used a table [16] to find the solution to the definite integral
∫ 1

0 x
n(1− x)mdx

(this is a form of the beta function, e.g., [16, 17]) and where we note that, for integers
n we have that Γ(n+ 1) = n!.

Substituting equations 4.1, 4.7, and 4.13 into equation 4.12, we obtain

P (Px = px|Kx = kx) = pkx
x (1 − px)

k−kx+|A|−2 (k + |A| − 1)!

kx! (k − kx + |A| − 2)!
. (4.14)

Using equation 4.14 in equation 4.11 gives then

p̂(Laplace)
x =

∫ 1

0

pxP (Px = px|Kx = kx)dpx

=
(k + |A| − 1)!

kx! (k − kx + |A| − 2)!

∫ 1

0

pkx+1
x (1 − px)

k−kx+|A|−2dpx

=
(k + |A| − 1)!

kx! (k − kx + |A| − 2)!

Γ(kx + 2)Γ(k − kx + |A| − 1)

Γ(k + |A|+ 1)

=
(k + |A| − 1)!

kx! (k − kx + |A| − 2)!

(kx + 1)! (k − kx + |A| − 2)!

(k + |A|)!

=
kx + 1

k + |A| . (4.15)
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Equation 4.15 is called Laplace’s rule. The Laplace-rule estimate is reasonable for
small k (having equal probabilities for k = 0, which is consistent with our observations
around figure 4.1) and also provides a proper probability mass function.

4.3 Probability Density Estimation

A probability density of a continuous random variable is usually characterized with a
countable set of parameters. Thus, we can distinguish two aspects in the estimation of
probability density function: i) the design of an appropriate model for the density, ii)
the estimation of the model parameters using the training data. A commonly used model
is the mixture model, which consists of the summation of a set of kernels fX;θi(x), each
specified by a set of parameters θi. The mixture model is

fX;θ(x) =
∑

i∈I

pI(i)fX;θi(x), (4.16)

where I = {1, · · · , |I|} is the set of mixture component indices, pI(i) is a probability-
mass function, and θ = {pI(i), θi}i∈I . We note that pI(i) can be interpreted as the
probability of the component. Most commonly, the kernels fX;θi are Gaussian densities,
but other kernels can also be used.

The motivation for using a mixture model is that, for a sufficiently large cardinality of I
and for a suitable kernel, the model can approximate a large range of densities. Further-
more, the mixture models of equation 4.16 are convenient when estimating moments of
the random variable X :

E[Xm] =

∫

xmfX,θ(x)dx

=
∑

i∈I

pI(i)

∫

xmfX;θi(x)dx, (4.17)

where the superscript m indicates the power.

The estimation of the parameters θ from training data is often not straightforward. In
section 4.3.1 we discuss a measure of accuracy and the sections there-after describe the
estimation of the parameter set θ. The methods that we use are related to those used
in section 4.2 to estimate discrete probability distributions from training data. We first
discuss the basic maximum-likelihood and maximum a-posteriori (MAP) estimation
methods and then the so-called EM algorithm, which is commonly used to maximize
the likelihood when analytic solutions cannot be found for the maximum-likelihood
estimate.

4.3.1 Density Models and Information Measures

While mixture models are commonly used, it is difficult to assess their performance. A
good measure of performance would be the relative entropy between the original density
fX(x) and the model density fX;θ(x),

h(fX‖fX;θ) =

∫

fX(x) log(
fX(x)

fX;θ(x)
)dx. (4.18)
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This measure is generally not directly useful since the original density fX(x) is unknown.
However, since the relative entropy is nonnegative, the quantity

h(X) + h(fX‖fX;θ) = −
∫

fX(x) log(fX;θ(x))dx (4.19)

approaches the differential entropy ofX from above with increasing quality of the density
model fX;θ(x). The expression is easily approximated by exploiting the weak law of the
large numbers (theorem 8). Averaging over N independent observations {x(n)}n=1,··· ,N

(the parentheses around the subscript indicate that it is an index into the set and not
a vector element) results in:

−
∫

fX(x) log(fX;θ(x))dx ≈ −E[log(fX;θ(X))]

≈ − 1

N

N
∑

n=1

log(fX;θ(x(n))). (4.20)

Equation 4.20 is a Monte Carlo integration, which generally requires a large com-
putational expense.

From equations 4.19 and 4.20 we note that (assuming the Monte Carlo integration is
sufficiently precise) the estimated differential entropy never underestimates the true
differential entropy:

h(X) ≤ − 1

N

N
∑

n=1

log(fX;θ(x(n))). (4.21)

This means that we can compare the usefulness of various model densities by evaluating
equation 4.20. Importantly, the model density that provides the smallest value is best.

The right-hand side of equation 4.20 is minus the log likelihood of the data given the
density model. It is seen that the likelihood is closely related to the relative entropy of
the original and model densities. Furthermore, it is clear that the differential entropy
defines an upper bound on the log likelihood of the model.

Equation 4.20 is also commonly interpreted as a particular plug-in estimate of the
entropy. For the mixture model, this plug-in estimate can be written as

h(X) ≈ − 1

N

N
∑

n=1

log(
∑

i∈I

pI(i)f̂X;θi(x(n))). (4.22)

4.3.2 Maximum-Likelihood Estimation of θ

In maximum-likelihood estimation1, the parameter set θ is considered to be determinis-
tic. We try to determine the parameter set θ from a set of N independent observations
denoted by x̌ = {x(n)}n=1,··· ,N . The likelihood of the observations x̌ for a certain θ is

1Whether the supremum of the likelihood is a maximum depends on the modelling assumptions. In
practice, the assumptions are selected such that maxima exist. Hence the name maximum-likelihood
estimation is natural.
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simply fX̌;θ(x̌) for given x̌. The maximum-likelihood estimate for θ is then

θML = argmax
θ

fX̌;θ(x̌)

= argmax
θ

N
∏

n=1

fX;θ(x(n)), (4.23)

where we exploited that the x(n) are independent. It is often convenient to use the
so-called log likelihood, log(fX̌;θ(x̌)). The θ that maximizes the log likelihood is

θML = argmax
θ

N
∑

n=1

log(fX;θ(x(n))). (4.24)

Example 4.1: Maximum likelihood estimation of a Gaussian density

We want to estimate θ = {σ2, µ} in

fX,θ(x) =
1√
2πσ2

e
− (x−µ)2

2σ2 .

The maximum (log) likelihood estimate of the parameter set {µ, σ2} is

{µML, σ
2
ML} = argmax

{µ,σ2}

(

−N

2
log(σ2)−

N
∑

n=1

(x(n) − µ)2

2σ2

)

.

It is convenient to find the estimate for µ first, since it does not depend on σ2:

µML = argmax
µ

−
N
∑

n=1

(x(n) − µ)2

= argmin
µ

Nµ2 − 2µ
N
∑

n=1

x(n)

= argmin
µ

(Nµ−
N
∑

n=1

x(n))
2

=
1

N

N
∑

n=1

x(n).

For σ2
ML we obtain

σ2
ML = argmax

σ2

(

−N

2
log(σ2)−

N
∑

n=1

(x(n) − µML)
2

2σ2

)

= argmin
σ2

(

log(σ2) +
1
N

∑N
n=1(x(n) − µML)

2

σ2

)

=
1

N

N
∑

n=1

(x(n) − µML)
2,

where we have to employ calculus to perform the last step.

Example 4.2: ML estimation of a multi-variate Gaussian density

Using the same approach as example 4.1, we now estimate the parameters θ =
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{R,µk} (R is the covariance matrix R and µk the mean) of the multi-variate
Gaussian distribution,

fXk;θ(x) =
1

√

(2π)k det(R)
e−

1
2
(xk−µk)T R−1(xk−µk),

from a set ofN independent k-dimensional observation vectors x̌k = {xk
(n)}n=1,··· ,N .

Assuming that the maximum (log) likelihood estimate of the mean does not depend
on R, we can write

µk
ML = argmin

µk

N
∑

n=1

(xk
(n) − µk)TR−1(xk

(n) − µk)

= argmin
µk

(

NµkTR−1µk − 2
N
∑

n=1

µkTR−1xk
(n)

)

= argmin
µk

(
N
∑

n=1

xk
(n) −Nµk)TR−1(

N
∑

n=1

xk
(n) −Nµk)

=
1

N

N
∑

n=1

xk
(n),

which is indeed independent of R.

Next we estimate the covariance matrix R. For this we need knowledge of the
matrix calculus results

δ log(det(A))

δA
= A−1,

δxkTAxk

δA
= xkxkT .

Equating R−1 with A, we see that differentiating the log likelihood

log(fX̌k;θ(x̌
k)) = −kN

2
log(2π) +

N

2
log(det(R−1))− 1

2

N
∑

n=1

(xk
(n) − µk)TR−1(xk

(n) − µk)

towards R−1 and setting the result to zero results in

RML =
1

N

N
∑

n=1

(xk
(n) − µk

ML)(x
k
(n) − µk

ML)
T .

This completes the maximum-likelihood estimation of the multi-variate Gaussian.

Example 4.3: Maximum-likelihood estimate of Laplacian density

We want to estimate the parameters θ = {a, µ} in

fX;θ(x) =
a

2
e−a|x−µ|.

Ignoring a constant term, the corresponding log likelihood of N observations x(n)

is

log(fX̌;θ(x̌)) = N log(a)−
N
∑

n=1

a|x(n) − µ|.

Differentiating towards µ and setting the result to zero we obtain

N
∑

n=1

sign(x(n) − µ) = 0,
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which implies that µML is the median of {x(n)}n=1,··· ,N . Once µML is known, the
solution for a is trivial:

a =
N

∑N
n=1 |x(n) − µML|

.

4.3.3 Maximum A-Posteriori Estimation of θ

As was mentioned in section 4.2, the maximum-likelihood estimation procedure can be
interpreted as a special case of the maximum a-posteriori (MAP) estimation procedure.
For the MAP method, the deterministic vector θ is replaced with a random vector, which
we denote by Θ. This replacement is reflected in our notation of the densities where
fX;θ(x) is replaced by fX|Θ(x|θ). In MAP estimation, the goal is to find a realization
of Θ that maximizes its density given the observations x̌. We can write

θMAP = argmax
θ

fΘ|X̌(θ|x̌)

= argmax
θ

fX̌|Θ(x̌|θ)
fΘ(θ)

fX̌(x̌)

= argmax
θ

fX̌|Θ(x̌|θ)fΘ(θ)

= argmax
θ

(

log(fX̌|Θ(x̌|θ)) + log(fΘ(θ))
)

, (4.25)

which is similar to the derivation in 4.5. Equation 4.25 shows that the MAP estimate
differs from the maximum likelihood estimate in an additional term in the criterion.
This term accounts for the a-priori probability distribution fΘ(θ).

4.3.4 The Expectation-Maximization Algorithm

It is often impossible to find a simple analytic solution for the θ that maximizes the
log likelihood criterion. In such cases, an effective iterative procedure that reduces
the likelihood criterion at each iteration step is useful. An iterative algorithm that is
commonly used for this purpose is the expectation-maximization algorithm or EM
algorithm, which we describe in more detail below.

In the derivation of the EM algorithm, we have as goal to obtain a double maxi-
mization of an expression. Alternating these maximizations will result in an iterative
procedure. We start with rewriting the log likelihood of N independent observations
x̌ = {x(n)}n=1,··· ,N of the random variable X . We introduce an additional random vec-
tor, Y , and consider the parameter set θ to specify the joint distribution, fXY ;θ(x, y),
of X and Y . Note that we have not yet specified anything about possible dependencies
between X and Y . The likelihood of a given set of observations X̌ = x̌ can be written
as

log(fX̌;θ(x̌)) = log(fX̌;θ(x̌))

∫

fY̌ |X̌;θ′(y̌|x̌)dy̌

=

∫

fY̌ |X̌;θ′(y̌|x̌) log(fX̌;θ(x̌))dy̌

=

∫

fY̌ |X̌;θ′(y̌|x̌) log(
fX̌Y̌ ;θ(x̌, y̌)

fY̌ |X̌;θ(y̌|x̌)
)dy̌, (4.26)
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where the integral is over the sample space of Y̌ . The right-hand side of equation 4.26

can be interpreted as an expectation of log(
fX̌Y̌ ;θ(X̌,Y̌ )

fY̌ |X̌;θ(Y̌ |X̌)
), which is specified by θ, over

the probability distribution fY̌ |X̌;θ′ , which is specified by θ′.

Next, we restrict our choice of Y . We choose our random vector Y such that if y is
known, then x is fully specified, but not necessarily vice versa. In other words, the
mapping from y to x is, in general, a many-to-one mapping. This is often expressed by
referring to Y as the complete data, whereas X describes the observed data.

The choice of a deterministic mapping from y to x leads to singularities in density
functions that can be avoided by defining integrals over y̌ to be on manifolds. We gloss
over these technical difficulties here. The many-to-one mapping leads to the identity
fX̌Y̌ ;θ = fY̌ ;θ and we rewrite the likelihood of equation 4.26 as

log(fX̌;θ(x̌)) =

∫

fY̌ |X̌;θ′(y̌|x̌) log(
fY̌ ;θ(y̌)

fY̌ |X̌;θ(y̌|x̌)
)dy̌. (4.27)

Finding the θ that maximizes the likelihood, is then equivalent to finding the θ that
maximizes the right-hand-side of equation 4.27. Similarly to the left-hand side, the
solution is often analytically untractable. However, we are now ready to introduce
the second maximization such that we obtain an iterative procedure by alternating the
maximizations. We do this by adding an expression that has as maximum over the
parameter space θ′ the value zero and maximizing this over θ′ (that is, we really add
zero!). We select for the term2 that has as maximum zero −h(fY̌ |X̌;θ′(·|x̌)||fY̌ |X̌;θ(·|x̌)).
The maximum likelihood can then be expressed as

max
θ
fX̌,θ(x̌) = max

θ
log(fX̌,θ(x̌))

= max
θ

∫

fY̌ |X̌;θ′(y̌|x̌) log(
fY̌ ;θ(y̌)

fY̌ |X̌;θ(y̌|x̌)
)dy̌

= max
θ

max
θ′

(

∫

fY̌ |X̌;θ′(y̌|x̌) log(
fY̌ ;θ(y̌)

fY̌ |X̌;θ(y̌|x̌)
)dy̌−

h(fY̌ |X̌;θ′(·|x̌)||fY̌ |X̌;θ(·|x̌))
)

= min
θ

min
θ′

h(fY̌ |X̌;θ′(·|x̌)||fY̌ ;θ(·)), (4.28)

where we exploited that the log likelihood does not depend on θ′ (see equation 4.26)
and that minθ′ h(fY̌ |X̌;θ′(·|x̌)||fY̌ |X̌;θ(·|x̌)) = 0.

Alternating the minimizations in equation 4.28 results in a minimization of the relative
entropy h(fY̌ |X̌;θ′(·, x̌)||fY̌ ;θ) and, thus, a maximization of the likelihood of equation
4.26. To make this iterative algorithm practical, we need the explicit solutions for the
optimal values for θ given θ′ and for θ′ given θ. First, we note from 4.28 that the
minimization over θ′ corresponds to minimization of h(fY̌ |X̌;θ′(·|x̌)||fY̌ |X̌;θ(·|x̌)), and

2A note on notation of the relative entropy. Relative entropy is a functional, i.e., it depends on
functions and not on just a particular value the function takes. This is the reason why we generally
write h(fX‖fY ). We can also write h(fX(·)‖fY (·)), but not the meaningless h(fX(x)‖fY (y)). For
conditional distributions the values of the conditioning variables are important and we, therefore, must
write, for example, h(fX,Z(·|z)‖fY (·)).
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Table 4.1: The EM algorithm for iteratively maximizing the likelihood of the parameter
set θ that specifies fX;θ. The function Q(·, ·) is defined in equation 4.31.

1. initialize θ = θ′

2. compute θopt = argmaxθQ(θ; θ′)

3. reset θ′ := θopt

4. check whether iterations have converged; go to 2 if they have not

that this simply corresponds to selecting

θ′opt = θ. (4.29)

Second, we note that optimizing for θ corresponds to an expectation maximization,
which motivates the name of the algorithm. We can rewrite this step as:

θopt = argmin
θ

h(fY̌ |X̌;θ′(·|x̌)||fY̌ ;θ)

= argmin
θ

(∫

fY̌ |X̌;θ′(y̌|x̌) log(fY̌ |X̌;θ′(y̌|x̌))dy̌ −
∫

fY̌ |X̌;θ′(y̌|x̌) log(fY̌ ;θ(y̌))dy̌

)

= argmax
θ

∫

fY̌ |X̌;θ′(y̌|x̌) log(fY̌ ;θ(y̌))dy̌,

= argmax
θ

Q(θ; θ′), (4.30)

where we defined the cost function

Q(θ; θ′) =

∫

fY̌ |X̌;θ′(y̌|x̌) log(fY̌ ;θ(y̌))dy̌

=

∫ N
∏

n=1

fY |X;θ′(y(n)|x(n)) log(
N
∏

n′=1

fY ;θ(y(n′)))dy̌

=

N
∑

n=1

∫

fY |X;θ′(y|x(n)) log(fY ;θ(y))dy. (4.31)

The resulting EM algorithm is summarized in table 4.1.

For a particular problem, with a particular form for fY ;θ(y), an explicit expression for
θopt can often be found. Here we are interested in the optimization of the parameters
of a mixture model. A straightforward calculus approach towards solving equation 4.24
does not work because we obtain a set of nonlinear equations, and that motivates us to
use the EM algorithm.

Let us now consider the EM for the mixture model. In the mixture model approach,
the set of parameters specifying the model is

θ = {θi, pI(i)}i∈I . (4.32)

The idea behind using the EM approach for the mixture model is simple: we select the
complete data vector such that the optimization problem of equation 4.30 essentially
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reduces to that the individual maximum likelihood estimation of the kernel densities.
Since we optimize the parameters by differentiation, that means the objective is to create
a cost function Qmixture(θ; θ

′) that is additive in terms depending on the elements of the
set {θi, pI(i)}i∈I . To this purpose, we use Y = {X, I} where I is the random index of
the mixture component. Accounting for the fact that I is a discrete random variable,
which means the integral is replaced by a sum, the cost function of equation 4.31 can
be written as

Qmixture(θ; θ
′) =

N
∑

n=1

∑

i∈I

fX,I|X;θ′(x(n), i|x(n)) log(fX,I;θ(x(n), i))

=

N
∑

n=1

∑

i∈I

pI|X;θ′(i|x(n)) log(fX,I;θ(x(n), i))

=

N
∑

n=1

∑

i∈I

pI|X;θ′(i|x(n))
(

log(fX;θi(x(n))) + log(pI(i))
)

, (4.33)

which displays the desired additivity in terms depending on the elements of the set θ.
The probability distributions pI|X;θ′(i|x(n)) (which are constant for the optimization of
the cost function with respect to θ) can be computed using Bayes rule:

pI|X;θ′(i|x) =
fX|I;θ′(x|i)p′I(i)

fX;θ′(x)

=
fX|I;θ′(x|i)p′I(i)

∑

i∈I fX|I,θ′(x|i)p′I(i)

=
fX;θ′

i
(x)p′I(i)

∑

i∈I fX;θ′
i
(x)p′I(i)

. (4.34)

Example 4.4 shows how the maximization of the cost function of equation 4.33 can be
used to perform training for the Gaussian mixture model.

Example 4.4: EM algorithm for a Gaussian mixture model

In this example we find the equations that allow us to compute the EM estimate
of a Gaussian mixture model on a computer. For clarity we consider explicitly the
case of k-dimensional vectors.

Additive terms in the cost function of equation 4.33 that involve disjoint parameter
sets can be optimized separately. We first optimize the individual θi; the relevant
part of the criterion is

η
(f)
i =

N
∑

n=1

pI|Xk;θ′(i|xk
(n)) log(fXk;θi

(xk
(n))).

Straightforward optimization of this criterion is not difficult and similar to the
optimization found in example 4.2. In fact, we can exploit the optimization of
example 4.2 by recognizing that the only difference is that we have a weighting of
the individual additive terms of the log likelihood by pI|Xk;θ′(i|xk

(n)), which varies
with each observation n rather than being constant. It is then easily seen that the
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solution is

µk
i,opt =

∑N
n=1 pI|Xk;θ′(i|xk

(n))x
k
(n)

∑N
n=1 pI|Xk;θ′(i|xk

(n))
,

Ri,opt =

∑N
n=1 pI|Xk;θ′(i|xk

(n))(x
k
(n) − µk

i,θ′)(x
k
(n) − µk

i,θ′)
T

∑N
n=1 pI|Xk;θ′(i|xk

(n))
,

where we use equation 4.34 to compute the pI|Xk;θ′(i|xk
(n)).

To find the optimal solution for the mixture component probabilities {pI(i)}i∈I
we consider the terms

η(p) =
∑

i∈I

N
∑

n=1

pI|Xk;θ′(i|xk
(n)) log(pI(i))

of the criterion Qmixture(θ; θ
′). The probabilities {pI(i)}i∈I must be nonnegative

and should add to unity:
∑

i∈I
pI(i) = 1.

Using the method of Lagrange multipliers, we find as solution

pI,opt(i) =
1

N

N
∑

n=1

pI|Xk;θ′(i|xk
(n)).

The EM algorithm can be implemented by performing the following operations at
each iteration:

1. Compute pI|Xk;θ′(i|xk
(n)) using equation 4.34.

2. Compute θopt. That is, compute for all i the parameters pI;opt(i), µ
k
i,opt, and

Ri,opt using the equations provided in this example.

3. Replace θ′ with θopt.

We continue these iterations until the criterion is deemed sufficiently small. The

algorithm can be initialized with a random set of means and identical covariances

for all components.

4.4 Maximum-Entropy Probability Distributions

In section 4.3, we discussed methods to estimate probability distributions from a known
data sequence. In this section, we determine probability distributions for the case that
we only know a set of constraints on the probability distribution. In addition to the
constraints that the distribution has to integrate to one and be nonnegative additional
constraints, such as a given set of autocorrelations values, may or may not be present.
The probability distribution that we seek is the distribution that is the most likely
empirical distribution under the assumption that all sequences that are possible, given
the constraints, are equally likely. This distribution is called the maximum-entropy
distribution. Maximum-entropy distributions are often useful and, thus, commonly
computed.
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As we will see in chapter 6, at a given distortion, high uncertainty leads to a higher
bit rate. It is thus natural to associate a maximum-entropy distribution with an upper
bound on rate given the constraints.

Maximum-entropy distributions are also useful outside the realm of source coding. A
good example of that is the maximum-entropy spectral estimation method, which was
originally introduced by Burg in 1967 (for a complete description see [18])3.

We start this section with a more in-depth analysis of the meaning of the maximum-
entropy criterion. We then show that the maximum-entropy criterion with autocorrela-
tion constraints results in Gaussian densities and also discuss spectral estimation based
on the maximum-entropy criterion.

4.4.1 The Interpretation of the Maximum-Entropy Criterion

The maximum-entropy method provides an estimate of the probability distribution of a
random variable. Let us consider an iid sequence of k of these random variables, where
k is very large. The random variable has a discrete alphabet. The basic tenet of the
maximum-entropy method is that each unique sequence has the same probability of
occurrence. This assumption is identical to the assumption that all accessible ensemble
configurations in section 2.2 are equally likely. Under this assumption, what is a reason-
able estimate of the probability distribution for the symbols in an arbitrary sequence?
For large k, it is reasonable to use the empirical distribution that is most likely to be
observed when selecting an arbitrary sequence.

We now show that the most likely empirical distribution corresponds to the maximum-
entropy probability distribution. For notational convenience, let us consider the discrete
alphabet A = {1, 2, · · · , |A|} and a k-symbol sequence where k1 symbols are “1”, k2
symbols are “2”, etc. We can use the reasoning used in equation 2.2 of section 2.1. The
logarithm of the number of sequences normalized by the number of samples is

1

k
log(Ωseq) =

1

k
log

(

k!

k1! · · · k|A|!

)

≈ −
∑

x∈A

pX(x) log(pX(x))

= H(X), (4.35)

where X is a random variable with the probability mass function pX(x) = kx/k. Thus,
selecting the empirical probability mass function with the highest probability is the
same as selecting the probability mass function with maximum entropy. Moreover,
when the sequence is very long, almost all sequences have a probability mass function
corresponding to the maximum-entropy probability mass function.

We assume that the above reasoning remains valid when we move from a discrete al-
phabet to a continuous alphabet. This implies that we use a fine-grained, regular quan-
tization when presupposing an equal probability density for the symbol sequences. The
maximum-entropy method then leads to the maximization of the differential entropy to
obtain a probability density function.

3In spectral estimation, the appropriateness of the criterion is not without controversy (e.g., [19]).
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In the above interpretation of the maximum-entropy criterion, we have used a start-
ing point that is exactly the complement of the one used in section 2.8 to derive the
equipartition principle. To find an interpretation of the maximum-entropy criterion in
the present section, we started with the notion that all sequences are equally likely,
and we then found that the empirical distribution that is likely to be observed is the
maximum-entropy distribution. Conversely, in our derivation of the equipartition prin-
ciple in section 2.8, we assumed that the probability distribution exists, and we then
found that for large cardinality of I, almost all sequences have equal probability.

4.4.2 Maximum-Entropy Distributions

In the following, we will find a formal description of maximum-entropy distributions
for continuous alphabets. The discrete-alphabet case is very similar (see problem 6).
In the maximum-entropy method we try to find the probability density fXk(xk) that
maximizes

h(Xk) = −
∫

A

fXk(xk) log(fXk(xk))dx = −E[log(fXk(Xk))], (4.36)

where A is the range of support of fXk(xk), with the constraint that fXk(xk) is a
density, that is that

1 =

∫

A

fXk(xk)dxk, (4.37)

and that fXk(xk) is nonnegative everywhere. We can have additional set, B, of con-
straints of the form

E[gi(x
k)] = Gi, i ∈ B, (4.38)

where gi(·) is some function andGi is a constant. The extended criterion to be optimized
is thus

η =

∫

A

fXk(xk) log(fXk(xk))dx+ µ

∫

A

fXk(xk)dxk +
∑

i∈B

λi

∫

A

gi(x
k)fXk(xk)dxk,

(4.39)
where µ and the λi are Lagrange multipliers. The Euler-Lagrange equation is

0 = log(fXk(xk)) + 1 + µ+
∑

i∈B

λigi(x
k) (4.40)

and we have as formal solution

fXk(xk) = βe−
∑

i∈B λigi(x
k), xk ∈ A, (4.41)

where β and λi are selected to satisfy the constraints.

A particular, important case is the maximum-entropy distribution for a zero-mean vector
with known variance. The constraint E[g1(x

k)] = G1 is then specified by g1(x
k) =

∑

i x
2
i , which means that the formal solution takes the form of a k-dimensional multi-

variate Gaussian with diagonal covariance matrix. To emphasize the importance of this
result, we write it as a theorem:



4.4. MAXIMUM-ENTROPY PROBABILITY DISTRIBUTIONS 79

Theorem 14 The Gaussian density

fXk(xk) =
1

√

(2π)kσ2k
e−

1
2σ2

∑k
i=1 x2

i

maximizes the differential entropy for a vector with a sum of component variances equal
to kσ2.

In many cases it is not possible to construct a proper probability density with the
solution of the form given in equation 4.41. A trick that can be used to find a proper
solution is to i) add additional constraints that renders equation 4.41 of a form that
facilitates simple analytic descriptions of the probability densities, and ii) maximize
the values of the additional constraints so as to maximize the (differential) entropy, for
proper probability densities. We use this trick in section 4.4.3.

Example 4.5: Finite-range variable with maximum differential entropy

Consider the set of densities fX(x) that are constrained to be zero outside the
intervalA = [0, a). We want to find the density with maximum differential entropy.
In this problem the only constraint is that fX(x) is a density. Thus, equation 4.41
reduces to

fX (x) = β

in the range of support. Together with the constraint this gives as solution

fX(x) = 1/a, x ∈ [0, a). Since fX(x) is nonnegative everywhere, fX(x) is a

density. The solution is very similar to that obtained for the discrete case dis-

cussed in section 2.3. It is intuitive that the uncertainty about the value that X

will take is maximized by this density. The corresponding differential entropy is

given in example 3.1.

Example 4.6: Density with known absolute value expectation

We want to find the maximum-entropy density for the case where we know that
E[|x|] = b, where b ∈ [0,∞). Equation 4.41 tells us that

fX(x) = βe−λ1|x|.

The constraints are

1 =

∫ ∞

−∞
βe−λ1|x|dx = 2

∫ ∞

0

βe−λ1xdx,

b =

∫ ∞

−∞
|x|βe−λ1|x|dx = 2

∫ ∞

0

xβe−λ1xdx.

These constraints are satisfied by

fX(x) =
1

2b
e

−|x|
b .

which is a density, since fX(x) is nonnegative for all x on the real line.

4.4.3 Maximum-Entropy Spectral Estimation

In maximum-entropy spectral estimation, it is assumed that a set of moments of a
signal is known4. Based on this set of constraints, we can find a joint probability

4In practical spectral estimation, the moments are estimated, rendering this assumption inaccurate.



80 4. ESTIMATION OF PROBABILITY DISTRIBUTIONS

density that maximizes the joint entropy of the samples. We will see that this joint
probability density function is the multi-variate Gaussian density. When we extend this
reasoning to the case of stationary processes, we find that, given a set of second-order
moments (i.e., part of the covariance matrix) the maximum-entropy process must be
auto-regressive.

To start, let us consider a vector Xk in Rk for which we know for a set B of indices i and
j the numbers E[XiXj] = Rij . What is the maximum-entropy multi-variate density of
Xk under these constraints? The solution method of section 4.4.2 readily generalizes
to multiple dimensions. Thus, we see from equation 4.41 that the multi-variate density
will be of the form

fXk(xk) = βe−
∑

i,j∈B λijxixj . (4.42)

It is often not straightforward to find a solution of this form. Furthermore, the solution
may often not be a proper density. Thus, we apply the trick mentioned after equation
4.41 and add “undetermined” constraints. We simply extend B to include all i and j
combinations such that i ∈ {1, · · · , k} and j ∈ {1, · · · , k}. The probability density can
then be written as

fXk(xk) = βe−xkTΛxk

, (4.43)

where xk = [x1, · · · , xk]T and Λ is a matrix with elements λij . Equation 4.43 is of the
form of the multi-variate Gaussian distribution, so we immediately conclude that the
probability density function is

fXk(xk) =
1

√

(2π)k det(R)
e−

1
2x

kTR−1xk

, (4.44)

where R is the covariance matrix with elements Rij and where det(R) is the determinant
of this matrix. All that remains is to replace the unknown values of the matrix Rij with
those that maximize the entropy. From equation 3.25, we see that this is equivalent to
finding the values that maximize the determinant of the covariance matrix.

Example 4.7: Two-dimensional vector with known variances

We have a two-dimensional random vector with known R11 and R22. In this case,
equation 4.42 gives a valid probability density. It is of the form

fX2(x2) = β exp(−
i=2
∑

i=1

λix
2
i ),

which results in the solution

fX2(x2) =
1

√

∏i=2
i=1(2πRii)

exp(−
i=2
∑

i=1

x2
i

2Rii
).

We can also start from equation 4.44. The elements R12 = R21 of R are not known.
We want to find the value for R12 that maximizes the diffential entropy, or, by
theorem 12, the determinant of the covariance matrix:

h(X2) = −
∫

fx2(x2) log(fX2(x2))dx2

=
1

2
log((2πe)2 det(R))

=
1

2
log((2πe)2(R11R22 −R2

12))
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where we used equation 3.25. In other words, we want to minimize R2
12. For real

random vectors this means that R12 = 0 and equation 4.44 reduces to the result

obtained earlier in this example.

In the case of spectral estimation, the finite-dimensional vector is replaced with a sta-
tionary Gaussian process. We maintain the procedure, but replace the expression for the
differential entropy according to Szegös theorem (theorem 13). Thus, we now maximize
the differential entropy rate of a Gaussian process with memory

h∞(Xi) =
1

2
log(2πe) +

1

4π

∫ π

−π

log(R(ejω))dω (4.45)

under constraints of the form

Ri = E[XnXn+i]

=
1

2π

∫ π

−π

R(ejω)ejωidω, (4.46)

where we introduced the simplified notation Ri ≡ Rn,n+i. In the following, we will
assume that we know Ri for i ∈ {−p, · · · , 0, · · · , p} and, naturally, that Ri = R−i. The
extended criterion can be written as

η =
1

4π

∫ π

−π

log(R(ejω))dω −
p
∑

i=−p

λi
1

2

1

2π

∫ π

−π

R(ejω)ejωidω, (4.47)

where we included an additional factor − 1
2 to simplify notation in the following deriva-

tion. The Euler-Lagrange equations are

0 =
1

R(ejω)
−

p
∑

i=−p

λie
jωi. (4.48)

The maximum-entropy power density is then of the form

R(ejω) =
1

∑p
i=−p λie

jωi
. (4.49)

We note that a symmetry in i is required for λi if R(e
jω) is to be real for all values of ω.

Let us consider then the following factorization for the denominator of equation 4.49:

p
∑

i=−p

λie
jωi = (

p
∑

i=0

µie
jωi)(

p
∑

i=0

µie
jωi)∗ = |

p
∑

i=0

µie
jωi|2. (4.50)

where ∗ indicates complex conjugate. Thus, equation 4.49 can be written as

R(ejω) =
1

|∑p
i=0 µiejωi|2 . (4.51)

Equation 4.51 shows that the maximum-entropy spectral estimate is the all-pole spec-
trum with p poles with the p specified autocorrelations. This motivation is often used
to justify spectral estimation with all-pole models. However, it should be remembered
that in practical cases the moments are generally approximations.
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Example 4.8: MA1 process has lower entropy rate than AR1 process

In this example, we directly compare the differential entropy rate of a station-
ary first-order moving average (MA1) process and that of a stationary first-order
autoregressive (AR1) process, all for equal R0 and R1. These processes can be cre-
ated by filtering. From the theoretical results above, we expect the MA1 process
to have a lower entropy rate than the AR1 process, and we will confirm that. We
first compute explicit expressions for the entropy rates of both processes in terms
of R0 and R1.

We start with the MA1 process. We generate a signal Xi by filtering a stationary
Gaussian iid process Ei with variance σ2

E with the MA1 filter H(z) = 1 + az−1.
The signal Xi is Gaussian (we can use the same derivation as in example 3.6 to
prove this) with a variance

R0 = E[X2
i ] = E[(Ei + aEi−1)(Ei + aEi−1)] = (1 + a2)σ2

E.

We also have

R1 = E[XiXi−1] = E[(Ei + aEi−1)(Ei−1 + aEi−2)] = aσ2
E.

Solving for σ2
E in terms of R0 and R1 we obtain

σ2
E =

1

2
R0 ±

1

2

√

R2
0 − 4R1.

Using the reasoning for obtaining the entropy rate used in example 3.6, we obtain
for the present MA filter

h∞(Xi) = h(Ei)

=
1

2
log(2πeσ2

E)

=
1

2
log(πe(R0 ±

√

R2
0 − 4R1)).

Next, we determine the entropy rate of the AR1 process. The excitation Ei and a
signal Xi are now related by

Ei = Xi − bXi−1.

Again the filter output is Gaussian because the input is Gaussian. Because of
independence, we see that

0 = E[EiXi−1] = R1 − bR0

and, thus, obtain that b = R1/R0. Furthermore,

σ2
E = E[X2

i − 2bXiXi−1 + b2X2
i−1]

= R0 − 2bR1 + b2R0

= R0 − R2
1

R0
.

The differential entropy of the AR1 process is simpler to evaluate than that of the
MA process:

h∞(Xi) = h(Xi|Xi−1, Xi−2, · · · )
= h(Xi|Xi−1)

= h(Ei + bXi−1|Xi−1)

= h(Ei)

= log(2πeσ2
E)

= log(2πe(R0 − R2
1

R0
)).
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We now compare the results for the MA1 and the AR1 signals directly. First of
all, we see that all we have to compare is the variance of the excitation signal,
since in both cases the differential entropy rate of the process is log(2πeσ2

E) where
σ2
E is the excitation signal variance.

We proceed as follows: we start with an MA1 process with an excitation with unity
variance and evaluate R0 and R1. We then compute the variance of the excitation
of an AR1 process with the same R0 and R1. (Since we can scale the signals, we
have not lost any generality.) If the AR1 excitation variance is larger than unity,
then the entropy rate of the AR1 process is larger. We consider the MA1 process
Xi = Ei + aEi−1. We earlier showed that then R0 = 1 + a2 and R1 = a. The
variance of an AR1 model is then

σ2
E = R0 −

R2
1

R0

= 1 + a2 − a2

1 + a2

≥ 1.

Herewith, we have shown that, for given R0 and R1, the variance and thus the

entropy rate of an AR1 process is larger than that of an MA1 process. This

confirms the general results.

4.5 Problems

1. Consider an alphabet {1, 2, 3} and a sequence 2311.

(a) Using the maximum-likelihood method, compute the empirical probability-
mass function.

(b) Using the Laplace’s rule, compute the empirical probability-mass function.

2. Consider random sequences of bits with probability P(X=0)=0.3, P(X=1)=0.7.
Using a random number generator, create two such sequences of 10000 symbols.

(a) Using the maximum-likelihood method, compute the empirical probability-
mass function, for k = 0, 10, 100, 1000, 10000 using the observed values of
k0.

(b) Using the Laplace’s rule, compute the empirical probability-mass function,
for k = 0, 10, 100, 1000, 10000 using the observed values of k0.

3. A variable has an alphabet with four symbols of probability 0.3, 0.3, 0.2, and 0.2
respectively.

(a) Give a tight lower bound for the bit rate to encode a sequence of such vari-
ables.

(b) What is the lower bound on the rate for a code if the symbols had a uniform
probability mass function.

(c) You estimate the probability mass function from data using the maximum-
likelihood estimate. Estimate the variance in the symbol probabilities after
10, 100, 1000, and 10000 symbols.
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4. Consider a random variable with a normal density of unknown mean µ and known
variance σ2. The variable is sampled k times with outcomes {x1, · · · , xk}.

(a) Find an expression for the maximum-likelihood estimate for the mean µ that
is recursive in the sampling index i.

(b) Assume that a first estimate of the mean itself is a normal density with zero
mean and variance γ2. Find the MAP estimate for µ and the a-posteriori
density.

(c) Generate data of a normal density with µ = 1 and σ2 = 9. Assuming that
σ2 is known, plot your maximum-likelihood and MAP estimates of µ as a
function of k.

5. Consider a Gaussian random vector with covariance matrix

R =





1 1/4 1/8
1/4 1 b
1/8 a 1



 .

(a) Compute the differential entropy of the vector for a = b = 0.

(b) Find the values for a and b that maximize the entropy of the vector while
making sure that the matrix is a covariance matrix. Provide the resulting
entropy.

(c) Prove explicitly that your optimized a and b result in a proper covariance
matrix.

(d) Find a linear transform of the process vector of maximum entropy that ren-
ders the vector components uncorrelated.

(e) Plot a high-level schematic of an efficient coding and decoding system of the
maximum-entropy vector process that uses only scalar quantizers.

6. We consider the maximum-entropy distribution for the discrete case.

(a) Find the equivalent of equation 4.41 for the general discrete alphabet case.

(b) Find the maximum-entropy probability mass function for a variable with a
discrete alphabet A = {2, 3, 4, 5} under the constraint that E[X ] = 4.

(c) For the same alphabet, find the maximum-entropy probability mass function
under the constraint that E[X2] = 8.

7. You code a variable with a continuous density with a uniform quantizer. The
quantizer step size is sufficiently small and the density sufficiently smooth that
the density does not change significantly within the quantizer cells. You apply a
lossless coder to the quantizer indices. You should use a true probability density
fX(x) but you only have available an estimate f̂X(x).

(a) Write the increase in the coding rate resulting from having to use the es-
timated rather than the true density in terms of the true and estimated
densities.

(b) The density fX(x) is a zero-mean Gaussian density with unity variance. Find

the maximum-likelihood fit of a Laplacian density, f̂X(x), to this Gaussian
density and evaluate the increase in coding rate resulting from using the
mismatched density.
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8. Let X2 (the superscript indicates dimensionality) be a two-dimensional vector
with independent components each with a distribution that is uniform on [0, 1.0).
We consider the random vector Y 2 = BX2, where

B =

[

1 0.2
1 −0.2

]

.

The vector has a density fY 2 and the density model is denoted as fY 2;θ.

(a) Find the “maximum-likelihood” multi-variate Gaussian density model for Y 2.
Estimate the relative entropy h(fY 2‖fY 2;θ) in bits by Monte Carlo integra-
tion. (Hint: note that h(Y 2) can be computed analytically.)

(b) Generate 10000 realizations of the random vector Y 2. Plot a scatter plot.

(c) Train a Gaussian mixture density model with two components using the EM
algorithm. Estimate the relative entropy h(fY 2‖fY 2;θ) in bits.

(d) Train a Gaussian mixture density model with two components with diagonal
covariance matrices. Estimate the relative entropy h(fY 2‖fY 2;θ) in bits.

(e) Train a Gaussian mixture density model with four components with diagonal
covariance matrices. Estimate the relative entropy h(fY 2‖fY 2;θ) in bits.

9. Consider a data base of one minute of speech recorded at 8 kHz. Divide the signal
into block of 80 samples and measure the energy of these segments on a per sample
basis. Consider the measured energies to be realizations of the random variable
X .

(a) Consider a mixture model of Laplacian densities. Determine the EM algo-
rithm to train this mixture for a given data base.

(b) Using the EM algorithm, find the one-component, two-component, and four-
component Laplacian density models to the describe the energy distribution
of speech. Plot the model distributions.

(c) Using the EM algorithm, find the one-component, two-component, and four-
component Gaussian density models to the describe the energy distribution
of speech. Plot the model distributions.

(d) Estimate
∫

fX(x) log(fX̂(x))dx for all your distributions and interpret the
results.

10. In this problem we consider different approaches to the probability-mass estima-
tion and coding for a discrete variable X with alphabet {−2, 0, 2}.
(a) Find the maximum-entropy distribution under the constraint that E[X2] = 2.

(b) You have four (4) independent observations of X : {−2,−2, 0, 2}. Given these
observations, find the maximum-likelihood distribution for X .

(c) The prior distribution is P ({pX(−2) = 0.33, pX(2) = 0.33, pX(0) = 0.33}) =
0.5, P ({pX(−2) = 0.5, pX(2) = 0.25, pX(0) = 0.25}) = 0.5, Compute the
maximum a posteriori estimate given the observations {−2,−2, 0, 2}.

(d) Explain when and why the maximum-a-posteriori estimate converges to the
maximum-likelihood estimate with increasing number of data.

(e) Find the penalty in bit rate per sample if you apply (optimal) lossless coding
to the data using as distribution estimate p̂X(−2) = p̂x(2) = p̂X(0) = 0.33
but the true distribution is pX(−2) = 0.5, px(2) = 0.25, pX(0) = 0.25.
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Lossless Coding

5.1 Introduction

In chapter 2, we discussed the relation between the entropy of a random variable with
a discrete alphabet and the mean length of the source code. Using a Shannon code,
it was shown to be possible to define a uniquely decodable code for which the mean
codeword length in bits is within one bit of the entropy of the random variable. Since the
reconstruction of the discrete-alphabet variable is exact, a Shannon code is a particular
lossless code. In general, lossless codes exploit the probability mass function of the
symbols by assigning longer codewords to symbols or sequences of symbols of lower
probability. In this chapter, we describe a number of common lossless coding procedures.

It is natural to use lossless coding when storing or transmitting sequences of symbols,
where the data must be preserved, such as a text file. However, lossless coding is also
used in conjunction with lossy coding as is illustrated in example 5.1.

Example 5.1: Lossless coding in MPEG-2 audio coder

Lossless coding is featured in the MPEG-2 audio coding scheme [1]. In this coder,

a filter bank is used to map the one-dimensional audio signal into a set of signals

with lower sampling rate. Each of these down-sampled signals is subjected to an

adaptive scalar quantizer that accounts for perceptual effects. The quantization

indices produced by the encoder form a discrete alphabet that is not uniformly

distributed. A lossless coder is then used to describe the quantization indices at

a low average bit rate. This lossless coder exploits only the marginal probability

density functions.

Lossless codes can be divided into two classes: i) codes that require an a-priori prob-
ability distribution and ii) universal codes that do not require an a-priori probability
distribution. Within the universal codes one often distinguishes the subclass of adap-
tive codes. Adaptive codes are identical to codes that require an a-priori probability
distribution except that they are augmented with the computation of the corresponding
empirical probability-distribution. We start the chapter with codes that require a-priori
knowledge of the source-symbol statistics, and then discuss universal codes.

87



88 5. LOSSLESS CODING

5.2 Codes Using Known Source-Symbol Statistics

In chapter 2, we defined a prefix- or instantaneous code as a code in which a codeword
cannot be a prefix to another codeword. It was also shown that, for any set of codeword
lengths satisfying the Kraft inequality, a prefix code can be found. In other words, no
optimal code is better than the best prefix code, which is thus also optimal. In this
section, we will discuss two prefix codes: Shannon codes and Huffman codes.

5.2.1 Shannon Codes

Shannon codes can be motivated by a minimization of the average codeword length
without taking into account that the final codewords must be an integer number of
symbols (usually bits). That is, we start with designing a code that minimizes the
average codeword length

L = E[l(X)] =
∑

x∈A

pX(x)l(x) (5.1)

under the constraint that the Kraft inequality is satisfied. If a noninteger number of
bits is allowed, we can always create a shorter unique code by shortening an arbitrary
codeword if the Kraft inequality is a true inequality. Thus, for this “noninteger” case
the Kraft inequality is an equality for an optimal code,

∑

x∈A

2−l(x) = 1. (5.2)

If we allow noninteger bit assignments, a simple constrained optimization problem re-
sults. Using the Lagrange multiplier µ, the criterion to be minimized becomes

η =
∑

x∈A

pX(x)l(x) + µ(
∑

x∈A

2−l(x) − 1). (5.3)

Differentiating η with respect to l(x) and setting the result equal to zero, we obtain a
set of equations of the following form:

pX(x)− µ′2−l(x) = 0, (5.4)

where µ′ = log(2)µ. Summing over the alphabet, A, results in

1− µ′
∑

x∈A

2−l(x) = 0 (5.5)

and comparing this with 5.2 shows that µ′ = 1. We find that, if the bit allocations are
allowed to be noninteger, the optimal codeword lengths are

l(x) = − log2(pX(x)). (5.6)

Naturally, we cannot use fractional bit assignments in reality. To obtain a practical
implementation, we round the bit assignment up and obtain

l(x) = ⌈− log2(pX(x))⌉. (5.7)
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As was shown in section 2.4.2, a simple tree structure can be used to construct an actual
code and such a code is called a Shannon code. A Shannon code was used in section
2.4.2 to obtain an upper bound on the difference between the mean codeword length
and the entropy.

A Shannon code is optimal when the codewords lengths resulting from equation 5.6
are integer. However, in many cases Shannon codes are not optimal, as is illustrated
in example 5.2. For this reason, Shannon codes are not commonly used. To ensure
optimality Huffman codes are used instead; they form the subject of the next subsection.

Example 5.2: Nonoptimality of Shannon codes

Consider a variable with alphabet {a, b} and probability mass function pX(a) =

0.01 and pX(b) = 0.99. What is the codeword length of the Shannon code? The

solution is simple: l(a) = ⌈− log2(0.01)⌉ = 7 and l(b) = ⌈− log2(0.99)⌉ = 1.

However, the optimal code obviously has a codeword length of one bit for both

symbols, illustrating the nonoptimality of a Shannon code.

5.2.2 Huffman Codes

For finite alphabets for which the probability mass function of the symbols is known,
a Huffman code [20] is often a good solution. Huffman codes are commonly used in
practical applications. A Huffman code is designed with a simple iterative procedure
where at each iteration step one

1. selects the two source symbols of the alphabet with lowest probability,

2. assigns them codewords with the same unknown prefix and 1 and 0 as their last
bits, respectively, and

3. combines them into one source symbol, which has the unknown prefix as codeword.

This procedure is repeated until the remaining alphabet has only one entry.

Let us attempt to write the Huffman design procedure in a somewhat more formal man-
ner. We consider a random variable X , with symbol set (alphabet) A, and probability
mass function pX(x). The binary codeword for a symbol x is denoted as c(x) (the no-
tation c(x)1 denotes the codeword c(x) with the symbol “1” appended). Furthermore,
the notation A ∪ B indicates the union of the set A and the set B and A− B indicates
the set A without its subset B. Thus, if w ∈ A, then A − {w} is the set A with the
symbol w removed. Using this notation, the formal Huffman procedure is given in table
5.1.

Example 5.3: Design of Huffman code

We design a Huffman code for an alphabet with probability mass function {0.1, 0.2, 0.3, 0.4}.
The design is most easily illustrated graphically as is done in figure 5.1. The code-

words are 011, 010, 00 and 1.

It is not possible to design a prefix code shorter in length1 than the Huffman code.
Since we have already shown in section 2.4.2 that the best prefix codes are optimal, this

1We use “code length” to refer to L = E[l(x)], the average codeword length of a code.
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Table 5.1: The Huffman code design algorithm.

1. set p(0)(x) = pX(x), ∀x∈A

set A(0) = A

2. select the two symbols from A(m) with the lowest probability:
y =argmin

x∈A(m)

p(m)(x)

z = argmin
x∈A(m)−{y}

p(m)(x)

3. define a new alphabet A(m+1) = (A(m) − {y, z})∪ {w}
with probability mass function
p(m+1)(w) = p(m)(y) + p(m)(z)

p(m+1)(x) = p(m)(x), x ∈ A(m+1) − {w} .

and with the following relation between the codewords:
c(y) = c(w)1
c(z) = c(w)0

4. if A(m+1) has more than one entry, m→ m+ 1 and go to 2

5. assign a zero-length codeword to the single-alphabet entry;
trace back to find the codewords for A

1.0

0

0

0

1

1

1

1

00

010

011

p(0)(x) p(1)(x) p(2)(x) p(3)(x)

0.1

0.2

0.3 0.3

0.3

0.4 0.4

0.4

0.6

Huffman
codeword

Figure 5.1: The iterative procedure to obtain a Huffman code for example 5.3.

implies that the Huffman code is optimal:

Theorem 15 The Huffman code is a uniquely decodable code with the shortest aver-
age codeword length for a finite-alphabet discrete variable with known probability mass
function.

What remains to be shown to prove this theorem is that the Huffman code is an optimal
prefix code. First, we note that in an optimal binary prefix code for a random variable
X , pX(a) < pX(b) implies that l(a) ≥ l(b). This follows immediately by contradiction.
If it were true that l(a) < l(b), then we could exchange the codewords and obtain a
shorter code. Second, we note that in an optimal binary prefix code, the two symbols
with the lowest probability have identical codeword length, and that there exists such
a code for which these codewords differ only in their last bit. This can also be proven
by contradiction. Assume that there is a codeword that is at least one bit longer than
any other codeword. Since a prefix of a codeword in a prefix code cannot itself be a
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codeword, one can remove at least one bit from this codeword. Furthermore, it is always
possible to make the symbol share all but the last bits with the symbol of next lowest
probability.

We now can argue why the Huffman code is an optimal prefix code. Consider the
alphabet A(m) with code C

(m). Combining the two symbols of lowest probability from
an alphabet, y and z, into a new symbol w results in a new alphabet A(m+1),

A(m+1) = (A(m) − {y, z})∪ {w}. (5.8)

We assume that the code C(m+1) is obtained by using the shared prefix of the codewords
for x and y as the codeword for the new symbol w. We have

L(C(m)) =
∑

x∈A(m)

p(m)(x)l(x)

= p(m)(y)l(y) + p(m)(z)l(z) +
∑

x∈A(m)−{y,z}

p(m)(x)l(x)

= (p(m)(y) + p(m)(z))(l(w) + 1) +
∑

x∈A(m+1)−{w}

p(m+1)(x)l(x)

= p(m+1)(w)(l(w) + 1) +
∑

x∈A(m+1)−{w}

p(m+1)(x)l(x)

= p(m+1)(w) + L(C(m+1)). (5.9)

Now we note that if C(m+1) is optimal, then necessarily C
(m) must be optimal too, since

the operations performed retain optimality. Hence, we have shown that the Huffman
code is an optimal prefix code, and thus, an optimal code in general.

While the Huffman code is optimal, it does have its drawbacks. Naturally, the source
symbol probabilities must be correct for the code to be optimal and the source symbols
must be independent and identically distributed (iid). Furthermore, since it encodes
each symbol separately with an integer number of bits, the Huffman code can be up to
one bit above the entropy and this may increase the bit rate significantly at low rates.
The latter problem (and partly the problem of having strings that are not iid) can be
eliminated by gathering sequences of symbols into supersymbols, and have the Huff-
man code operate on these supersymbols. However, the size of the tables required for
this supersymbol-based approach grows exponentially with the length of the sequences.
Thus, if supersymbols are used, the Huffman code requires a large amount of storage.
Furthermore, the computational effort becomes very large if the code must be adapted
to changing probabilities. Arithmetic codes, which are discussed in the next section, do
not suffer from these disadvantages.

5.2.3 Arithmetic Codes

Recursive arithmetic codes were originally developed by Elias in the fifties but not pub-
lished. About two decades later, practical implementations for finite-precision machines
were developed by Pasco and Rissanen [21, 22].

Arithmetic codes are based on partitioning the interval [0, 1) into cells that are each
associated with a source symbol. The size of the cells is proportional to the probability
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of the symbol, as is shown for an example in figure 5.2. The codewords are truncated
binary representations of the midpoints of the cells. In the following, we start with
describing the requirements for such simple truncation-based codes and then move to
the proper arithmetic codes, which handle sequences of source symbols in an efficient
manner.

0.1

0.0

0.3

0.6

1.0

1

2

4

3

Figure 5.2: The cells that partition [0, 1) for the source symbols 1, 2, 3, and 4 with
probabilies 0.1, 0.2, 0.3, and 0.4, respectively.

Truncation-Based Coding

Let us consider a discrete random variable X with alphabet A of finite cardinality |A|.
Without loss of generality we consider the alphabet to be A = {1, 2, · · · , |A|}. The
corresponding cumulative distribution function is

FX(x) =

x
∑

j=1

pX(j). (5.10)

We extend the domain of the cumulative distribution function with the symbol 0, with
FX(0) = 0. The cumulative distribution FX(x) can then be associated with a partition
of the interval [0, 1) into cells [FX(x−1), FX(x)), for x ∈ A. Each cell [FX(x−1), FX(x))
represents a symbol x of the alphabetA. Thus, we must identify each cell of the partition
of [0, 1) with a unique codeword.

To identify each cell with a unique codeword, we use an l-bit representation to specify
the location of the midpoint g of the cell. To guarantee that the truncation to l bits of
g = (FX(x − 1) + FX(x))/2 does not result in a value less than FX(x − 1), the least
significant bit should span an interval less than (FX(x)−FX(x− 1))/2 (see figure 5.3).
That is, the requirement is that

l = min
m∈N

{m : 2−m < (FX(x)− FX(x− 1))/2} (5.11)

or, equivalently

l = min
m∈N

{m : m > − log2((FX(x) − FX(x − 1))/2)}

= ⌈− log2(FX(x)− FX(x− 1))⌉+ 1

= ⌈− log2(pX(x))⌉ + 1. (5.12)
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(FX(x) + FX(x− 1))/2

FX(x− 1)

FX(x)

2−l⌊(FX(x) + FX(x− 1))/2⌋2,l

Figure 5.3: The interval [FX(x− 1), FX(x)), the midpoint g = (FX(x) + FX(x− 1))/2,
its l-bit representation ⌊(FX(x) + FX(x − 1))/2⌋2,l, and the range, 2−l, of points that
truncate to the same l-bit representation.

We must also verify that the l-bit codeword for a cell [FX(x− 1), FX(x)) cannot be the
prefix for a cell [FX(x), FX(x + 1)). Let ⌊g⌋2,l denote the value of the l-bit truncated
representation of g = (FX(x) + FX(x − 1))/2. It is clear (see also figure 5.3) that the
interval [⌊g⌋2,l, ⌊g⌋2,l + 2−l) falls entirely within the interval [FX(x − 1), FX(x)). This
confirms that the l-bit codeword cannot be a prefix to a codeword identifying another
cell. Thus, the truncated midpoints form the codewords of a prefix code identifying the
cells of the partition.

Table 5.2: Truncation-based encoding for an alphabet A.

1. for a source symbol x ∈ A compute g = (FX(x− 1) + FX(x))/2

2. truncate g to ⌈− log2(pX(x))⌉ + 1 bits to obtain the codeword for x

The truncation-based encoding algorithm for a single variable is shown in table 5.2. To
decode, we need to compare the truncated value ⌊g⌋2,l to the cumulative distribution
function FX(x), and select x = miny∈A FX(y) > ⌊g⌋2,l.

In our derivation of the truncation-based code, we tacitly selected a particular partition
of the interval [0, 1). Other partitions can be used, and we must consider the merits
of the partition based on FX(x) that we selected. The selection leads to codewords
that are of length ⌈− log2(pX(x))⌉ + 1. If we ignore the rounding and the additional
one bit overhead, the selected partition provides the optimal codeword length given by
equation 5.6. That is, it is impossible to do much better by selecting another partition.
More-over, truncation-based codes are generally used with large alphabets and, thus,
long codewords, which means that the partition is essentially optimal.

While the partition selected is good, when comparing truncation-based coding to the
Shannon code (equation 5.7) and the Huffman code, we see that its performance is at
least one bit worse. The truncation-based code is within two bits of the entropy. At first
sight, this suggests there is no advantage to using a truncation-based code. However,
a major distinguishing factor of the truncation-based code is that we can compute
the codeword for a particular symbol x without computing the codewords for other
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symbols in A. Furthermore, as we will see below, in arithmetic coding we compute
these codewords efficiently in a recursive manner. This means that truncation-based
(arithmetic) codes facilitate continuous adaptation to empirical probabilities and are
useful for alphabets with large cardinality.

Example 5.4: Truncation-based coding

Consider the random variable with alphabet A = {1, 2, 3, 4} with probability mass

function pX(1) = 0.1, pX(2) = 0.2, pX(3) = 0.3, and pX(4) = 0.4. We want to

determine the truncation-based code. The cell partitioning is {FX(x)}x∈A with

FX(0) = 0, as shown in figure 5.2. We then take the midpoints of the interval,

g = (FX(x− 1) + FX(x))/2, and truncate their description to ⌈− log2(pX(i))⌉+ 1

bits and get the results shown in table 5.3.

Table 5.3: The truncation-based code of example 5.4.

x pX(x) FX(x) g = (FX(x− 1) + FX(x))/2 ⌈− log2(pX(x))⌉+ 1 codeword
1 0.1 0.1 0.05 5 00001
2 0.2 0.3 0.20 4 0011
3 0.3 0.6 0.45 3 011
4 0.4 1.0 0.80 3 110

Let us compare the performance of Huffman and truncation-based codes for sequences of
symbols. Both Huffman and truncation-based codes become more efficient when longer
sequences are encoded with a single codeword, since the bound on the overhead (one bit
for Huffman code, two bits for truncation-based code) is then spread over more source
symbols. However, for the Huffman code this is associated with exponential growth of
the encoding table with the sequence length, limiting the practicality of this solution.
The computational effort for the truncation-based code is linear with the number of
samples, facilitating applications requiring the encoding of long sequences.

Unconstrained-Precision Arithmetic Coding

The real advantage of truncation-based coding is the possibility to encode a sequence of
symbols, i.e., a message, recursively. Consider the sequence xk = [x1, x2, · · · , xk], where
each sample is a realization of the random variable Xi with alphabet A = {1, · · · , |A|}
and probability distribution pX(xi). To use the truncation-based code, we must define a
cumulative distribution function for a vector xk. That is, we must partition the interval
[0, 1) so that each message corresponds to a unique cell. We define the vector cumulative
distribution function FXk(xk) as

FXk(xk) = FX(x1 − 1) + pX(x1)(FX(x2 − 1) + pX(x2)(FX(x3 − 1) + · · · ))). (5.13)

The definition of FXk(xk) implies a particular truncation-based code for the entire
sequence xk. Most importantly, the structure of equation 5.13 immediately provides a
recursive encoding procedure to obtain FXk(xk) and FXk([x1, · · · , xk−1, xk −1]) (which
correspond to FX(x) and FX(x − 1), respectively, for the single-variable case). The
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algorithm is shown in the first four steps of the algorithm in table 5.4. The values

b
(k)
bot and b

(k)
top form FXk([x1, · · · , xk−1, xk − 1]) and FXk(xk), respectively. Note that we

only compute these two values of the cumulative distribution function, thus minimizing
computational effort.

The arithmetic code of xk is the truncated binary representation of

g = (FXk([x1, · · · , xk−1, xk − 1]) + FXk(xk))/2 (5.14)

in the interval [0, 1) rounded to

⌈− log(FXk(xk)− FXk([x1, · · · , xk−1, xk − 1]))⌉+ 1 (5.15)

bits. These operations correspond to step 5. and step 6. in table 5.4. The arithmetic
encoding procedure is illustrated in example 5.5.

Table 5.4: Unconstrained-precision arithmetic encoding of a source sequence [x1, · · · , xk]
with all xi ∈ A = {1, · · · , |A|}.

1. initialize:

i = 0

b
(0)
bot = 0

b
(0)
top = 1

2. update bounds:

b
(i+1)
bot = b

(i)
bot + (b

(i)
top − b

(i)
bot)FX(xi+1 − 1)

b
(i+1)
top = b

(i)
bot + (b

(i)
top − b

(i)
bot)FX(xi+1)

3. update counter: i := i+ 1

4. if i < k go to 2

5. find g:

g = (b
(k)
bot + b

(k)
top)/2

6. truncate g to ⌈− log2(b
(k)
top − b

(k)
bot)⌉+ 1 bits

Example 5.5: Arithmetic encoding of a sequence

Let us consider a sequence of independent random variables, each with alphabet

{1, 2, 3, 4} and probabilities pX(1) = 0.1, pX(2) = 0.2, pX(3) = 0.3, and pX(4) =

0.4. What is the arithmetic code for the sequence [2, 4, 3, 3]? The process of

selecting the bounds is illustrated in figure 5.4. The probability of this sequence is

0.0072 and the codeword length is thus 9 bits. The midpoint between the bounds

b
(4)
2 and b

(4)
3 is 0.2548, and with 9-bit precision this results in the code 010000010.

The decoding can be performed with a similar process as the encoding. The procedure is
shown in table 5.5. The binary encoding is first converted into a floating-point number,
g. The symbols are identified one at a time by recursively determining the region

boundaries for the successive symbols. The decoding is terminated when ⌈− log(b
(i)
top −
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Figure 5.4: The arithmetic-coder recursion for the sequence [2, 4, 3, 3], with alphabet
{1, 2, 3, 4} of example 5.5.

b
(i)
bot)⌉+ 1 equals the number of bits of the encoded message. To know when this is the
case, the arithmetic code requires a termination character or an initial specification of
the number of bits that are encoded. (Note that if we encode a particular finite symbol
sequence with a Huffman code for each symbol, we would also need to specify when the
Huffman coded sequence ends and another type of encoding starts.)

Table 5.5: Unconstrained-precision arithmetic decoding of a codeword encoding a source
sequence with alphabet A = {1, · · · , |A|}.

1. binary codeword has l bits
g is decimal representation of binary codeword

2. initialize:

i = 0

b
(0)
bot = 0

b
(0)
top = 1

3. find xi+1:

xi+1 =argmin
x∈A

{x : b
(i)
bot + (b

(i)
top − b

(i)
bot)FX(x) > g}

4. update bounds:

b
(i+1)
bot = b

(i)
bot + (b

(i)
top − b

(i)
bot)FX(xi+1 − 1)

b
(i+1)
top = b

(i)
bot + (b

(i)
top − b

(i)
bot)FX(xi+1)

5. update counter: i := i+ 1

6. if ⌈− log2(b
(i)
top − b

(i)
bot)⌉+ 1 < l go to 3

Finite-Precision Arithmetic Coding

While the above encoding and decoding procedures should work in theory, practical
problems occur upon their implementation. First, computers use finite-precision repre-
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sentations, thus limiting the precision with which the bounds b
(i)
bot and b

(i)
top and the value

g can be written. Second, encoding can start only once the entire sequence [x1, · · · , xk]
is known and decoding can only start once the entire codeword has been received. These
problems can be eliminated by explicitly integerizing all variables in the algorithm and
by using scaling and incremental coding. At the encoder we release bits to the channel
as soon as their value is known. Similarly, at the decoder this means that the source
symbols are made available as soon as the received information is sufficient to specify
them and the corresponding bit stream segment is destroyed.

To operate with integer arithmetic, the cumulative distribution function is replaced by
a cumulative frequency count:

F̃X(x) = ⌊(M − 1)FX(x)⌋, (5.16)

where we will assume thatM is a power of two that is large enough that the cumulative
distribution is represented with sufficient precision and, at the same time, realizable on

a computer. The bounds b
(i)
bot and b

(i)
top are replaced by corresponding integer bounds

b̃
(i)
bot and b̃

(i)
top. To retain consistency, we define the cells as before, [b̃

(i)
bot, b̃

(i)
top). That is,

the integer value b̃
(i)
top) is not included in the cell. (This convenient choice costs one bit

in precision for F̃Xk and for this reason other conventions are commonly used cf., e.g.,
[23].)
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Figure 5.5: Illustration showing that a center scaling followed by a lower scaling is
identical to a lower scaling followed by an upper scaling.

In the unconstrained-precision arithmetic coding algorithm, the descriptions of the cell
boundaries are specified with increasing precision whenever a new source symbol is read.
In the finite-precision algorithm, this precision increase is balanced by processing the
information about a source symbol immediately and removing it from g by bit-wise left

shifts. Let us consider scaling at the encoder first. It is clear that if b̃
(i)
top ≤ M/2, then

the most significant bit of the codeword must be 0. Thus, we can release a zero to
the channel. We account for this in the bounds by a left shift, or, equivalently, by a
multiplication by a factor two. This means the most significant bit is lost. We refer to

this as a lower scaling. Similarly, if b̃
(i)
bot ≥ M/2, then the most significant bit of the

codeword must be 1. We can release a one to the channel and account for that in the
bounds by subtracting M/2 and followed by a left shift. Again the most significant bit
is lost. We refer to this as an upper scaling.

The upper and lower scaling strategies do not function for cells that have a lower bound
at or below M/2 and an upper bound above M/2. Thus, if successive source symbols
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Table 5.6: Finite-precision arithmetic encoding of a source sequence [x1, · · · , xk] with
all xi ∈ A = {1, · · · , |A|}. The symbol |A| is reserved for end-of-message and xk = |A|.
It is given the lowest possible probability that the precision allows. The range of F̃
is [0,M − 1]. To guaranteed that the upper and lower bounds are never identical, all
symbols must have a probability larger than 4.

1. initialize:

i = 0

b̃
(0)
bot = 0

b̃
(0)
top = F̃ (|A|) =M − 1
c = 0

2. update bounds:

b̃
(i+1)
bot = b

(i)
bot + ⌊(b̃(i)top − b̃

(i)
bot)F̃X(xi+1 − 1)/M⌋

b
(i+1)
top = b

(i)
bot + ⌊(b̃(i)top − b̃

(i)
bot)F̃X(xi+1)/M⌋

3. scale: while (b̃
(i+1)
top < M/2 | b̃(i+1)

bot ≥M/2 | (b̃(i+1)
bot ≥M/4 and b̃

(i+1)
top < 3M/4)):

if b̃
(i+1)
top ≤M/2:

release to channel: 0 and c times 1
c = 0

else if b̃
(i+1)
bot ≥M/2:

release to channel: 1 and c times 0
c = 0

b̃
(i+1)
bot := b̃

(i+1)
bot −M/2

b̃
(i+1)
top := b̃

(i+1)
top −M/2

else if b̃
(i+1)
bot ≥M/4 and b̃

(i+1)
top < 3M/4:

c := c+ 1

b̃
(i+1)
bot := b̃

(i+1)
bot −M/4

b̃
(i+1)
top := b̃

(i+1)
top −M/4

b̃
(i+1)
bot := 2b̃

(i+1)
bot

b̃
(i+1)
top := 2b̃

(i+1)
top

4. update counter: i := i+ 1

5. if xi−1 6= |A| go to 2

6. truncate g = (b̃
(k)
bot + b̃

(k)
top)/(2M) to ⌈− log2((b̃

(k)
top − b̃

(k)
bot)/M)⌉+ 1 bits
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are represented by this cell, no upper and lower scalings occur, and another scaling
strategy, center scaling, must be used to prevent problems with machine precision. In

center scaling we check that b̃
(i+1)
bot ≥ M/4 and b̃

(i+1)
top ≤ 3M/4 and then subtract M/4

from the bounds and multiply them by two. As for upper and lower scalings, center
scaling reduces the precision of the bounds by one bit. However, in contrast to upper
and lower scalings, it is not immediately clear for a central scaling what information
(bits) should be released to the channel. We simply note that we performed a center
scaling and move on. That is, we have a counter c that counts the number of consecutive
center scalings. (The value of c is set to zero after each lower and upper scaling.) For
each lower and upper scaling we note the value of c and then release c + 1 bits. If we
have c center scalings followed by a lower scaling, then the first bit should be a 0 since
the cell is located below M/2. Given this first 0, we know that the cell must be in
the interval of length M/(2c+1) adjacent to M/2, and that means the remaining c bits
must all be 1. A graphic explanation of this procedure is provided in figure 5.5 for the
case c = 1. The same principles holds when c center scalings are followed by an upper
scaling. In this case the lower bound of the cell starts atM/2 or higher, and the first bit
to be released to the channel must be a 1. The remaining c bits should all be 0, again
since the cell is located in the interval of length M/(2c+1) that is adjacent to M/2. The
resulting encoder is shown in table 5.6.

The finite-precision decoding procedure has similar changes from the unconstrained-
precision algorithm as the encoder. The algorithm is shown in table 5.7. In the decoder
it is essential to make sure that the variables are bit-exact replicas of those in the
encoder. Thus, the encoding and decoding algorithms are started and scaled in an
identical manner. Furthermore, it is important in the decoder that the g̃ (the integer

equivalent of g) and the integer bounds b̃
(0)
bot and b̃

(0)
top are subjected to identical scalings.

Thus, we start with log2(M) bits of precision for both g̃ and the bounds. Furthermore,
g̃ and the bounds are scaled up together at the end of step 5. All scalings (lower, upper,
and center) correspond to reducing the precision of g by 1 bit, allowing the reading of
one new bit (which is included in the last part of step 5.).

Adaptive Arithmetic Coding

Arithmetic coding requires computation rather than tables (as, e.g., Huffman codes) to
find the code for a particular source symbol sequence. This means that no additional
effort is required to adapt the code to a changing probability mass function. The adap-
tation can be performed on a sample-by-sample basis. That is, the (scaled) cumulative
distribution function F̃ (xi) changes with time and can be written as F̃ (i)(xi). The op-
eration of the method is not affected by this change. The adaptation is generally based
on measurements on the data stream, which is available at both encoder and decoder.
Methods for computing the probability distribution of the symbols in the alphabet are
provided in section 4.2.

5.2.4 Sensitivity to Probability Mass Function Accuracy

So-far in this chapter, we have assumed that the probability mass function was known.
In many cases, the probability mass function has been misestimated. How disastrous is
a mismatch between the actual probability mass function and the one we use to design
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Table 5.7: Finite-precision arithmetic decoding corresponding to the encoding of table
5.6. The function next bit() returns the next bit from the channel; when no more bits
are available from the channel it returns arbitrary bits. To guaranteed that the upper
and lower bounds are never identical, all symbols must have a probability larger than
4.

1. initialize:

i = 0

b̃
(0)
bot = 0

b̃
(0)
top = F̃ (|A|) =M − 1
g̃ = 0

2. read first m = log2(M) bits; do m times g̃ := 2 ∗ g̃ + next bit()

3. find xi+1: xi+1 =argmin
x∈A

{x : b̃
(i)
bot + ⌊(b̃(i)top − b̃

(i)
bot)F̃X(x)/M⌋ > g̃}

4. update bounds:

b̃
(i+1)
bot = b̃

(i)
bot + ⌊(b̃(i)top − b̃

(i)
bot)F̃X(xi+1 − 1)/M⌋

b̃
(i+1)
top = b̃

(i)
bot + ⌊(b̃(i)top − b̃

(i)
bot)F̃X(xi+1)/M⌋

5. scale: while (b̃
(i+1)
top < M/2 | b̃(i+1)

bot ≥M/2 | (b̃(i+1)
bot ≥M/4 and b̃

(i+1)
top < 3M/4)):

if b̃
(i+1)
bot ≥M/2:

b̃
(i+1)
bot := b̃

(i+1)
bot −M/2

b̃
(i+1)
top := b̃

(i+1)
top −M/2

g̃ := g̃ −M/2

else if b̃
(i+1)
bot ≥M/4 and b̃

(i+1)
top < 3M/4:

b̃
(i+1)
bot := b̃

(i+1)
bot −M/4

b̃
(i+1)
top := b̃

(i+1)
top −M/4

g̃ := g̃ −M/4

b̃
(i+1)
bot := 2b̃

(i+1)
bot

b̃
(i+1)
top := 2b̃

(i+1)
top

g̃ := 2 ∗ g̃ + next bit()

6. update counter: i := i+ 1

7. if xi 6= |A| go to 3
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a code? In this section, we will find that if the relative entropy between the probability
densities is small, then the loss in performance compared to the optimal case is small
as well.

Let us consider random variable X with probability mass function pX(x). Furthermore
let us define (as in section 2.4.3)

pL(x) ≡
2−l(x)

∑

x∈A 2−l(x)
. (5.17)

Then it straightforward to see that

L =
∑

x∈A

pX(x)l(x)

= −
∑

x∈A

pX(x) log2(pL(x)) −
∑

x∈A

pX(x) log2(
∑

x∈A

2−l(x))

≥ −
∑

x∈A

pX(x) log2(pL(x))

= −
∑

x∈A

pX(x) log2(pX(x)) +
∑

x∈A

pX(x) log2(
pX(x)

pL(x)
)

= H(X) +H(pX ||pL), (5.18)

where we exploited the Kraft inequality
∑

x∈A 2−l(x) ≤ 1 that is valid for uniquely
decodable codes (see section 2.4.1). Thus, the average codeword length is larger than
or equal to the sum of the entropy of X and the relative entropy between pX(x) and
pL(x). This bound is reached when the Kraft inequality becomes an equality.

Now we can give, albeit somewhat imprecisely, a description of the impact of using an
incorrect probability mass function instead of the correct one. The precise effect depends
on the particularities of the design method and the parameters at hand. However, since
pL(x) will be close to the incorrect probability mass function qX(x), equation 5.18
suggests that, at least for higher rates, the relative entropy H(pX ||qX) will be a good
indicator of the mismatch. This suggests the expected result that if qX(x) is close to
pX(x), then coding performance will be good in practice.

Example 5.6: Code length for misestimated distribution

Let us consider a random variable X with an alphabet A = {a, b} and pX(a) = 0.2

and pX(b) = 0.8 and an entropy H(X) = 0.72. If we use instead the incorrect

estimate p̂X(a) = p̂X(b) = 0.5, the bit rate will increase. The relative entropy

is H(pX||p̂X) = 0.28 and a uniquely decodable code will most likely have a code

length of more than L = 0.72 + 0.28 = 1 bit. This is significantly more than the

entropy of the random variable.

5.2.5 Run-Length Coding

Run-length coding is a computationall efficient method that is applicable when long
sequences of identical symbols occur. This is commonly the case in image coding. Run-
length coding reduces the rate by specifying the number of identical subsequent symbols.
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This may take the form of explicitly listing the number of symbols of a particular value
that follows. For block-wise coding, it is common to indicate that all remaining symbols
are identical to the previous symbols.

Often, run-length coding is used as a first step in a lossless coding procedure. As a
second step, the resulting symbol stream is subjected to either Huffman or arithmetic
coding.

5.3 Universal Coding

In many practical applications, the actual probability mass function of the alphabet
is not known. This problem can be resolved with universal codes. In the following,
we distinguish “true” universal codes, where the probability mass function is never
made explicit, and adaptive codes, which are conventional codes augmented with a
estimation procedure for the probability mass function.

The ability to create a code without having to know the probability mass function of the
random variable is very useful for many practical applications. However, it would be too
good to be true if such flexibility did not have its price. An obvious question is whether
universal codes can be asymptotically optimal. Consider a stationary and ergodic se-
quence. Is it possible to encode such a sequence with a universal code at a rate that
asymptotically approaches the entropy rate with increasing sequence length? It turns
out that this is indeed possible even for some universal codes (e.g., [7]). Unfortunately,
this still does not mean that universal codes are always preferred. When the probability
mass function is known, simple nonadaptive codes that exploit this information usually
have as advantages a short coding delay, a low computational effort, and near-optimality
for short input symbol sequences. In contrast, universal codes often suffer from one or
more of the following disadvantages: long delay, high computational requirements, and
slow convergence to optimality with increasing input sequence length.

We continue with a brief discussion of adaptive codes. Thereafter, we discuss a com-
monly used true universal code, the Ziv-Lempel code.

5.3.1 Code Adaptation and Probability Mass Estimation

The Huffman and arithmetic codes described in the previous sections require a known
probability mass function. In section 4.2 we discussed methods for estimating the prob-
ability mass function from the processed data, which can be combined with the codes
described in the previous sections of this chapter.

We can distinguish two common strategies to use the empirical probability mass func-
tion. Perhaps the simplest strategy is to compute the empirical probability mass func-
tion for the entire symbol sequence first, and then use this in a conventional Huffman or
arithmetic code. Obviously, this method requires a long delay (since the entire sequence
must be seen first) and an additional set of bits are required for a header containing the
probability mass function. The second strategy is to update the probability mass func-
tion during the coding process. The decoder and encoder make the same computations,
and the information about the probability mass function is not transmitted explicitly.
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As we saw in section 5.2.3, the method where the probability mass function is updated
as the data are processed is particularly natural for the arithmetic codes. This is a
major reason for the common usage of adaptive arithmetic codes. For the Huffman
code, adaptation while processing is less natural. However, computationally efficient
procedures that exploit the relations between updates do exist (such a procedure is
given in [24]).

5.3.2 The Ziv-Lempel Code

In the adaptive codes described above, the probability mass function for the random
variable was determined empirically from the data. Thus, we could retain the structures
familiar from codes requiring known probability mass functions. In this subsection, we
describe the commonly used Ziv-Lempel code, which is a “proper” universal code: it
does not require the explicit computation of empirical probability mass functions. It is
used, for example, in the “gzip” facility of the Unix operating system. It can be shown
that, for stationary and ergodic processes, the Ziv-Lempel code converges to the entropy
rate of the process. For a proof of this asymptotic optimality we refer to [7].

In the Ziv-Lempel code, the source symbol sequence is first parsed (segmented) into
a sequence of symbol subsequences called phrases. Starting from the end of the last
phrase, a new phrase is the shortest symbol subsequence that has not been observed
earlier. In a phrase of length N , the first N − 1 symbols form a previously observed
phrase. Thus, we can decompose each phrase into a prefix, which is the earlier observed
phrase, and one additional symbol. Once the parsing is completed, each phrase is
assigned an address. The codeword for a phrase consists of two parts: i) the address
of its prefix and ii) the last symbol. The Ziv-Lempel code can be adapted to other
alphabets, but is most commonly applied to bit sequences.

Example 5.7: Ziv-Lempel code for 011010010010111

The sequence is parsed into 0,1,10,100,1001,01,11. The coding of the phrases
is shown in table 5.8. Let us consider the phrase 100: the phrase prefix is
10, which has address 011. Concatenating the last bit of the phrase to the ad-
dress of the phrase prefix gives as code 0110. The code for the sequence is thus
0000000101000110100100110101. In this example, the code is very inefficient and
this is typical for short sequences.

Table 5.8: Ziv-Lempel code for the binary sequence “011010010010111” of example 5.7.

phrase address prefix code
address

0 001 000 0000
1 010 000 0001
10 011 010 0100
100 100 011 0110
1001 101 100 1001
01 110 001 0011
11 111 010 0101
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In its basic form, the Ziv-Lempel algorithm requires two passes. The first pass is used
to determine the number of phrases, and thus the number of bits required to describe
the prefix address, which is ⌈log(number of phrases)⌉. The empty phrase is included in
the number of phrases and has as address all zeros. In the second pass the actual code
is created.

The inversion procedure for the Ziv-Lempel code is straightforward. An example is
treated in problem 8.

5.4 Problems

1. Consider the symbols with probabilities {0.01, 0.09, 0.2, 0.2, 0.2, 0.3}.

(a) Design a Shannon code for the set.

(b) Design a binary Huffman code for the set.

(c) Find the average codeword length for Shannon and Huffman codes and com-
pare this with the entropy.

2. Which of the following codes cannot be a Huffman code and why?

(a) {0, 10, 11}.
(b) {00, 01, 001, 100, 101, 110, 111}.
(c) {0, 10, 1100, 1101}.
(d) {1, 01, 0001, 0010, 0011}.

3. For many codes satisfying the Kraft inequality, the inequality is strict.

(a) Prove that for {0, 10, 1100, 1101, 1110}, the inequality is strict.

(b) Provide an example of a sequence of code symbols undecodable by this code.

(c) Relate the strict inequality to the fact that there exist sequences of code
symbols that cannot be decoded.

4. Consider the generalization of the presented Huffman procedures so that we can
design ternary codes (i.e., codes using three coding symbols). We consider the
source symbols with probabilities {0.1, 0.2, 0.2, 0.2, 0.3}.

(a) Design a binary Huffman code for the source.

(b) Design a ternary Huffman code for the source.

(c) Which code is closer to optimal? Is there a fundamental reason for this?

5. Similarly to an arithmetic code, a Shannon code can also be associated with a
partition of the interval [0, 1).

(a) Show that you can construct a Shannon prefix code by truncating an asso-
ciated cumulative distribution function. (Hint: it is important to select the
correct order for the alphabet elements.)

(b) The above Shannon code cannot be applied to a source symbol sequence in
the iterative manner that makes arithmetic codes so powerful. Explain why
the Shannon code fails on this account.
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6. Consider a sequence of length k of discrete-amplitude iid samples, Xi. We use a
Huffman code to encode the individual samples of the sequence. We know that
the Huffman code is within one bit of the sample entropy and that it is optimal.
Find the Huffman codes when the random variables Xi are quantization indices of
a uniform quantizer with step size 1

M σXi
and a range of [−3σXi

,−3σXi
] operating

on a Gaussian density with with variance σ2. Use the step sizesM = 2, 4, 8, 16, 32.
Compare the resulting mean codeword length to the entropy and with the mean
codeword length obtained when the indices have equal probability.

7. Consider an alphabet {1, 2, 3} and a sequence 2311.

(a) Using Laplace’s rule, compute the empirical probability mass function.

(b) Design a Huffman code and encode the sequence with it.

(c) Encode the sequence with an arithmetic code (use the above probability mass
function). Show the steps explicitly.

(d) Decode the coded sequence for your arithmetic code. Show the steps explic-
itly.

8. (a) Obtain the Ziv-Lempel code for the sequence 0001101011010000111111.

(b) Consider the Ziv-Lempel code 0000000101000110001110110010. Decode this
sequence assuming four-bit codewords.

9. Consider the alphabet A = {A,B,C,D}. Program, in either Matlab or C, a
universal lossless encoder and decoder that uses Laplace’s rule in combination
with arithmetic coding. You may use two passes, the first to obtain the probability
distribution (to be written in an ASCII file with floating point numbers, which
is provided to the decoder). The encoder and decoder should be able to handle
sequences of symbols from A of arbitrary length, which means that scaling is
required. Your encoder and decoder programs should read and write ASCII files.
Thus, the encoder input file contains an ASCII sequence like ABBDABD and its
output file an ASCII sequence like 100010111.

10. For arithmetic coding, define an efficient strategy (i.e., a strategy that does not
require additional bits) to complete the bit stream if the last scaling is a center
scaling. (Hint: consider scaling of g.)

11. Consider the alphabet and probability distribution of example 5.5. Write in either
Matlab or C two programs that can perform arithmetic encoding and decoding,
respectively, on sequences of arbitrary length (this means you need scaling). The
encoder program should be named “encoder” and read its input from the text file
“input.txt” containing an ASCII text sequence of symbols from the alphabet. The
encoded bit stream should be called “channel.txt” and consist of ASCII 1 and 0
characters. The decoder program should be called “decoder”, read “channel.txt”
and write to “output.txt”. Provide the (commented) programs and the bit stream
for 3223421323 for 16-bit precision.

12. In this problem we perform arithmetic coding of English text. The coding exploits
only the marginal probability distribution of the symbols.

(a) Write a program that converts text to a sequence of 32 symbols. Retain the
letters of the alphabet, and the space, comma and period characters. Remove
capitalization and eliminate all other characters.
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(b) Using tables 5.6 and 5.7 write an adaptive finite-precision arithmetic encoder
and decoder programs in C or Matlab that can read the fore-mentioned text
(from the file “input.txt”) and writes a proper binary code (‘”channel.d”).
The source symbols are initially assumed to be of equal probability. The
probabilities must be adapted using Laplace’s rule.

(c) Estimate the first-order entropy of the simplified English text.

(d) Find the mean-codeword length per source symbol for English text of your
program as a function of the number of source symbols (average over a num-
ber of runs).
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Rate-Distortion Theory

6.1 Introduction

The storage and transmission of continuous-time, continuous-amplitude (analog) signals,
such as audio and video signals, is needed in many applications. In modern technology,
these signals are first converted to discrete-time, discrete-amplitude signals by an analog-
to-digital (A/D) converter. While the output of an A/D converter is discrete-amplitude,
it is often both convenient and accurate to neglect the amplitude quantization. From
sampling theorems we know that there is, at least in principle, a one-to-one mapping
between the discrete-time and band-limited continuous-time signals. This motivates us
to study the minimum average bit rate required to encode discrete-time signals (with
both discrete and continuous amplitudes) at a given fidelity. Naturally, this can be done
only when certain conditions are imposed on the signals.

Rate-distortion theory, also called distortion-rate theory, deals with the determi-
nation of bounds specifying the optimal trade-off between average bit rate and average
distortion for sequences of random variables (processes). Most of the theory focuses
on the so-called rate-distortion function or, equivalently, the distortion-rate function.
These functions specify, respectively, the lowest average rate possible for a given average
distortion and the lowest average distortion possible for a given average rate.

Analytical expressions for the rate-distortion function have been obtained for only a few
cases. Thus, bounds on the rate-distortion function, such as the Shannon lower bound,
and a numerical method to compute the rate-distortion function, the Blahut algorithm,
play an important role in rate-distortion theory.

While rate-distortion theory provides bounds on source-coding rates, it does not specify
practical source-coding methods that achieve these bounds. The theory generally as-
sumes coding methods that would require exceedingly high computational complexity
because of the high dimensionality. Despite this, rate-distortion theory is often useful
in the design of coders. For example, rate-distortion theory shows that, under certain
conditions, the channels of a vector process can be coded independently without loosing
coding efficiency. In general, rate-distortion theory is a useful analysis tool in the design
of source codes, but it does not replace the need for imaginative source coder design.
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6.2 The Rate-Distortion Function

When a variable is encoded and decoded in a communication process, the intention is
to convey information from encoder to decoder. In other words, the essential aspect of
the communication process is the sharing of information between original and decoded
variables. This shared information can be quantified with mutual information. Thus,
it is natural that mutual information is important for the description of the rate-
distortion function, which is defined as a tight lower bound on the bit rate required
to transmit a stationary process at a given level of distortion (fidelity). We first discuss
some relevant properties of mutual information, then define the rate-distortion function,
and finally discuss its properties.

6.2.1 Mutual Information, Quantization, and Noise

To prepare for the definition of the rate-distortion function, it is useful to discuss some
properties of mutual information. We consider the encoding-decoding of a continuous-
alphabet random variable and the addition of random noise to a random variable.

Let us consider the encoding and decoding of a continuous-alphabet random variable,
X . The decoded variable is assumed to be a discrete-alphabet (quantized) variable,
which we write as X̂. The mutual information is related to the entropy H(X̂) of the
quantized variable by

H(X̂) ≥ H(X̂)−H(X̂|X)

= I(X ; X̂), (6.1)

which simply states that the mutual information cannot be more than the entropy of
the decoded variable. For a conventional quantizer H(X̂|X) = 0 since X̂ is completely
determined by X . The mutual information is then simply the entropy of the decoded
variable X̂ . In general, the term H(X̂|X) represents information present in the de-
coded variable that is independent from the information in the original variable. Such
information can be generated by a noisy channel or by a noisy reconstruction process.

Example 6.1: Maximum mutual information 1-bit quantizer

Consider a random variable X that has a nonzero density in the interval [0, 1):

fX(x) =

{

2x, 0 ≤ x < 1,
0, elsewhere.

The 1-bit quantizer has a threshold b ∈ [0, 1). We want to determine b such that
the entropy of the quantized output and, thus, the mutual information between
the variable and the quantization index is maximized. This mutual information is

I(X̂;X) = H(X̂) = −b2 log(b2)− (1− b2) log(1− b2).

It is straightforward to see that the mutual information is maximum for

bME = argmax
b

−b2 log(b2)− (1− b2) log(1− b2) =

√

1

2

and that the mutual information in this case is one bit.
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Let us now consider the mean squared error criterion. The value of b that minimizes
the mean squared error is

bMSE = argmin
b

∫ 1

0

(x− b)22xdx =
2

3
.

This solution provides the lowest mean squared error, but X and X̂ share less

information in this case than in the case of the the maximum mutual information

solution. Less shared information between X and X̂ suggests that a lower rate is

possible.

Next, we consider the mutual information between a continuous alphabet random vari-
able and the same random variable with additive noise. We add an independent noise
variable, N , also with continuous alphabet, to a variable X to obtain a distorted vari-
able X+N . The mutual information between the parameter X+N and the parameter
X is now simply the difference between the differential entropies of X +N and N :

I(X ;X +N) = h(X +N)− h(X +N |X)

= h(X +N)− h(N). (6.2)

The mutual information between X and X +N is finite (when the relevant probability
densities are integrable) even though the entropies of X and of X + N are infinite.
Equation 6.2 suggests that it might be possible to reconstruct a “noisy version” of an
original signal (with infinite entropy rate) from a finite bit rate encoding. Note that
h(X + N) ≥ h(X + N |X) = h(N), and that, thus, equation 6.2 satisfies the basic
property that mutual information is always nonnegative.

Example 6.2: Gaussian variable with additive Gaussian noise

We compute the mutual information for a Gaussian variable with variance σ2
X with

additive Gaussian noise σ2
N . To this purpose, we can exploit that the summation

of two independent Gaussian variables gives another Gaussian variable that has as
variance the sum of the variances of the two original variables. Furthermore, we
already know the differential entropy of a Gaussian variable (equation 3.25 with
k = 1). The mutual information is then

I(X;X +N) = h(X +N)− h(X +N |X)

= h(X +N)− h(N)

=
1

2
log(2πe(σ2

X + σ2
N ))− 1

2
log(2πeσ2

N)

=
1

2
log(

σ2
X + σ2

N

σ2
N

).

It is seen that, as we would expect, the mutual information decreases with increas-
ing noise variance.

If the noise and variable variance are equal, then the mutual information between

X and X + N is a half bit. For zero noise variance, the mutual information is

infinite, while for infinite noise variance the mutual information vanishes.

The discussion in this subsection suggests that the mutual information measure is related
to the bit rate required for encoding a signal. In the next section, we use mutual
information to define a lower bound on the bit rate possible at a certain fidelity.
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6.2.2 Definition of the Rate-Distortion Function

Our goal is to find a function defining a tight lower bound on the bit rate required
to transmit a stationary process at a certain level of distortion (fidelity). We consider
k-dimensional random vectors, Xk = [X1, · · · , Xk]

T for which a probability density
function fXk(xk) or a probability mass function pXk(xk) is defined. We can then define
an iid stationary vector process consisting of a sequence of vectors Xk and it is this
process that our rate and distortion apply to. Thus, when we use rate-distortion theory,
we consider the encoding of a sequence of vectors (or scalars) Xk rather than the
encoding of a single Xk. An important case is where the vectors Xk are blocks of a
scalar process; we then ignore the dependencies between the blocks.

In rate-distortion theory, distortion refers to the mean distortion between Xk and the
reconstructed vector X̂k. We generally restrict ourselves to distortions that can be
computed on a single-letter(per-sample) basis. If the distortion for observed samples
is written as d(xi, x̂i), then the single-letter distortion of a k-dimensional vector is

d(xk, x̂k) =

k
∑

i=1

d(xi, x̂i). (6.3)

We want to specify a bound on rate for a realizable coding system given a distortion.
A coding system that is, at least in principle, realizable, generally involves two de-
terministic mappings: one from a sequence of observed vectors xk to a codeword (or
codewords) and one from the codeword (or codewords) to an (approximate) reconstruc-
tion of the sequence. The most general deterministic mapping operates simultaneously
on an infinite-length sequence of vectors rather than on individual vectors xk. We de-
note a sequence of n vectors as xk;n. The encoding and decoding operation of a vector
xk;n together correspond to a mapping Qn to a reconstruction x̂k;n ∈ Ckn:

Qn : Rkn → Ckn, (6.4)

where Ckn ⊂ Rkn is the set of reconstruction points. The mapping Qn is associated with
both a rate and a distortion. The rate, R, required to encode the random sequence
Xk;n is the average bit allocation used to specify a reconstruction vector X̂k;n.

We say that a rate-distortion pair, (R,D), for a random vector Xk, is achievable if a
deterministic encoding-decoding operation Qn(·) exists that maps any sequence xk;n of
n vectors xk into one sequence of a set Ckn of 2nR sequences such that

lim
n→∞

1

n
E[d(Xk;n,Qn(X

k;n))] ≤ D. (6.5)

Note that Xk;n is a sequence of n vectors Xk, drawn independently from fXk(xk). The
implicit choice of equal codeword length by selecting the cardinality of Ckn is reasonable
given asymptotic equipartition. The rate-distortion function, R(D), is the highest lower
bound for the achievable rate required to perform the encoding-decoding operation with
a mean distortion (in the sense of equation 6.5) less than a specified value D.

For a scalar stationary process Xi, the order-k rate-distortion function Rk(D) is
the infimum of the achievable rates for coding subsequent vectors of dimension k, with
a given mean distortion D, where rate and distortion are normalized on a per sample
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basis, and not accounting for dependencies between the vectors. It follows that for an
iid process R1(D) = R∞(D). For a general scalar stationary process, the rate-distortion
function R(D) is defined as

R(D) = min
i
Ri(D) = R∞(D). (6.6)

To find the rate-distortion function, we use a statistical mapping as a substitute for
the deterministic encoding-decoding process. The statistical mapping from Xk to X̂k is
specified by the conditional probability density fX̂k|Xk(x̂k|xk). We define a set Bk(D)

that contains all the conditional probability functions for X̂k given Xk that lead to an
average distortion that is less than or equal to D:

Bk(D) = {fX̂k|Xk : E[d(Xk, X̂k)] ≤ D}. (6.7)

Note that in contrast to equation 6.5, the definition of Bk(D) does not involve the notion
of a sequence and that it does not assume the existence of a deterministic mapping
Qn(·). In equation 6.7 the density fXk(xk) is given, determined by the properties of the
variable (or sequence), whereas fX̂k|Xk(x̂k|xk) is not predetermined but related to the

coding method. Importantly, with the definition of fX̂k|Xk(x̂k|xk) we have not assumed

a deterministic mapping from Xk to X̂k.

A measure of the information shared between Xk and X̂k is the mutual information.
For a given distortion D, the lower bound on this mutual information is

inf
f
X̂k |Xk∈Bk(D)

I(Xk; X̂k). (6.8)

It is intuitive that one cannot reconstruct Xk with a distortion less or equal to D
at a rate lower than this shared information. It is less obvious how this relates to
the encoding of a sequence of n vectors Xk and that this rate is actually a bound on
achievability. The rate-distortion theorem states that the infimum mutual information
between Xk and X̂k is, in fact, the lowest achievable rate:

Theorem 16 For a random vector Xk with probability density fXk(xk) and with
a bounded distortion criterion d(xk, x̂k), the rate-distortion function is R(D) =
inff

X̂k|Xk∈Bk(D) I(X
k; X̂k).

For processes, theorem 16 generalizes to the next theorem:

Theorem 17 For a stationary process and a bounded single-letter distortion criterion,
R(D) = R∞(D) = limk→∞

1
k inff

X̂k|Xk∈Bk(kD) I(X
k; X̂k),

where we were careful to define R(D) on a per-sample basis.

The rate-distortion theorem shows that finding the rate-distortion function is a con-
strained optimization problem: we want to find the fX̂k|Xk that minimizes the mutual

information I(Xk; X̂k) under the constraint that the distortion does not exceed D.
This suggests that standard solution methods for constrained optimization, such as
variational theory for continuous distributions or the Lagrange multiplier method for
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discrete distributions should be used. Unfortunately, these methods do not lead to gen-
eral, simple analytical solutions. However, a large number of techniques that find lower
bounds on R(D) or numerical representations of R(D) are based on these approaches.
We will discuss some of these methods in section 6.5.

In the literature, more general rate-distortion theorems can be found. In particular,
rate-distortion theorems for processes that have relatively loose stationarity conditions
have been derived. The proof of the rate-distortion theorems is not straightforward,
particularly for less-restrictive cases. Thus, we first discuss some effects that make the
rate-distortion function plausible in section 6.2.5. Then, in section 6.2.4, we prove the
simpler part: that it is not possible to code at a lower rate for a given distortion than
the rate specified by the rate-distortion function. In section 6.2.6 we prove that the rate
given by the rate-distortion function can be reached, asymptotically with increasing
sequence length, with a deterministic code. Since this part of the proof is challenging,
we restrict ourselves to a simple case.

Example 6.3: Squared-error rate-distortion for Gaussian density

In this example, we compute the rate-distortion function for a normal variable.
In general, it is difficult to minimize the mutual information directly, and we use
a common strategy: we first find a lower bound on the mutual information, and
then show that we can reach this lower bound. We write the random variable as
X, its reconstruction as X̂, and the quantization noise as Y = X̂ −X. For any X
and X̂ we have that

I(X; X̂) = h(X)− h(X|X̂)

= h(X)− h(X̂ − Y |X̂)

= h(X)− h(Y |X̂)

≥ h(X)− h(Y ).

If Y is selected so as to maximize h(Y ) for the given mean squared error D, then
we have a general lower bound. We know that the density for Y that maximizes
its differential entropy, h(Y ), is a Gaussian density with variance D and h(Y ) =
1
2
log(2πeD).
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Figure 6.1: Rate-distortion function for one-dimensional Gaussian source with unit
variance and squared-error criterion. Rate-distortion pairs above the rate-distortion
function are achievable.

For the lower bound to be achievable we must have that h(Y |X̂) = h(Y ). This is
true if Y is independent from X̂. That is, it should be possible to interpret the
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signal X as the summation of independent variables Y and X̂, implying that
∫

fX̂(x− y)fY (y)dy = fX (x).

It is simple to find a valid solution: we select X̂ to be normal with variance
σ2
X̂

= σ2
X − D, for D ≤ σ2

X . For D > σ2
X the infimum mutual information to

reach a distortion D is zero; the optimal X̂ is then simply the mean value of
X. In general, the variance of the reconstruction is less than that of the original.
The rate-distortion function for a Gaussian variable and a squared-error distortion
criterion is thus

R(D) = h(X) − h(Y ) =
1

2
log(

σ2
X

D
), D ≤ σ2

X .

This rate-distortion function is illustrated in figure 6.1 for the case where σ2
X = 1.

We will return to the methods used in this example in a more general setting in

section 6.4.

6.2.3 Nonincreasing and Convexity Properties

Two important properties of the rate-distortion function are that it is always nonincreas-
ing and that it is convex. A typical example is given in figure 6.1. In this subsection,
we prove the nonincreasing and convexity properties of the rate-distortion function.

First we show that the rate-distortion function is nonincreasing. The set Bk(D) of
conditional probability densities increases with D, with the smaller sets being subsets
of the larger sets. The search for the infimum is therefore performed over a larger set
for increased mean distortion D, and, as a result, the infimum found for a specific D
must be less than or equal to that found at a smaller distortion. This reasoning leads
to the conclusion that the rate-distortion function is strictly nonincreasing.

Next, we show that the rate-distortion function is convex. For simplicity we write down
the proof for the scalar continuous-fX̂(x̂) case. The logic remains identical when the
scalar case is replaced with the vector and when the continuous-density case is replaced
with the discrete-density case. Let f0(x̂|x) be a conditional probability density for which
∫

f0(x̂|x)fX(x)d(x, x̂)dx ≤ D0 and, similarly, let f1(x̂|x) be a conditional probability
density for which

∫

f1(x̂|x)fX(x)d(x, x̂)dx ≤ D1. We define fα(x̂|x) with α ∈ [0, 1] to
be

fα(x̂|x) ≡ αf0(x̂|x) + α̃f1(x̂|x), α ∈ [0, 1], (6.9)

where α̃ = 1− α. We first show that fα(x̂|x) is a conditional probability function that
maps X to X̂ at a mean distortion of at most Dα ≡ αD0 + α̃D1:

Dα ≥ α

∫ ∫

f0fXd(x, x̂)dxdx̂ + α̃

∫ ∫

f1fXd(x, x̂)dxdx̂

=

∫ ∫

fαfXd(x, x̂)dxdx̂, (6.10)

where we wrote fα for fα(x̂|x). In the following, we will continue this notation and
furthermore make the conditional probability function used explicit when writing the
mutual information; we will write, for example, Ifα(X ; X̂) for the mutual information
using the statistical mapping fα.
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Next, we show that inff0∈B1(D0), f1∈B1(D1) Ifα(X, X̂) is a convex function of α. We first
simplify our notation further by abbreviating inff0∈B1(D0), f1∈B1(D1) to inff0,f1 . We thus
have

inf
f0,f1

Ifα(X ; X̂)

= inf
f0,f1

∫ ∫

fXfα log(
fXfα
fXfX̂

)dxdx̂

= inf
f0,f1

∫ ∫

(fX(αf0 + α̃f1) log(αf0 + α̃f1)− fX(αf0 + α̃f1) log(fX̂))dxdx̂

≤ inf
f0,f1

∫ ∫

(fX(αf0 log(f0) + α̃f1 log(f1))− fX(αf0 + α̃f1) log(fX̂))dxdx̂

= inf
f0,f1

∫ ∫

αfXf0 log(
f0
fX̂

) + α̃fXf1 log(
f1
fX̂

)dxdx̂

= inf
f0∈B1(D0)

αIf0 (X ; X̂) + inf
f1∈B1(D1)

α̃If1 (X ; X̂), (6.11)

where the inequality results from the fact that x log(x) is convex on (0, 1).

We note furthermore that

R(Dα) = inf
fX̂|X∈B1(Dα)

I(X ; X̂)

≤ inf
f0,f1

Ifα(X ; X̂). (6.12)

Before continuing we summarize our results:

1. R(D0) = inff0,f1 If0(X̂ ;X).

2. R(Dα) ≤ inff0,f1 Ifα(X̂;X).

3. R(D1) = inff0,f1 If1(X̂ ;X).

4. inff0,f1 Ifα(X̂;X) is convex.

From these results it follows that R(D) is convex, i.e. that

R(Dα) ≤ αR(D0) + α̃R(D1), ∀ α ∈ [0, 1]. (6.13)

This reasoning is illustrated in figure 6.2.

We now have completed a proof of the following theorem:

Theorem 18 The rate-distortion function R(D) is convex and nonincreasing,

for the case of continuous distributions for X̂ and X . The cases where X̂ and/or X
have discrete distributions follows the same outline.

Knowledge of the convexity of the rate-distortion function is useful for a number of
purposes. We wil use it in section 6.2.4 to show that the rate-distortion function is
lower bound on rate. An interesting corollary of convexity is that the rate-distortion
function must be continuous (note that a discontinuous function cannot be convex).
Furthermore, it shows that lowering a high distortion by a given amount is generally
less expensive in terms of bit rate than lowering an already low distortion by the same
amount. This is relevant when considering the simultaneous coding of several different
sources.
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Figure 6.2: Illustration of the proof of convexity: the convex dashed curve, representing
inff0,f1 Ifα(X ; X̂) bounds the solid curve, representing R(Dα) as a function of α. If

the endpoints are identical and if inff0,f1 Ifα(X ; X̂) is below the curve connecting the
endpoints, then R(Dα) must also be below the curve connecting the endpoints.

R(D1)

R(Dα)

R(D0)

D0 Dα D1

6.2.4 The Rate-Distortion Function is a Lower Bound on Rate

We note that deterministic mappings form a subset of statistical mappings. Thus, if
we show that there is no statistical mapping that can achieve a lower rate at a given
distortion than the rate-distortion function, then we have also shown that there is no
deterministic mapping that can achieve a lower rate than the rate-distortion function.

Let us consider a deterministic mapping Q, associated with a particular deterministic
code, that maps a sequence of n random iid k-dimensional vectors Xk

i , forming a vector

denoted as Xk;n, to the reconstruction vector X̂k;n = Q(Xk;n) at an average distortion
of DQ = 1

nE[d(Xk,n, X̂k;n)]. Here, we considere the case where the vectors Xk
i are

segments of a stationary process. We begin with the notion that the rate RQ must
allow specification of the reconstruction. It is important to note that the deterministic
code, in general, gives a different mean distortion for each i; that is the E[d(Xk

i , X̂
k
i )]

are not equal for different i. The source-coding theorem (theorem 2) then tells us that
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RQ ≥ H(X̂k;n). We can then write

RQ ≥ H(X̂k;n)

≥ H(X̂k;n)−H(X̂k;n|Xk;n)

= I(X̂k;n;Xk;n)

=

n
∑

i=1

H(Xk
i )−H(Xk;n|X̂k;n)

=

n
∑

i=1

H(Xk
i )−

n
∑

i=1

H(Xk
i |X̂k;n, Xk

i−1, · · · , Xk
1 )

≥
n
∑

i=1

(

H(Xk
i )−H(Xk

i |X̂k
i )
)

=
n
∑

i=1

I(X̂k
i ;X

k
i )

≥
n
∑

i=1

inf
f
Y k
i

|Xk
i
∈Bk(D=E[d(Xk

i ,X̂
k
i )])

I(Y k
i ;Xk

i )

=

n
∑

i=1

Rk(E[d(Xk
i , X̂

k
i )])

≥ nRk(
1

n

n
∑

i=1

E[d(Xk
i , X̂

k
i )])

= nRk(DQ)

≥ nR(DQ), (6.14)

where we used the convexity property of the rate-distortion function. Thus, we have
shown that encoding and decoding a sequence of n k-dimensional segments of a sta-
tionary scalar process, at a mean distortion per vector of D, requires a rate of at least
Rk(D). Because of the ordering property of the order-k rate-distortion functions (see
problem 5), no code can do better than the order-infinity rate-distortion function. Af-
ter replacing Rk(·) with R(·) (removing the last step), the derivation of equation 6.14
applies to the encoding of a sequence of k-dimensional vectors.

6.2.5 The Role of Dimensionality

Before we continue with a more formal proof of the reachability of the rate-distortion
function 6.2.6, it is useful to gain some insight in the effects of increasing sequence
length n. While these effects do not directly prove the rate-distortion theorem function
(theorem 16), they do make it more plausible.

We first show that the data density approaches uniformity in its region of support with
increasing n. This suggests that a codebook with uniformly distributed reconstruction
points is optimal even when encoding indices with fixed codeword length.

We then show that, given a uniform random codebook, the distance of a random point
to the nearest member of the codebook tends towards being a constant with increasing
n and is dependent only on the codebook point density. The previous result indicated
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that both the data and a good codebook are effectively uniform. These results together
are consistent with the notion that a random codebook can provide asymptotically
optimal performance with increasing n and is relatively easy to analyse because data
and codebook are uniform. This allows a back-of-the-envelope computation of the rate-
distortion function. More-over it outlines the underlying principles that can be exploited
in rate distortion proofs. Indeed, the standard proof of reachability of the rate-distortion
function described in section 6.2.6 uses a random codebook.

For simplicity, we consider a scalar random variable X , with a density fX(x) with
x ∈ R. If we consider equation 6.5, then we see that our objective is equivalent to
coding a vector Xn whose components are samples of the iid process Xi, with each
sample xi drawn independently from fX(·).

Asymptotic Equipartition and Data Density

The realizations of the random vector Xn form a set of vectors xn ∈ R
n. Let us

partition each dimension of xn using a uniform, scalar quantizer (say with cell size
δ). That is, we map xi ∀i ∈ {1, · · · , n} into a countable set of symbols that can be
described by a set of quantizer indices. The source sequence (vector) xn is mapped into
a sequence of n indices that we write as the vector yn. The random vector Xn, with
a continuous alphabet, is mapped into the random vector Y n with a discrete alphabet.
Each particular yn corresponds to a particular hypercube in the partition of Rn invoked
by the scalar quantizers.

As n increases, the asymptotic equipartition theorem described in section 2.8 becomes
applicable to the sequence of n source indices described by the vector yn. That is,
almost all realizations yn of the random vector of indices belong to the typical set,
and by selecting a sufficiently large value for n, the typical sequences have a minus log
probability that is within an arbitrary value ǫ of nH(Y ), where H(Y ) is the entropy of
the scalar quantizer index Y .

The probability of the sequence yn is directly related to the probability density of the
random vector Xn. The ratio of the probability of the sequence yn and the volume
of the hypercube V = δn asymptotically (with decreasing δ) approaches the density
fXn(·). Under conditions on the smoothness of fX(·), asymptotic equipartition leads to
a density fXn(xn), xn ∈ Rn that essentially takes only two values: a particular nonzero
value or zero. This suggests that a codebook that is uniform over the range of support
of fX(xn) should be used.

Sphere Hardening

We now show that the distance from a randomly selected data point xn to the near-
est point in a random, uniform codebook becomes independent of the realization (ap-
proaches a fixed number) with increasing n. To this purpose, let us consider a hypercube
of volume V that contains N randomly distributed codebook points. Around the ran-
domly selected data point xn we consider an n-ball (for n = 3 this is just the regular
sphere) of volume Vb and radius r, with Vb << V . Our goal is to estimate the radial
density fR(r) of the nearest codebook point to xn. To compute this density, we first
determine the probability that there is no codebook point inside the n-ball of radius r
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and the probability that there is a codebook point in a shell of thickness dr at radius r.

The volume of the n-ball satisfies Vb = Arn, where the constant is A = π
n
2

Γ(n
2 +1) . (Note

that after an initial increase up to n = 5, A decreases rapidly for large n.) The volume
of the shell of radial thickness dr at the surface of the n-ball is nArn−1dr.

The probability that the n-ball of volume Vb contains none of the N codebook points
decreases rapidly with increasing volume of the n-ball:

P (no points in ball) = (1− Vb
V

)N

= exp(log(1− Vb
V

)N )

= exp(−N
V
Vb)

= exp(−A(fC r)n) (6.15)

where fC = N
V is the density of the codebook points in one dimension and fC r can be

interpreted as the codebook-density normalized radius of the n-ball.

Let us denote the volume of the shell by Vs. The probability that at least one codebook
point is in the shell is then, for Vs << V

P (one point in shell) = N
Vs
V

(1 − Vs
V

)N−1

≈ N
Vs
V
. (6.16)

We treat the approximate equality as an equality, which is correct for vanishing shell
volume. We see that the probability that one codebook point is contained within the
shell increases rapidly with the radius of the shell:

P (one point in shell) = N
Vs
V

= N
nArn−1dr

V

= n
N

V

Vb
r
dr

= nA(fC r)
n−1fC dr. (6.17)

Thus, the expression nA(fC r)
n−1 forms the (codebook-density normalized) radial den-

sity that there is a codebook point in the shell.

By multiplying the results of equations 6.15 and 6.17 it follows that the probability
density ffC R(fC r) that the nearest codebook point is at normalized radius fC r satisfies

ffC R(fC r) = nA exp(−A(fC r)n)(fC r)n−1. (6.18)

The density of equation 6.18 is plotted in figure 6.3 for a number of values of n. As
expected, with increasing value of n the radial density function approaches a delta
function. That is, for a randomly selected point in the support range of the uniformly
distributed density, the distance to the nearest codebook entry converges with increasing
n to being almost surely at a known distance.
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0 1
normalized radius

Figure 6.3: Illustration of sphere hardening: the (codebook-density normalized) radial
density of the first neighbor in a random codebook as a function of radius, for vector
dimension 1, 16, and 256. The vertical scales are not identical to facilitate the plot.

6.2.6 Reachability of the Rate-Distortion Function

In this subsection, we prove that the rate-distortion function can be reached with an
actual code (i.e., not just with a statistical mapping) for the case of an iid scalar process.
Together with the proof given in section 6.2.4 that one cannot code at lower rates (for
given distortion) than the rate-distortion function indicates, this constitutes a proof
of theorem 16. In the information-theory literature, rate-distortion theorems for more
general circumstances have been proven. However, such theorems are complex, and fall
outside the scope of this chapter.

Outline of the Proof

We start with an outline of the basic principle of the proof of the procedure that will
follow below. We consider a discrete alphabet case. Let pX̂|X(x̂|x) be the conditional

probability that results in the minimum (as mentioned before, for the discrete case,
the infimum is a minimum) mutual information given the distortion D. We have an
associated unconditional probability mass for X̂ that is pX̂(x̂) =

∑

x pX̂|X(x̂|x)pX(x)

and a joint probability pX̂,X(x̂, x).

We start with creating random codebooks for the vector Xn, which consists of n inde-
pendent components, each with the distribution pX . (Note that n has the same meaning
as in equation 6.5.) We generate, for each codebook, 2nR reconstruction values X̂ using
the probability mass function pX̂n(x̂n) =

∏n
i=1 pX̂(x̂i). We thus create codebooks of

dimension n with 2nR entries each. Assuming that all codewords have equal length,
this corresponds to a rate of R bits per sample. (Note that it follows from asymptotic
equipartition (cf. section 2.8) that the usage of equal-codeword length codewords does
not lead to a penalty in bit rate for sufficiently large n.) That is, we need nR bits to
specify a particular entry from such a random codebook. We then evaluate the perfor-
mance of these random codebooks and show that the associated distortion converges in
probability to D with increasing n, proving the rate-distortion theorem.
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In the proof, we make the assumption that the distortion has a finite maximum:

d(Xn, X̂n) ≤ dmax. (6.19)

We also assume that the distortion is normalized to a per-sample basis, and is a single-
letter distortion criterion (see equation 6.3).

For a random vector Xn, we split the expected distortion from the randomly selected
codebooks into two contributions: one part resulting from codebooks that have a vector
X̂n that is within D + ǫ, where ǫ is arbitrarily small, and one part resulting from
codebooks that have no entry this close to the vector Xn. Let PD be the probability
that a particular random codebook has an entry that results in a distortion less than
D+ ǫ for a random vector Xn and let P̃D be the probability that there is no such vector
(PD + P̃D = 1) in said codebook. Then we have

E[d(Xn, C)] < PD(D + ǫ) + P̃Ddmax

≤ D + ǫ+ P̃Ddmax, (6.20)

where C denotes a random codebook consisting of 2nR random entries, and d(xn, C) is
the minimum of the distortions between xn and the codebook entries. In the following,
we will prove that P̃D converges to zero with increasing n, thus proving a restricted
version of the rate-distortion theorem.

An Expression for P̃D

First, we find the probability that a given input vector does not have an entry in a
particular codebook Cn with distortion less than D+ ǫ. The probability that a random
codebook vector X̂ is not within D + ǫ of the vector xn is

P (d(xn, X̂n) ≥ D + ǫ) = 1− P (d(xn, X̂n) < D + ǫ). (6.21)

For an entire random codebook C, with 2nR entries, the probability that none of the
2nR entries is within D + ǫ of the vector xn is

P (d(xn, C) ≥ D + ǫ) = (1 − P (d(xn, X̂n) < D + ǫ))2
nR

. (6.22)

So-far, we have neglected to average over the inputs xn to obtain the probability. Per-
forming this average, we obtain

P̃D =
∑

xn

pXn(xn)P (d(xn, C) ≥ D + ǫ)

=
∑

xn

pXn(xn)(1− P (d(xn, X̂n) < D + ǫ))2
nR

=
∑

xn

pXn(xn)(1−
∑

x̂n

pX̂n(x̂
n)KD(xn, x̂n))2

nR

, (6.23)

where KD(xn, x̂n) is an indicator function:

KD(xn, x̂n) =

{

1, if d(xn, x̂n) < D + ǫ
0, if d(xn, x̂n) ≥ D + ǫ

. (6.24)
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Now consider the insight from section 6.2.5 that for large n the data density becomes
essentially uniform and that the distance to the nearest neighbor is then essentially
fixed. This leads us to expect that for high dimensionality n the indicator function is
either 0 or 1 for almost all data points drawn from a distribution. We will find this to
be correct.

The Distortion Typical Set

To prove the rate-distortion theorem we must now show that 6.23 converges to zero
with increasing n. To this purpose, we first define the distortion-typical set. This set
is simply the jointly typical set (i.e., a set of pairs of vectors) defined in section 2.8
extended with the constraint that the distortion between the vectors of each pair is
close to D:

An
d (ǫ) = {(xn, x̂n) : | 1

n
log(pXn(xn)) +H(X)| < ǫ,

| 1
n
log(pX̂n(x̂

n)) +H(X̂)| < ǫ,

| 1
n
log(pXnX̂n(x

n, x̂n)) +H(X, X̂)| < ǫ

|d(xn, x̂n)−D| < ǫ}. (6.25)

We furthermore define a new indicator function, which is related to the distortion-typical
set:

KDT (x
n, x̂n) =

{

1 if (xn, x̂n) ∈ An
d (ǫ)

0 if (xn, x̂n) 6∈ An
d (ǫ)

. (6.26)

Exploiting the Distortion-Typical Set for the Bound

We first note that
∑

x̂n

pX̂n(x̂
n)KD(xn, x̂n) ≥

∑

x̂n

pX̂n(x̂
n)KDT (x

n, x̂n)

≥
∑

x̂n

pX̂n|Xn(x̂
n|xn)2−nI(X;X̂)−3nǫKDT (x

n, x̂n),(6.27)

where we used in the first step that there are additional constraints on the vector X̂n in
the distortion-typical set, and where we used inequality 2.66 to write the second step.

Inserting inequality 6.27 in equation 6.23 leads to

P̃D =
∑

xn

pXn(xn)(1−
∑

x̂n

pX̂n(x̂
n)KD(xn, x̂n))2

nR

≤
∑

xn

pXn(xn)(1−
∑

x̂n

pX̂n|Xn(x̂
n|xn)2−nI(X;X̂)−3nǫKDT (x

n, x̂n))2
nR

.(6.28)

It now becomes clear why we use the distortion-typical set: we see that both I(X ; X̂)
and R appear as arguments of exponentials. To proceed, we use the fact (cf. problem
14)

(1− ab)m ≤ 1− a+ e−bm (6.29)
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to write inequality 6.28 as

P̃D ≤
∑

xn

pXn(xn)(1 −
∑

x̂n

pX̂n|Xn(x̂
n|xn)KDT (x

n, x̂n) + exp(−2nR2−nI(X;X̂)−3nǫ))

= 1−
∑

xn

∑

x̂n

pX̂n,Xn(x̂
n, xn)KDT (x

n, x̂n) + exp(−2nR−nI(X;X̂)−3nǫ). (6.30)

The exponential term in equation 6.30 approaches zero rapidly with increasing n if
R > I(X ; X̂) + 3ǫ, i.e., if the rate-distortion theorem holds. The second term in equation
6.30 forms the probability that a pair (xn, x̂n) drawn from the probability mass function
pXnX̂n(xn, x̂n) is within the distortion-typical set. This probability approaches unity
with increasing n. To show this, the argument used in the description of the joint typical
set in section 2.8 can be used. We quickly reiterate the reasoning. From the weak law
of large numbers it follows that there is a n such that each of the conditions in the
probability in 6.25 individually is not satisfied is less than, say, δ. The probability that
all conditions are satisfied must then be more than 1 − 4δ. Since we can set δ to any
number in (0, 1], we have shown that the second term approaches unity with increasing
n, and that, therefore, P̃D approaches zero with increasing n.

6.3 The Distortion-Rate Function

As its name suggests, the rate-distortion function displays the rate as a function of
distortion. Often the distortion-rate function, D(R), is used instead. The distortion-
rate function for a process is defined as the infimum distortion over all codes of
given rate under the conditions of stationarity, ergodicity, and a bounded single-letter
criterion.

To characterize the distortion-rate function, one can define the set of probability densi-
ties Gk(R):

Gk(R) = {fX̂k|Xk : I(Xk; X̂k) ≤ R}. (6.31)

The order-k distortion-rate function is then defined as

Dk(R) = inf
f
X̂k|Xk∈Gk(R)

E[d(Xk, X̂k)]. (6.32)

Using the same reasoning as for the rate-distortion function, we see that the distortion-
rate function is nonincreasing.

Since the sets Gk(X
k) become less restrictive with increasing k, it is clear that the

order-k distortion-rate functions form an ordered set Dk(R) ≥ Dk+1(R). One can then
prove that the distortion-rate function is the order-infinity distortion-rate function. We
will not pursue this track, but instead show simply that the distortion-rate function is
the inverse of the rate-distortion function.

We now show by contradiction that the distortion-rate function equals the inverse of
the rate-distortion function, whenever the rate-distortion function is strictly decreasing.
Consider a rate ρ and a conditional probability density fβ(x

k, x̂k) that corresponds to
a point on the rate-distortion curve (δ, ρ). Then we have that ρ = Rk(δ). Now let us
assume that the pair (ρ, δ) is not on the distortion-rate curve, i.e., that δ > Dk(ρ).
Continuing from the distortion-rate perspective, this implies that there is a rate r < ρ
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that has distortion δ = Dk(r). However, let us now take the rate-distortion perspective:
from the fact that the rate-distortion function is strictly decreasing it follows that if
δ > Dk(ρ) and δ is on the rate-distortion function, then the minimum rate required for
a distortionDk(ρ) must be higher than ρ, contradicting our earlier statement that r < ρ.
This contradiction is resolved only if the rate-distortion function and the distortion-rate
function are each others inverse. Thus, we have proven the following theorem:

Theorem 19 The rate-distortion function R(D) and the distortion-rate functions D(R)
are inverses whenever R(D) is strictly decreasing.

Note that, since the rate-distortion function is convex, the distortion-rate function is
also convex. This implies that, at the rate-distortion bound, bits are more efficient in
decreasing distortion at low rate than at high rate. Thus, if we quantize two identical
signals with separate encodings, but under an overall rate constraint, it is most efficient
to give them an identical rate allocation. We will return to simultaneous encoding in
section 6.6.2, where we discuss reverse water filling.

Example 6.4: Squared-error distortion-rate for Gaussian density

It is straightforward to obtain the distortion-rate function for a Gaussian variable
X with variance σ2

X and with a squared-error criterion. By inverting the rate-
distortion function in example 6.3 we obtain:

D(R) = σ2
Xe−2R, R ≥ 0.

This relation clearly shows that with increasing bit rate, the distortion decreases

less rapidly.

6.4 The Shannon Lower Bound

The Shannon lower bound is a lower bound for the rate-distortion function. For Gaus-
sian sources with the commonly used squared-error criterion, the bound is tight, i.e., for
Gaussian sources with this criterion the Shannon lower bound and the rate-distortion
function are identical. We first derive a common form of the bound, which applies to
difference-based criteria, and then describe conditions under which the bound and the
rate-distortion function coincide.



124 6. RATE-DISTORTION THEORY

6.4.1 Derivation of the Shannon Lower Bound

We consider a vector Xk, a reconstruction X̂k, and a reconstruction error W k. The
Shannon lower bound for a difference based criterion can be found as follows:

R(D) = inf
f
X̂k|Xk∈Bk(D)

I(Xk; X̂k)

= inf
f
X̂k|Xk∈Bk(D)

(h(Xk)− h(Xk|X̂k))

= h(Xk)− sup
f
X̂k|Xk∈Bk(D)

h(Xk|X̂k)

= h(Xk)− sup
f
X̂k|Xk∈Bk(D)

h(Xk − X̂k|X̂k)

≥ h(Xk)− sup
f
X̂k|Xk∈Bk(D)

h(Xk − X̂k)

= h(Xk)− sup
{f

Wk :
∫
f
Wk (wk)d(wk)dwk≤D}

h(W k), (6.33)

where we assumed a difference criterion, i.e., d(xk, x̂k) = d(xk − x̂k), and where we used
that

sup
f
X̂k|Xk∈Bk(D)

h(Xk − X̂k)

= sup
{f

X̂k|Xk :
∫∫

f
X̂k|Xk (x̂k|xk)f

Xk (xk)d(x̂k,xk)dx̂kdxk≤D}

h(Xk − X̂k)

= sup
{f

X̂k−Xk :
∫∫

f
X̂k−Xk (x̂k−xk)f

Xk (xk)d(x̂k−xk)dx̂kdxk≤D}

h(Xk − X̂k)

= sup
{f

Wk :
∫∫

f
Wk (wk)f

Xk (xk)d(wk)dwkdxk≤D}

h(W k)

= sup
{f

Wk :
∫
f
Wk (wk)d(wk)dwk≤D}

h(W k) (6.34)

We have thus proven the following theorem:

Theorem 20 The Shannon lower bound,

RSLB(D) = h(Xk)− sup
{f

Wk :
∫
f
Wk (wk)d(wk)dwk≤D}

h(W k) (6.35)

is a lower bound on the rate-distortion function, RSLB(D) ≤ R(D).

For a stationary process the equivalent theorem is

Theorem 21 The order-k Shannon lower bound,

Rk,SLB(D) =
1

k
h(Xk)− 1

k
sup

{f
Wk :

∫
f
Wk (wk)d(wk)dwk≤kD}

h(W k) (6.36)

is a lower bound on the (order-k) rate-distortion function, Rk,SLB(D) ≤ Rk(D).
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Because of its significance, we work out the Shannon lower bound for the specific case
of the squared-error distortion measure. From theorem 14 we know that the vector of
maximum differential entropy for given variance has a Gaussian density with constant-
diagonal covariance matrix. Thus, in the squared-error case, the error vector W in the
term sup{f

Wk :
∫
f
Wkd(wk)dwk≤D} h(W

k) is a Gaussian vector with a diagonal covariance
matrix and variance D. The differential entropy for each component of this vector
is 1

2 log(2πe
D
k ). The Shannon lower bound simplifies for the squared-error distortion

measure to

Rk,SLB(D) =
1

k
h(Xk)− 1

2
log(2πe

D

k
). (6.37)

A major advantage of the Shannon lower bound is that it is simple to compute. This is
illustrated by the next example.

Example 6.5: R(D) bound for Laplace density, squared-error distortion

From example 3.2 we know that the differential entropy of a random variable with
Laplace density fX(x) = a

2
e−a|x| is h(X) = log( 2e

a
). The Shannon lower bound

for this variable and a squared error criterion is thus

R1,SLB(D) = log(
2e

a
)− 1

2
log(2πeD) =

1

2
log(

2e

πa2D
).

6.4.2 When is the Shannon Lower Bound Tight?

It is seen from the derivation in equation 6.34 that the Shannon lower bound for a
difference distortion measure becomes tight when h(Xk − X̂k|X̂k) = h(Xk − X̂k),
i.e., for the case where the mutual information I(Xk − X̂k; X̂k) = 0. Conversely, if
the Shannon lower bound for the difference criterion coincides with the rate-distortion
function, then it must be possible to create a variable with the statistics of X by adding
the independent variables X̂ and V , where V has maximum differential entropy given the
distortion measure D(V ) ≡

∫

fV (v)d(v)dv. This is the same argument that we already
saw in example 6.3. It implies that if it is possible to construct a backward channel,
as in figure 6.4, with the noise variable V having maximum differential entropy, then we
can reach the Shannon lower bound with a real code; the Shannon lower bound and the
rate-distortion bound are then identical. We summarize this discussion in a theorem:

Theorem 22 The Shannon lower bound is tight for a difference distortion measure D(·)
if, and only if, the variable X can be constructed from the summation of two independent
variables X̂ and V , where V has maximum differential entropy given D(V ).

It is often straightforward to see whether the Shannon bound is tight. Let us consider the
one-dimensional case. If a continuous-alphabet variable X can be constructed from the
addition of two independent continuous-alphabet variables X̂ and V , then its density
is the convolution of the densities of X̂ and V . Let F denote the (continuous-time)
Fourier transform, let G1 = {fW :

∫

fW (w)d(w)dw ≤ D}, and let V be a variable with
fV ∈ G1 such that

h(V ) ≥ h(W ), ∀fW∈G1 . (6.38)
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X̂

V

X

Figure 6.4: The backward channel. The input is the reconstruction X̂ and the output
the original variable X and V is selected to maximize h(V ).

Assuming the densities have a Fourier transform, the convolution of the density can
then be written as FfX(ω) = FfX̂(ω)FfV (ω) and we have

FfX̂(ω) = FfX(ω)/FfV (ω). (6.39)

If the inverse Fourier transform of FfX̂(ω) is a density (i.e., nonnegative1), then the
Shannon lower bound is tight.

Example 6.6: R(D) for Gaussian variable and squared error

Armed with the results of this section, we revisit example 6.3. The lower bound of
equation 6.37 and the fact that the rate never should be less than zero show that
the Shannon bound for a Gaussian variable with variance σ2 is

RSLB(D) = max(0,
1

2
log(

σ2

D
)).

Next, we check the possibility of creating a signal with the statistics of X by

adding the independent variables V (Gaussian with variance D) and X̂ (free to

select). As we saw before, selecting X̂ to be Gaussian with variance σ2 − D will

satisfy these requirements. We thus have R(D) = RSLB(D) for this case. This

result is also obtained in a straightforward manner if equation 6.39 is employed.

While this example shows that the Shannon lower bound is always tight for a

scalar Gaussian variable and a squared error criterion, this is not always true for

a Gaussian variable and a squared error, as we will see in section 6.6.2.

Example 6.7: Shannon bound for rectangular density and squared error

In this example, we use the differential entropy computed in example 3.1 for a
density uniform within [0, a) and zero outside this interval. From equation 6.37
we see that the Shannon lower bound for the variable X with rectangular density
is

RSLB(D) = h(X)− 1

2
log(2πeD)

= log(a)− 1

2
log(2πeD) =

1

2
log(

a2

2πeD
).

Now let us see if this bound is tight. If so, then we must be able to construct X

from adding the Gaussian V of variance D to an independent X̂ to obtain X. It is

immediately seen that this is impossible, since the support of V exceeds that of X.

(The convolution of two densities, in this case fV and fX̂ , always has a support at

least as large as either density.) The bound is thus not tight.

1It is easily shown that if f
X̂

is nonnegative, and if fX and fV integrate to unity, then f
X̂

must
also integrate to unity.
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Example 6.8: Shannon bound for Laplace density and absolute error

We consider again the Laplace density of example 3.2, fX (x) = a
2
e−a|x|. From

that example we know that its differential entropy is log( 2e
a
). We must now find

the density of the variable V . That is, we must find the fV (v) that maximizes

h(V ) = −
∫

fV (v) log(fV (v))dv

under the constraint that

D =

∫

fV (v)|v|dv.

and that fV (v) is a density, i.e.,
∫

fV (v)dv = 1.

We also should impose the constraint that fV (v) ≥ 0, but, as we will see, the
solution satisfies this constraint without imposing it. We assume symmetry and
optimize the criterion

η =

∫ ∞

0

(−fV (v) log(fV (v)) + λfV (v)v) dv,

where λ is the Lagrange multiplier. The Euler-Lagrange equation is

− log(fV (v))− 1 + λv = 0.

Using the constraint this results in

fV (v) =
1

2D
e−

|v|
D ,

which is, indeed, nonnegative. (This density was found earlier in example 4.6.)
The Shannon lower bound is now

RSLB(D) = log(
2e

a
)− log(2eD) = − log(aD).

Next, we determine if this bound is tight. We see that

FfV (ω) =

∫

1

2D
e−

|x|
D e−jωxdx

=
1

1 +D2ω2
.

Thus, equation 6.39 becomes

FfX̂ (ω) = (1 +D2ω2)FfX(ω),

which corresponds to

fX̂(x) = fX(x)−D2 d
2fX(x)

dx2

= (1− a2D2)
a

2
e−a|x| + a2D2δ(x),

where δ(x) is a Dirac delta function. It is easily verified that this function is
nonnegative and, therefore, a density function for D ≤ 1/a. In other words, the
backward channel exists and the Shannon lower bound is tight:

R(D) = RSLB(D) = − log(aD), D ≤ 1/a.
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Example 6.9: Uniformly distributed variable with threshold criterion

Consider a random variable X with a density, fX(x), which is uniform in the
interval [0, 2) and zero elsewhere. The distortion criterion for the quantization
error w = x − Q(x) is shown in figure 6.52. The objective is to compute the
Shannon lower bound for this variable and to see whether it is tight. We first

d
(w

)

1

1

−1

w

Figure 6.5: The distortion criterion for example 6.9.

compute the density fW (w) such that h(W ) is maximized under the condition that
E[d(W )] =

∫

d(w)fW (w)dw ≤ D. In this computation, we exploit the symmetry
of the problem and the fact that fW (w) = 0 for |w| ≥ 1. The constraints are then
∫ 1

0
fW (w)dw = 1

2
,
∫ 1

0
wfW (w) ≤ D

2
, and that fW is nonnegative. Ignoring as usual

the latter constraint, the extended criterion becomes

η =

∫ 1

0

(fW (w) log(fW (w)) + λ′fW (w) + µwfW (w))dw,

where λ′ and µ are Lagrange multipliers. The Euler-Lagrange equation is log(fW (w))+
λ′ + µw = 0, which results in

fW (w) = λe−µ|w|, w ∈ (−1, 1),

where λ = exp(−λ′), which implies that fW is indeed nonnegative. It remains to
determine the constants µ and λ. It is clear that for small D we must have µ > 0
(regions of high density then correspond to regions of low distortion). The case µ =
0 corresponds to a flat distribution and, thus, to the maximum differential entropy.
We never allow µ < 0, which corresponds to a situation where fW (w) is not flat
and D is larger than that for maximum differential entropy. The computations
below are, therefore, only relevant for µ ≥ 0, otherwise we simply set µ = 0.

From 1
2

=
∫ 1

0
fW (w)dw = λ

µ
(1 − e−µ) we obtain λ = 1

2
µ

1−e−µ . Furthermore,
assuming that the inequality constraint is an equality constraint, we have that
D
2
=
∫ 1

0
wfW (w)dw = λ

µ
( 1
µ
(1− e−µ)− e−µ). Combining these results gives

D =
1

µ
− 1

eµ − 1

=
1

2
+

1

µ
− 1

2

e
µ
2 + e

−µ
2

e
µ
2 − e

−µ
2

,

2By having a distortion criterion that becomes infinite, the case of example 6.9 contradicts the
always-finite condition used in the proof of the reachability of the rate-distortion function. Strictly
spoken, this condition is also violated for the squared-error criterion. By using as distortion db(w) =
inf(d(w), L) with L ∈ R large but finite, this problem is eliminated.
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where the latter notation shows that D(µ) − 1
2
is an odd function of µ.

Next, we compute the Shannon lower bound. We have that h(X) = −
∫ 2

0
1
2
log( 1

2
)dx =

log( 1
2
). We also have that

h(W ) = −2

∫ 1

0

λe−µw log(λe−µw)dw

= −2λ log(λ)

∫ 1

0

e−µwdw + 2λµ

∫ 1

0

we−µwdw

= 2
λ

µ
log(λ)(e−µ − 1) + 2

λ

µ
(e−µ(−µ− 1) + 1)

= 2
λ

µ
(log(λ)− 1)(e−µ − 1)− 2λe−µ,

which can be rewritten as

h(W ) = 1− log(
1

2

µ

1− e−µ
)− µe−µ

1− e−µ
.

Note that, as expected, h(W ) approaches one bit as µ approaches zero. Thus, the
Shannon lower bound is, in nats, as a function of µ,

RSLB(µ) = log(2)− 1 + log(
1

2

µ

1− e−µ
) +

µe−µ

1− e−µ

= −1 + log(
µ

e
µ
2 − e−

µ
2

) +
µ

2

e
µ
2 + e−

µ
2

e
µ
2 − e−

µ
2

,

where the notation was selected to show the even symmetry around µ = 0. By
selecting a set of values of µ and then evaluating the associated D and RSLB(D)
(and converting to bits) we obtain the rate-distortion curve shown in figure 6.6.
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Figure 6.6: The Shannon lower bound of example 6.9.

Let us see if this Shannon lower bound is tight. If a backward channel exists,
then we should have that X = X̂ +W and, thus, fX(x) = fX̂(x) ∗ fW (x) with X̂
independent. But we know that fW has support (is nonzero) only within (−1, 1).
The support of fX is the same as that of fW , implying that the support of fX̂
vanishes. Since fX and fW are not identical, fX̂ cannot be a Dirac delta function
and we obtain a contradiction. Thus, the Shannon lower bound is not tight.

Finally, we re-examine what happens if we omit the inequality in the condition

E[d(W )] =
∫

d(w)fW (w)dw ≤ D imposed for the Shannon lower bound. The
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odd symmetry of D(µ) − 1
2
and the even symmetry of RSLB(µ) leads to a rate-

distortion curve that is symmetric around D = 0.5. That is the rate increases with

increasing distortion for D > 0.5. This corresponds to the density fW (w) having

higher values in regions of high distortion.

6.5 Finding R(D) by Constrained Optimization

The rate-distortion theorem (theorem 16) in effect states the rate-distortion function as
the solution to a constrained-optimization problem. In this section, we use conventional
optimization methods to try to find the rate-distortion function. In the first of the
following two subsections a set of equations is found, which, in principle, can be used to
solve for the conditional probability density function fX̂k|Xk(x̂k|xk) (or probability mass

function) that determines the rate-distortion function. These equations are nonlinear
and are thus difficult to solve analytically. However, they can be used to obtain an
algorithm to determine the rate-distortion function numerically. This algorithm, the
Blahut algorithm, is the topic of the second subsection.

6.5.1 The Optimal Conditional Probability Mass Function

We recall that the rate-distortion function is defined by the mutual information under
the constraint that the conditional probability density fX̂k|Xk(x̂k|xk) falls into the setBk

defined by equation 6.7. A formal solution to this problem can be found by the method
of Lagrange multipliers and variational calculus. To simplify the manipulations, we use
the one-dimensional case and probability mass functions rather than density functions.
(This anticipates the numerical procedures in the next section, which are inherently
discrete.) To make the derivations more readable, we will use the following simplified
notation: p(x) = pX(x), p(x̂|x) = pX̂|X(x̂|x), and p(x̂) = pX̂(x̂).

The optimization problem for finding the rate-distortion function is then to find the
p(x̂|x) that minimizes

I(X̂;X) =
∑

x,x̂

p(x̂|x)p(x) log(p(x̂|x)
p(x̂)

) (6.40)

under the constraints
∑

x,x̂

p(x̂|x)p(x)d(x, x̂) = D, (6.41)

∑

x̂

p(x̂|x) = 1, (6.42)

p(x̂|x) ≥ 0. (6.43)

In constraint 6.41 we have, in effect, assumed that the distortion is exactly D, which
is correct if the rate-distortion function is strictly decreasing. Constraint 6.42 results
from the fact that p(x̂|x) is a probability density. Finally, constraint 6.43 states that all
probabilities p(x̂|x) must be nonnegative.

In the following derivation we include constraint 6.43 to show more formally how to
deal with such an inequality constraint. However, for this problem it is also possible to
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take a simpler approach: assume that the inequality constraint is not violated, solve the
problem without the inequality constraint and confirm at the end that the constraint is
not violated.

Using the Lagrange multiplier method, the criterion can be rewritten as

η =
∑

x,x̂

(

p(x̂|x)p(x) log(p(x̂|x)
p(x̂)

) + λp(x̂|x)p(x)d(x, x̂) + µ(x)p(x̂|x) + ν(x̂, x)p(x̂|x)
)

,

(6.44)
where it is understood that

ν(x̂, x) = 0, p(x̂|x) > 0, (6.45)

ν(x̂, x) ≤ 0, p(x̂|x) = 0, (6.46)

to account for the inequality condition. For the argument of the logarithm it is important
to realize that p(x̂) =

∑

x p(x̂|x)p(x). We differentiate the extended criterion of equation
6.44 towards p(x̂|x) to obtain (cf. problem 6)

dη

dp(x̂|x) = p(x) log(
p(x̂|x)
p(x̂)

) + λp(x)d(x, x̂) + µ(x) + ν(x̂, x). (6.47)

We note that this derivative is increasing as a function of p(x̂|x) and that, therefore, η is
convex in p(x̂|x) and has one minimum. It is, furthermore, clear that the nonnegativity
constraint is nonessential if omitting this constraint results in a solution that satisfies it;
we set ν(x̂, x) = 0 in this situation. If the minimum is not located in p(x̂|x) ≥ 0, then
we modify the criterion such that a minimum is located on the boundary p(x̂|x) = 0.
Note that the fact that the minimum is located at p(x̂|x) < 0 if ν(x̂, x) = 0 implies that

dη
dp(x̂|x) > 0 at p(x̂|x) = 0. Thus, we have to set ν(x̂, x) < 0 to obtain dη

dp(x̂|x) = 0 at

p(x̂, x) = 0.

Setting the expression of equation 6.47 to zero we find a condition for the minimum. It
is convenient to rewrite this condition in a different format:

p(x̂|x) = p(x̂)e−(λd(x,x̂)+µ(x)
p(x)

+ ν(x̂,x)
p(x)

). (6.48)

If we sum equation 6.48 over x̂, the left-hand side becomes unity. This implies that
we always must have that µ(x) < ∞. Furthermore, if p(x̂|x) = 0, then, according to
condition 6.46, ν(x̂, x) ≤ 0 < ∞. This means that p(x̂|x) = 0 if and only if p(x̂) = 0.
That is, if p(x̂|x) = 0 for any x, then p(x̂|x) = 0 for all x. Considering only the relevant
case where p(x̂) > 0, equation 6.48 can be simplified to

p(x̂|x) = p(x̂)e−(λd(x,x̂)+µ(x)
p(x)

). (6.49)

We select µ(x) in equation 6.49 to satisfy condition 6.42:

pX̂|X(x̂|x) = pX̂(x̂)e−λd(x,x̂)

∑

x̂′ pX̂(x̂′)e−λd(x,x̂′)
, (6.50)

where, to facilitate future reference, we have returned to the complete notation for the
probability mass functions. Equation 6.50 does not yet provide a solution, since the
marginal probability mass function pX̂(x̂) is not known.
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We can formally solve for pX̂(x̂) as follows. Again only considering the relevant cases
pX̂(x̂) > 0, we multiply equation 6.50 by pX(x)/pX̂(x̂) and sum over x to obtain

1 =
∑

x

pX(x)e−λd(x,x̂)

∑

x̂′ pX̂(x̂′)e−λd(x,x̂′)
. (6.51)

Equation 6.51 exists for all values x̂ of the alphabet of X̂ that have nonzero probability,
pX̂(x̂) > 0. These equations, together with the constraint 6.41 can, in principle, be
solved for the values of pX̂(x̂) that are nonzero and for λ. The desired solution for
pX̂|X(x̂|x) is then obtained from equation 6.50, and this can be used to obtain the
extremum of the mutual information, which is the rate-distortion function.

6.5.2 The Blahut Algorithm

The method in the previous section did not provide a practical solution. In general,
analytic procedures often fail in the computation of the rate-distortion function. The
Blahut algorithm [25] is an iterative method to find a numerical solution for the rate-
distortion function. As in the case of the related expectation-maximization algorithm
of section 4.3.4, the underlying principle is to reformulate the optimization over one
variable as an optimization over two variables, where the optimal value for each variable
can be found if the other is kept constant. This leads to an iterative solution procedure
where we alternatingly optimize the two variables.

We start with rewriting the result of theorem 16 in a more convenient form:

R(D) = min
pX̂|X∈B1(D)

I(X ; X̂)

= min
pX̂|X∈B1(D)

H(pX̂|XpX‖pXpX̂) (6.52)

It will be shown below that pX̂ is the marginal distribution pY that minimizes the
relative entropy H(pXX̂‖pXpY ). That is

qX̂,opt(x̂) = pX̂(x̂) =
∑

x

pX̂|X(x̂|x)pX(x). (6.53)

We see that the optimal distribution pY can be expressed analytically if pX̂|X is assumed
known. This means that the rate-distortion function of equation 6.52 can be rewritten
in the desired format with a double minimization:

R(D) = min
pX̂|X∈B1(D)

min
pY

H(pX̂|XpX‖pXpY ). (6.54)

The minimization over pX̂|X can also be expressed analytically, if we assume that pY
is known. Although the derivation must be modified from that given in section 6.5.1
if we assume that pY is known, the solution is unaffected and is given by equation
6.50. Thus, we intend to find the rate-distortion function by alternatingly minimizing
H(pX̂|XpX‖pXpY ) for the discrete functions pY and pX̂|X . Since relative entropy is
nonnegative, this iterative process must have a limiting value and it can be shown that
this limiting value is R(D) (in contrast with the expectation-maximization algorithm,
the algorithm cannot get stuck in local minima). Equation 6.53 solves the optimization
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Table 6.1: The Blahut algorithm for finding the rate-distortion function.

1. initialize the function pX̂ and select a value for λ,

2. compute the function pX̂|X using 6.50,

3. compute the function pY using 6.53,

4. check whether iterations have converged; go to 2 if they have not,

5. compute R(D) by evaluating I(X ; X̂) and compute D using equation 6.41.

for pY and equation 6.50 minimizes the expression for pX̂|X . The value for λ in equation
6.50 determines the point on the rate-distortion curve that is computed. From equation
6.44 it is seen that, with increasing λ, the distortion gains in importance in the criterion.
This means that the distortion decreases and the rate increases with increasing λ. The
complete Blahut algorithm is given in table 6.1.

We now show that pX̂ indeed is the function pY that minimizes the relative entropy
H(pXX̂‖pXpY ). We can do this using a standard optimization method. We find the
function pX̂ that minimizes (for a discrete alphabet, the infimum is a minimum)

H(pX̂|XpX‖pXpY ) =
∑

x,x̂

pX̂|X(x̂|x)pX(x) log(
pX̂|X(x̂|x)
pY (x̂)

) (6.55)

under the constraint that
∑

x̂ pY (x̂) = 1. The Lagrange multiplier method leads to the
solution 6.53. We derived the same result earlier in example 2.13 in a different manner.

6.6 Rate Distribution over Independent Variables

In this section, we consider the problem of having to code a set of independent
continuous-alphabet variables X1, · · · , Xk. We assume that the rate-distortion func-
tions are differentiable whenever the rate is positive. Our analysis will tell us how to
distribute the bit rates for ideal coding of independent processes, so as to get the lowest
overall distortion. It will be shown that independent coding of the processes is optimal.
The results provide useful insight for practical cases such as, for example, the case where
we encode the outputs of a filter bank operating on a stationary signal. In section 6.6.1,
we analyze the more general case that has as only assumption that the rate-distortion
function is differentiable. In section 6.6.2, we discuss Gaussian variables and generalize
the results of that case to determine the rate-distortion function for colored Gaussian
processes.

6.6.1 General Case with Differentiable R(D) Functions

In this subsection, we consider a random vector consisting of k independent random
variables,

Xk = [X1, · · · , Xk]
T , (6.56)
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and a distortion measure that is the sum of the distortion measures for the variables,

DXk =

k
∑

i=1

DXi
. (6.57)

The probability density functions of the variables are not assumed to be identical. Our
goal is to show that we can encode the variables separately without loosing optimality
and to find the optimal distribution of the rates between these separate encodings of
the independent variables.

We start with finding a relation between the mutual information of the original vec-
tors Xk and reconstructed vectors X̂k and those of the original variables Xi and the
reconstructed variables X̂i. We note that because of the chain rule we can write

I(Xk; X̂k) = h(Xk)− h(Xk|X̂k)

= h(Xk)−
k
∑

i=1

h(Xi|X1, · · · , Xi−1, X̂
k). (6.58)

Exploiting the independence of the Xi and the fact that conditioning reduces entropy,
we obtain

I(Xk; X̂k) =

k
∑

i=1

(

h(Xi)− h(Xi|X1, · · · , Xi−1, X̂
k)
)

≥
k
∑

i=1

(

h(Xi)− h(Xi|X̂i)
)

=

k
∑

i=1

I(Xi; X̂i). (6.59)

Next, we move on to the rate-distortion function. Let the conditional probability pXk|X̂k

be such that I(Xk; X̂k) on the left hand side of inequality 6.59 corresponds to the rate-
distortion limit. Then, we see that

RXk(DXk) ≥
k
∑

i=1

I(Xi; X̂i) ≥
k
∑

i=1

RXi
(DXi

). (6.60)

This inequality is, in fact, an equality, since RXk(DXk) is by definition the infimum
over all fXk|X̂k resulting in a distortion of DXk or less. It is easy to see that

fXk|X̂k =

k
∏

i=1

fXi|X̂i
(6.61)

makes inequality 6.60 an equality. Equation 6.61 implies that

h(Xi|X̂k) = h(Xi|X̂i). (6.62)

Equation 6.62 has implications for practical coding. In our proof that the rate-distortion
limit is attainable with a deterministic real code we used vector quantizers of very large
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dimension. Now let each Xi be a time sample of an independent process with index i
(for clarity, we could add a time index n and write Xi,n). Then it follows from equation
6.62 that we can reach the rate-distortion limit for the k-dimensional vector process by
encoding (quantization and lossless coding) each of the k processes independently. We
can thus encode the k processes independently without loss of coding efficiency.

We now determine the rate allocation. Our objective is to minimize the overall rate

RXk(DXk) =

k
∑

i=1

RXi
(DXi

). (6.63)

Exploiting our earlier result, we encode each component separately, and require that
each has a positive rate. It is convenient to state these constraints in terms of the
respective distortions:

DXi
≤ ĎXi

, (6.64)

where ĎXi
is the infimum distortion for which the rate is zero,

ĎXi
= inf

{D:RXi
(D)=0}

D. (6.65)

We first define the problem for the case where all inequality constraints are effectively
equality constraints. Then the method of Lagrange multipliers gives as extended crite-
rion

η =

k
∑

i=1

(RXi
(DXi

) + νDXi
+ µiDXi

). (6.66)

The goal is simply to find the set {DXi
}i=1,··· ,k that minimize this criterion.

For the constrained minimization of the expression in equation 6.66, we use similar
logic as that used for minimizing the expression in equation 6.44. We note that η is
convex in DXi

since any rate-distortion function is convex and the additional terms
are linear in DXi

. The minimum of η is either on the constraint boundary or it is
inside the constraint boundary. If it is inside the constraint boundary, constraint 6.64
can be ignored, i.e., µi can be set to zero. In the other case, the boundary itself must
be a minimum in the extended criterion. Without the constraint, the derivative of η
with respect to DXi

must be negative since otherwise the minimum would be inside the
constraint boundary. This implies that the derivative of µiDXi

with respect to DXi

must be positive and that, therefore, µi must be positive. Thus we obtain the relations

µi = 0, DXi
< ĎXi

, (6.67)

µi ≥ 0, DXi
= ĎXi

. (6.68)

Differentiating η with respect to the DXi
and setting the result to zero leads to the

following set of equations:

ṘXi
(DXi

) + ν = 0, DXi
< ĎXi

, (6.69)

ṘXi
(DXi

) + ν ≤ 0, DXi
= ĎXi

, (6.70)

where ṘXi
(·) is the derivative of RXi

(·).
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Table 6.2: General rate-distribution algorithm. The overall distortion is the sum of the
individual-variable distortions.

1. select a value for ν

2. if possible solve DXi
from ṘXi

(DXi
) = −ν in the range DXi

< ĎXi
;

otherwise set DXi
= ĎXi

.

3. the rate for process i is RXi
(DXi

).

To find a range of solutions for the optimal rate allocations between sources with known
rate-distortion functions is simple. One rate allocation is found for each value of ν. The
optimal rate allocation algorithm is given in table 6.2.

It follows from equations 6.69 and 6.70 that the rate derivative, ṘXi
(DXi

) is the same
for all variables, except for those variables for which this marginal rate does not exist
in the range Di < ĎXi

, which have zero rate.

6.6.2 Gaussian Variables: Reverse Water Filling

Reverse water filling allows the determination of the rate distribution and the overall
rate-distortion function for a set of independent Gaussian variables. For dependent
variables, one cannot reach the overall rate-distortion function through independent
codings. However, as will be shown below, the reverse water filling technique does
provide a solution also for this case, through the use of a suitable transform. The
results can be extended to the important case of Gaussian processes as is shown in the
last part of this subsection.

Independent Normally-Distributed Variables

Let us first consider independent Gaussian variables, Xi, with variance σ2
i and a squared

error criterion. In the next subsection it will be seen that these results are also relevant
for dependent normally-distributed variables with a squared error criterion. The rate-
distortion functions are, in nats:

RXi
(DXi

) =

{

1
2 log(

σ2
i

DXi

), DXi
≤ σ2

i

0 DXi
= σ2

i

(6.71)

Differentiating for D(Xi) ≤ σ2 results in

ṘXi
(DXi

) = − 1

2DXi

, DXi
≤ σ2

i . (6.72)

We also note that RXi
(DXi

) = 0 corresponds to DXi
= σ2

i . Equations 6.70 and 6.69
become

− 1

2DXi

+ ν = 0, DXi
< σ2

i , (6.73)

− 1

2DXi

+ ν ≤ 0, DXi
= σ2

i . (6.74)
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Table 6.3: Rate-distribution algorithm for Gaussian variables and a squared error cri-
terion. The overall distortion is the sum of the individual-variable distortions.

1. select a value for λ

2. RXi
= max(0, 12 log(

σ2
i

λ ))

Let us set λ = 1
2ν . The algorithm for constructing the rate distribution then simplifies

to that given in table 6.3. The overall bit rate is

R =
∑

i

RXi
=
∑

i

max(0,
1

2
log(

σ2
i

λ
)). (6.75)

and the overall distortion is

D =
∑

i

DXi
=
∑

i

min(λ, σ2
i ). (6.76)

Equations 6.75 and 6.76 specify the rate-distortion function for the jointly-normal dis-
tributed variable.

Equation 6.76 indicates that the value of λ corresponds to a bound on the distortion
allowed for each variable. If the variance is less than this bound, then the variable is
not encoded and the variance of the variable equals its distortion upon reconstruction.
This implies that the variable is reconstructed by its mean value. On the other hand,
if the variance of a variable is higher than the bound on the allowed distortion, then a
nonzero rate is allocated to this variable to reduce the distortion so that it satisfies the
bound. This is illustrated in the bar diagram of the left side of figure 6.7. The total bar
lengths indicate the variance of the variables, and the lightly hatched areas within the
bar correspond to the distortion for each particular variable.

At this point, it is useful to remember the relation between the variance of the original
and reconstructed variables at the rate-distortion bound. The backward-channel inter-
pretation (valid for Gaussian variables and the squared-error criterion) tells us that in
the present case the sum of the reconstructed-variable variance and the distortion equals
the variance of the original variable. In other words, the reconstructed-variable variance
is simply the original-variable variance minus the distortion, except when this is nega-
tive (the reconstructed-variable variance is then zero). Thus, the densely hatched areas
in figure 6.7 indicate the variances of the reconstructed variables. When turning the
figure upside down the bars are all filled with densely hatched area up to the same level,
hence the name reverse water filling. The variances of the reconstructed variables
are determined by the “water level”.

The right-hand side of figure 6.7 displays the same bar diagram with a logarithmic ver-
tical scale. The densely hatched area now has a bit-rate interpretation. From equation
6.75 it follows that in the logarithmic scale bar diagram the densely hatched within the
bar above the dashed line corresponds to the rate allocation.

Example 6.10: Rate distribution between two Gaussian variables

We consider the case of two Gaussian variables, X1 and X2, with variance σ2
1 = 1

and σ2
2 = 2. We use the algorithm of table 6.3 to create the individual rate-

distortion functions. We list some values thus obtained in table 6.4. More complete
results, obtained in a similar fashion, are displayed in figure 6.8.
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Figure 6.7: The principle of reverse water filling. Left: the original variances (full
bar lengths) and the variances of the reconstructed variables (densely hatched); the
distortion corresponds to the lightly hatched area within the bars. Right: the same plot
on a logarithmic scale. The densely hatched areas now represent the bit rate.

Table 6.4: Some rate-distortion data for example 6.10.
λ DX1 DX2 D RX1 RX2 R(D)

0.10 0.10 0.10 0.20 1.66 2.16 3.82
0.50 0.50 0.50 1.00 0.50 1.00 1.50
1.00 1.00 1.00 2.00 0.00 0.50 0.50
2.00 1.00 2.00 3.00 0.00 0.00 0.00

Dependent Normally-Distributed Variables

Next, we consider the case where a set of Gaussian variables Xi are dependent and
have covariance matrix Cij = E[XiXj ]. We can transform the set of variables to a
set of independent variables through diagonalization of the covariance matrix. Let the
normalized eigenvectors of the symmetric matrix C form the rows of the unitary matrix
U . Then the new set of variables Wi is the set of components of the vector W k

W k = UXk, (6.77)

where U diagonalizes the covariance matrix:

Λ = UCUT . (6.78)

Λ is a diagonal matrix with the elements λi along the diagonal. The squared-error
distortion measure is not affected by a unitary transform. Since the determinant of a
unitary matrix is unity, the differential entropy is also not affected. Thus, the entire
discussion about independent Gaussian variables applies to the transformed variables
{Wi}i=1,··· ,k. The overall rate is

R =
∑

i

RWi
=
∑

i

max(0,
1

2
log(

λi
λ
)) (6.79)

and the overall distortion is

D =
∑

i

DXi
=
∑

i

DWi
=
∑

i

min(λ, λi). (6.80)
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Figure 6.8: Individual and combined rate-distortion functions for the two Gaussian
sources of example 6.10.

Normal Processes with Memory

Using the formulation for dependent variables, it is easy to obtain the rate-distortion
function for Gaussian processes. By applying theorem 13, we can write for the rate

R =
1

4π

∫ π

−π

max(0, log(
R(ejω)

λ
))dω (6.81)

and for the distortion

D =
1

2π

∫ π

−π

min(λ,R(ejω))dω, (6.82)

where R(ejω) is defined in equation 3.30. Figure 6.9 illustrates reverse water filling
for a Gaussian process. The densely hatched area defines the power spectrum of the
reconstructed process. The area below both λ and the power spectrum defines the
distortion of the reconstructed signal. The sum of the distortion and the power spectrum
of the reconstructed signal forms the power spectrum of the original process.

R
(e

j
ω
)

λ

ω
ππ/2

0
0 lo

g
2
(R

(e
j
ω
))

log2(λ)

ω
ππ/20

−2

2

Figure 6.9: Principle of reverse water filling for a Gaussian process. Left: the orig-
inal power spectrum R(ejω), the reconstruction power spectrum R(ejω) − λ (densely
hatched), and the distortion min(R(ejω), λ) (lightly hatched). Right: the same plot on
a logarithmic scale. The densely hatched area now represents the bit rate.

It is interesting to analyze the behavior in the limit of low distortion, i.e., when λ <
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R(ejω) for ω ∈ [−π, π]. In this case we have as rate

Rldg =
1

4π

∫ π

−π

log(R(ejω))dω − 1

2
log(λ), (6.83)

where the subscript ldg indicates low distortion and Gaussian distribution. The distor-
tion is simply Dldg = λ; inserting this into equation 6.83 gives the rate-distortion (or
the distortion-rate) function for Gaussian processes with memory at low distortion:

Rldg =
1

4π

∫ π

−π

log(R(ejω))dω − 1

2
log(Dldg). (6.84)

From equation 6.37 and knowledge of the differential entropy of a Gaussian process
(equation 3.32), we see that equation 6.84 corresponds to its Shannon lower bound.
(This does not mean that reverse waterfilling implies that the Shannon lower bound is
not tight.)

6.7 Problems

1. Prove that x log(x) is convex on (0, 1).

2. Prove that the rate-distortion function for a Bernoulli(p) source (iid binary source
with symbol probabilities p and 1 − p) and the Hamming distortion measure
(d(x, x̂) = 0 for x = x̂ and d(x, x̂) = 1 otherwise) is

R(D) =

{

H(p)−H(D), 0 ≤ D ≤ min(p, 1− p)
0, D > min(p, 1− p)

,

where H(p) is a function defined as H(p) = −p log(p)− (1− p) log(1− p).

3. Use the Blahut algorithm to find the rate-distortion function of problem 2.

4. A discrete-alphabet random variable is uniformly distributed over its k source
symbols. Using the Hamming distortion measure (d(x, x̂) = 0 for x = x̂ and
d(x, x̂) = 1 otherwise), find the rate-distortion function.

5. Prove that Rk(D) ≥ Rk+1(D).

6. Show that equation 6.47 is correct. (Hint: note that p(x̂) =
∑

x p(x̂|x)p(x).)

7. In rate-distortion theory we usually deal with sampled signals. However, it is
straightforward to extend the theory to analog signals. It is well-known that we
tolerate about 30 dB signal to noise ratio in telephone bandwidth speech. Let us
assume that the telephone signal has a bandwidth of 3.5 kHz and that the signals
are Gaussian.

(a) What is the maximum information rate that can be transmitted over the
telephone connection?

(b) The information rate in speech can be argued to be lower. Why?

8. Find and plot in one plot the Shannon lower bound for the absolute error criterion
and a given mean absolute error γ.
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(a) An iid process with rectangular sample density.

(b) An iid process with Gaussian sample density.

(c) An iid process with Laplacian sample density.

(d) Indicate in which cases the lower bound coincides with the actual rate-
distortion function.

9. Consider the error criterion d(x, y) = |x− y|3.
(a) Using variational calculus, find the density fY (y) that maximizes the differ-

ential entropy for a given E[|Y |3].
(b) Find a simple expression for the Shannon lower bound for this error criterion.

(c) In the case of the Gaussian density and the squared error, and also in the case
of the Laplacian density and the absolute error (cf. example 6.8), a density
that is of the same form as the maximum-differential-entropy density for the
criterion leads to a tight Shannon bound. Explain whether this the case for
the d(x, y) = |x− y|3 criterion?

10. Consider the quantization of the random variable X . The distortion criterion for
the error w = x − Q(x) is illustrated in figure 6.10 (the distortion is infinite for
|w| > 2).

1

1 2

−1

−1−2

w

d
(w

)

Figure 6.10: Distortion criterion, d(w), as a function of w.

(a) Find the density that maximizes the differential entropy for a given finite
∫

fW (w)d(w)dw, where d(w) is the distortion criterion. Make a plot of a
typical density function.

(b) Consider a Gaussian random variable X with unit variance. Find the Shan-
non lower bound for this variable with the distortion criterion of figure 6.10
and plot it.

(c) Argue that the Shannon lower bound is tight or not tight.

11. Consider the squared Cauchy density,

fX(x) =
2

π
(1 + x2)−2,

and the absolute-error criterion.
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(a) Compute and plot the Shannon lower bound.

(b) Show that the bound is tight over only a particular range of distortions.

(c) For the range where the lower bound is not tight, discretize the density and
approximate R(D) using the Blahut algorithm. Add your new results to the
plot.

12. Consider the rectangular density

fX(x) =

{

1, x ∈ [0, 1)
0, elsewhere

and a distortion criterion

d(x, y) =

{

0, |x− y| ≤ 1/4
1, |x− y| > 1/4

.

Discretize this problem and approximate the rate-distortion function using the
Blahut algorithm.

13. Give the Shannon lower bound for a first-order Gauss-Markov process with corre-
lation ρ and the squared error criterion.

14. Prove that (1− ab)m ≤ 1− a+ e−bm.

15. You want to estimate the distortion versus bit rate trade-off for a particular sta-
tionary process. For simplicity, you decide to assume the process is a (zero-mean)
Gaussian process. You first estimate the power spectrum, R(ejω), and find figure
6.11.

0 π/2 πω
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ω
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Figure 6.11: Power spectrum for problem 15.

(a) Using the figure, illustrate graphically how you obtain a particular point on
the distortion-rate function.

(b) What is the distortion at zero bit rate? Explain.

(c) What bit rate corresponds to zero distortion? Explain.

(d) Describe the bit rate versus distortion trade-off for this case by means of
equations.

(e) Plot the rate-distortion curve using your answer in 15d. Is your curve convex
or concave?
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16. Consider the independent variables X1 and X2 with Laplace densities that are of
the form fXi

(xi) =
ai

2 e
−ai|x|. An absolute error criterion applies and the overall

distortion is defined as E[|x1 − x̂1|+ |x2− x̂2|]. In the following, use a1 = 1/2 and
a2 = 1/3.

(a) Determine and plot the rate-distortion curves for the two variables.

(b) Find a set of equations that determines the overall rate-distortion function.
(The theory for Gaussian variables has not been proven to apply.)

(c) Using a computer, plot the overall rate-distortion function.

17. Let fG(x) be a Gaussian density with unit variance. We have process, Xi, where
the odd samples have distribution fodd(x) = fG(x) and the even samples have
distribution feven(x) = fG(x− 5). The odd samples form an iid sequence and the
even samples also form an iid sequence. We consider the squared error criterion.

(a) Compute the differential entropy rate of the random variables having densi-
ties fodd(x) and feven(x).

(b) Assuming you know the time index, i.e., you know which samples are odd
and even, derive a formula for the operational rate-distortion relation for the
process Xi (scalar quantization).

(c) Consider the case where you got it wrong, i.e., you think that the odd samples
are the even samples and vice versa. Derive an operational rate-distortion
formula for this mismatched case.

(d) To prevent problems, you decide to use a single distribution for all samples.
Provide the distribution and again derive the operational rate-distortion re-
lation.
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7

High-Rate Quantization

7.1 Introduction

It has been found that the relation between rate and distortion becomes amenable to
mathematical analysis only under certain conditions. In chapter 6, we considered bounds
on the relation between the average rate and average distortion under the assumptions
that we code very long symbol sequences, and that the symbols can be encoded jointly.
In this chapter, we consider the relation between rate and distortion in the case of high
rate, an approach that was pioneered by Bennett [26]. The high-rate assumption implies
that the data density does not change significantly within the size of a quantization cell.

Except for the high-rate restriction, high-rate quantization theory can be used simi-
larly to rate-distortion theory to estimate the lowest mean rate per source symbol for
stationary sources. However, high-rate quantization theory is more general than rate-
distortion theory in two aspects. As mentioned, the coded symbol sequence considered
need not be long. Moreover, high-rate quantization theory provides a relation between
mean distortion and bit rate when we add the restriction that each source symbol is
encoded with a fixed number of bits. In other words, high-rate theory allows us to find
a relation between rate and distortion for fixed-rate coders.

High-rate quantization theory leads to the design of practical quantizers, again some-
thing that rate-distortion theory does not. While these quantizers are guaranteed to be
efficient when the high-rate assumption is correct, they often perform well for practical
rates. A particularly attractive result of high-rate quantization theory is that uniform
quantizers (all cells equal in size and shape) are optimal if they are followed by lossless
coding.

In this chapter, we first define quantization more precisely. We then consider high-
rate scalar quantization, followed by the more complicated world of high-rate vector
quantization. We compare our results to the rate-distortion function and use high-rate
theory to compare the strengths of vector and scalar quantization. We end this chapter
with a discussion of the design of practical quantizers based on high-rate theory.

145
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7.2 Quantization: Definitions and Measures

Before we start with our discussion of high-rate quantization, it is necessary to define
more clearly the properties of quantizers. We do this first for scalar quantization and
then for vector quantization.

7.2.1 The Scalar Quantizer

A scalar quantizer is a noninvertible mapping, Q, of the real line, R, onto a countable
set of points, C = {ci}i∈I , where I is a countable set of indices:

Q : R → C. (7.1)

C is called a codebook and the ci are referred to as codebook entries, centroids, or
reconstruction points. A cell Vi is defined as the collection of points on the real line
that the quantizer maps onto ci:

Vi = {x ∈ R : Q(x) = ci}, (7.2)

This formal definition allows the cells to be disjoint (consisting of unconnected parts),
a situation that does not occur in most common coding applications. In practice, we
deal with regular quantizers [24], which are defined as quantizers for which

1. each cell is an open interval (xi−1, xi) together with one or both endpoints;

2. ci ∈ (xi−1, xi).

For regular quantizers, it is natural to interpret the quantizer output as an approxi-
mation of the input value. One is willing to accept the approximation as a substitute
for the original value because it allows encoding with a finite number of bits. In other
words, we accept distortion of the signal to make coding possible.

The encoding is based on the index i. It is, therefore, often useful to split the quanti-
zation mapping Q into two mappings: a noninvertible encoder mapping E from input
x to an index i, i = E(x), and an invertible decoder mapping D from the index i to the
quantizer reconstruction point ci:

ci = D(i) = D(E(x)) = Q(x), ∀x∈Vi. (7.3)

The mappings can be written as

E : R → I,
D : I → C. (7.4)

Having defined the scalar quantizer, it is useful to consider measures to evaluate its per-
formance. It is natural to consider the distortion incurred to be the main performance
measure. However, without a specification of the conditions under which a particular
distortion is obtained, this measure is not meaningful. Considering the fact that coding
at a finite bit rate is the motivation for using quantizers, a constraint must be imposed
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on the required codeword length for encoding the indices. Two cases are commonly con-
sidered: the case where all codewords are constrained to have a specific length and the
case where the average codeword length is constrained. These two cases are referred to
as resolution-constrained quantization and entropy-constrained quantization,
respectively.

The fixed-codeword-length constraint is the more commonly used rate constraint in the
design of practical quantizers. A fixed codeword length in bits corresponds to a fixed
codebook size. In quantizer design, the resolution constraint is usually defined as a
constraint on the codebook size, with the codebook size often set to be a power of two
to facilitate binary encoding.

Naturally, the design of practical quantizers reflects their usage in communication sys-
tems. Constrained-resolution quantizers are commonly used in communication systems
for a number of reasons. First, and probably most important, is that most traditional
communication systems have channels of fixed rate. Second, particularly at low rates
(which are discussed in the next chapter), it is often conceptually simpler to find an
optimal quantizer under the resolution constraint than under the entropy constraint.
Third, the use of entropy-constrained vector quantization implies the usage of a lossless
coder, thus increasing system complexity.

The entropy constraint is less restrictive than the resolution constraint, thus resulting
in lower average rates, at the penalty of not having a constant rate. With the increase
in computational capabilities of hardware and the increase in the usage of statistical
communication networks (e.g., code-division multiplexing in mobile communications
and packet networks as used in the Internet) that facilitate variable rate, it is becoming
more attractive to exploit the rate advantage inherent in constrained-entropy coding.

Naturally, the objective of quantization can also be formulated as the minimization
of the entropy or the codebook size, with the distortion as constraint. However, such
formulations are uncommon and are not used here.

7.2.2 The Vector Quantizer

The vector quantizer is a straightforward generalization of the scalar quantizer. A vector
quantizer is a mapping, Q, of k-dimensional Euclidean space, Rk, onto a countable set
of points, Ck = {cki }i∈I , where I is a countable set of indices:

Q : R
k → Ck. (7.5)

A cell Vi, associated with cki , is defined as the collection of points in Rk that the quantizer
maps onto cki :

Vi = {xk ∈ R
k : Q(xk) = cki }. (7.6)

As in the scalar case, this definition allows the cell Vi to be disjoint.

The set of points making up a cell Vi is called convex if any point on the straight line
between two points within the set is also in the set. That is, for a convex cell

a ∈ Vi ∧ b ∈ Vi ⇒ αa+ (1− α)b ∈ Vi, ∀α∈[0,1]. (7.7)

A vector quantizer is called regular [24] if
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1. all its cells are convex and

2. cki ∈ Vi.

As in the scalar case, it is useful to break up the quantization mapping Q into the
noninvertible mapping E to an index and the invertible mapping D from the index to
the reconstruction vector

cki = D(i) = D(E(xk)) = Q(xk), ∀xk∈Vi . (7.8)

The mappings are now written as

E : R
k → I,

D : I → Ck. (7.9)

Vector quantizers can be obtained under both the entropy constraint and the resolution
constraint. Again resolution-constrained quantization is more commonly used than
entropy-constrained quantization and the motivations provided earlier apply here as
well.

When coding samples or blocks of stationary sequences, we can use the principle of
asymptotic equipartition (cf. section 2.8) to argue qualitatively that the indices of vector
quantizers should have more equal probability than the indices of scalar quantizers.
As a result, constrained-entropy coding results in a smaller advantage in rate over
constrained-resolution coding for vector quantization than for scalar quantization of a
stationary sequence.

7.2.3 Distortion Criteria

Before embarking on a discussion of quantization, it is useful to define the notation of
the distortion measures. We write the distortion between an original value or vector
xk and its quantized value or vector as d(xk,Q(xk)). Let fXk(xk) be the probability
density function of the random variable Xk. The mean distortion is then

D(Xk,Q(Xk)) = E[d(Xk,Q(Xk))] =

∫

Rk

fXk(xk)d(xk,Q(xk))dxk, (7.10)

In practice, the distortion measure most commonly used in quantization is the mean
squared-error criterion. In this case, equation 7.10 becomes

D(Xk,Q(Xk)) =
1

k

∫

Rk

fXk(xk)

(

k
∑

m=1

(xkm −Q(xk)m)2

)

dxk. (7.11)

In the section of this chapter related to vector quantization, we use a more general
distortion criterion than that used in the section on scalar quantization. In this chapter
we consider the mean r-th power distortion measure:

d(xk,Q(xk)) =
1

k
‖xk −Q(xk)‖r ≡

1

k

(

k
∑

m=1

(xm −Q(xk)m)2

)

r
2

, (7.12)
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a measure that is normalized on a per-dimension basis (Q(xk)m is the m’th component
of the k-dimensional vector Q(xk)). The distortion criterion of equation 7.12 reduces
to the squared-error criterion for r = 2. It is a single-letter criterion only for the
squared-error case.

7.3 High-Rate Scalar Quantization

As mentioned before, the motivation for performing the analysis under the high-rate
constraint is that it makes relations analytically tractable. The purpose of this section
is to provide the basic theory in a less general but easily comprehensible form. Thus, we
restrict ourselves to scalar quantization and the squared-error criterion. We generalize
most of the results in section 7.4 to the vector case and a more general distortion
criterion.

We make the following additional assumptions. We assume that the scalar quantizer is
a regular quantizer and that the reconstruction points are centered within the cells. We
also assume that the two unbounded cells do not influence the derivations.

7.3.1 The Distortion as a Function of Centroid Density

We begin with the evaluation of the mean distortion in a particular cell in the high-rate
case. Let us denote the integral over a cell i by

∫

Vi
dx. Then, writing the distortion per

cell as Di, we have

Di =

∫

Vi
fX(x)d(x,Q(x))dx
∫

Vi
fX(x)dx

≈
fX(ci)

∫

Vi
d(x,Q(x))dx

fX(ci)∆i

=
1

∆i

∫

Vi

(x− ci)
2dx

=
1

∆i

∫ ∆i/2

−∆i/2

y2dy

=
1

12
∆2

i , (7.13)

where ∆i is the step size of the quantizer and where we assumed that the centroid is
located in the middle of the cell so as to minimize the distortion.

Equation 7.13 is commonly used. An example of its application is the computation of
the quantization step size for which the quantization noise of an audio coder remains
inaudible, e.g., [27, 1].

The step size ∆i of a scalar quantizer is inversely proportional to the local density of
the centroids (quantizer reconstruction points) per unit length, denoted as gC(x):

gC(ci) =
1

∆i
. (7.14)
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Using this fact and the distortion per cell (equation 7.13), we can relate the mean
distortion to the density gC(ci). Denoting by pI(i) the index probability we have

D =
∑

i∈I

pI(i)Di

≈ 1

12

∑

i∈I

pI(i)∆
2
i

=
1

12

∑

i∈I

pI(i)gC(ci)
−2

=
1

12

∑

i∈I

∫

Vi

fX(x)dx gC(ci)
−2

≈ 1

12

∫

R

fX(x)gC(x)
−2dx. (7.15)

This equation relating the overall distortion and the density of the reconstruction points
is used in the following sections to find the optimal density of the reconstruction points
of a scalar quantizer in the high-rate case for both the constrained-resolution and
constrained-entropy cases. From this density, we determine the respective relations
between distortion and rate.

7.3.2 Constrained Resolution

While it is generally difficult to determine the optimal constrained-resolution codebook,
this task is straightforward when the high-rate approximations apply. We recall that
log2(N), where N is the number of reconstruction points, is the (fixed) codeword length.
Thus, we essentially want to find the centroid density function gC(x) that minimizes D
in equation 7.15 under the constraint that gC(x) integrates over the real line R to the
total number of reconstruction points N . That is, we want to minimize equation 7.15
under the constraint

∫

R

gC(x)dx = N. (7.16)

This problem can be solved using variational calculus. Using the Lagrange-multiplier
method, we obtain as modified criterion

η =
1

12

(∫

R

(fX(x)gC(x)
−2 + λgC(x))dx − λN

)

, (7.17)

where λ is the Lagrange multiplier. The Euler-Lagrange equation for this case is:

−2fX(x)gC(x)
−3 + λ = 0. (7.18)

Using equations 7.18 and 7.16 we find as solution

gC(x) = N
fX(x)

1
3

∫

R
fX(x)

1
3 dx

. (7.19)

We can use this to find a relation between distortion and rate. Filling out equation 7.19
into equation 7.15, we obtain

D =
1

12N2
(

∫

R

fX(x)
1
3 dx)3. (7.20)
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Using the fact that the rate is R = log(N), we obtain the following relation between
rate and distortion:

R = −1

2
log(12D) +

3

2
log(

∫

R

fX(x)
1
3 dx). (7.21)

Example 7.1: Constrained-resolution coding of a Gaussian variable

Let us first consider the centroid density for the high-rate encoding of a Gaussian
variable with variance σ2 under the constrained-resolution constraint. Equation
7.19 shows that, for a mean squared-error criterion, the density of the centroids
is less emphasized than the data density. In other words, to prevent the error
from growing too large in regions of low data density, more centroids must be
committed there. Figure 7.1 shows the centroid distribution for the case σ2 = 1.
In this example, the centroid density is still relatively large in regions where the
data density is already relatively small.

Next, we consider the relation between rate and distortion. Using equation 7.21,
we obtain, in bits

R = −1

2
log2(12D) +

1

2
log2(2πσ

23
3
2 )

=
1

2
log2(

σ2

D
) +

1

2
log2(

2π3
3
2

12
),

which is 1
2
log2(

2π3
3
2

12
) ≈ 0.72 bits above the rate-distortion function (see example

6.3), independently of the distortion level.

−4 40−2 2

Figure 7.1: A Gaussian data density of unity variance (solid line) and its optimal
centroid density (dashed line) for a mean squared-error criterion.

7.3.3 Constrained Entropy

If a lossless encoding of the quantization indices can be used, then one should consider
an entropy constraint for the indices when evaluating distortion. In practice, the first-
order entropy of the indices is generally used as the measure of rate. Let I be the
random quantization index. Then the first-order entropy of the quantization indices is

H(I) = −
∑

i∈I

pI(i) log(pI(i)),
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where

pI(i) = P (x ∈ Vi) =

∫

Vi

fX(x)dx. (7.22)

In the following, we first further develop the expression for H(I) and then determine
the relation between the rate H(I) and distortion. We compare the resulting relation
to the Shannon lower bound on the rate-distortion function obtained in section 6.4.

Relation of Distortion and Rate

We first determine the (first-order) index entropy in terms of the (first-order) differential
entropy of the data and in terms of the centroid density gC(x):

H(I) = −
∑

i∈I

pI(i) log(pI(i))

≈ −
∑

i∈I

fX(ci)∆i log(fX(ci)∆i)

≈ −
∫

R

fX(x) log(
fX(x)

gC(x)
)dx

= h(X) + E[log(gC(X))]. (7.23)

This relation is used below.

The problem we set out to solve is to minimize the distortion

D =

∫

R

fX(x)d(x,Q(x))dx (7.24)

for a given entropy in equation 7.23. In the high-rate case, this problem is straightfor-
ward to solve. First we recall the high-rate equations. The distortion is (see equation
7.15)

D =
1

12

∫

R

fX(x)gC(x)
−2dx (7.25)

and the constraint is equation 7.23.

We note that the differential entropy of X , h(X), does not vary during the optimization,
and that, thus, the constraint can be simplified to

b = E[log(gC(X))] =

∫

R

fX(x) log(gC(x))dx, (7.26)

where b is a constant. Using the by-now familiar Lagrange-multiplier approach we
obtain as modified distortion criterion

η =
1

12

(∫

R

(

fX(x)gC(x)
−2 + λfX(x) log(gC(x))

)

dx− λb

)

, (7.27)

which renders the Euler-Lagrange equation

−2gC(x)
−3 + λgC(x)

−1 = 0, (7.28)

which is solved by
gC(x) = gC = constant. (7.29)
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Thus, entropy-constrained optimization of the high-rate scalar quantizer results in a
quantizer with uniform reconstruction-point density.

An important corollary of the uniformity of the reconstruction-point density is that the
quantizers are the same for all distortion measures. This means that we can design an
optimal entropy-constrained quantizer even when the precise distortion measure is not
known.

The simplicity of the solution for the optimal constrained-entropy quantizer allows us
to rewrite earlier expressions. From 7.23 it follows that

gC = 2H(I)−h(X). (7.30)

Combining this with 7.14 it is seen that for high rate

∆ = 2−H(I)+h(X), (7.31)

where we omitted the subscript i, since all ∆i are equal.

We also find that

D ≈ 1

12

∫

R

fX(x)g−2
C dx

=
1

12
2−2H(I)+2h(X), (7.32)

or, asymptotically

H(I) = h(X)− 1

2
log(12D). (7.33)

This equation shows that, in the high-rate, entropy-constrained case, the logarithm of
the RMS distortion is just the difference between the differential entropy of the variable
and the entropy of the quantization indices (plus a constant). As expected, if the entropy
of the quantization indices increases, the distortion decreases.

Example 7.2: Constrained-entropy coding of a Gaussian variable

We consider a Gaussian variable with variance σ2. As for any random variable,
the optimal high-rate centroid density for entropy-constrained coding is uniform.
The quantizer step size as a function of the rate follows from equation 7.31:

∆ =
√
2πeσ2 2−H(I),

where the rate H(I) is specified in bits.

The relation between rate H(I) and distortion D for a Gaussian variable follows
from equations 7.33 and 3.22:

H(I) =
1

2
log(

σ2

D
) +

1

2
log(

2πe

12
),

which is 1
2
log( 2πe

12
) ≈ 0.25 bit above the rate-distortion function (cf. example 6.3).

Comparing constrained-entropy coding to constrained-resolution coding (example

7.1) we see that that constrained-entropy coding has a rate advantage of almost

0.5 bit for a Gaussian variable.
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Since the differential entropy appears in equation 7.33, we can use it to determine use-
ful bounds on this high-rate rate-distortion relation. Consider the case where we do
not know the probability density function of a random variable X but we do know its
variance σ2. The Gaussian distribution maximizes the differential entropy of a random
variable given only its variance. The result already provided in example 7.2 then be-
comes an upper bound (over all data densities) on the high-rate rate-distortion relation:

H(I) ≤ 1

2
log(

σ2

D
) +

1

2
log(

2πe

12
). (7.34)

Encoder Mismatch and Robust Encoding

It is common that the probability density of the variable to be encoded is not precisely
known. More-over this probability-density may not always be the same in a particular
application. It then becomes important to design a robust encoder, that guarantees that
we never exceed a known rate. We can do this by optimizing our encoder for a Gaussian
variable [28, 29]. Below, the random variable X is the Gaussian design variable, whereas
the random variable Y is the actual input variable, which has some arbitrary probability
density. To simplify our notation, we assume that both variables are zero mean.

We start with noting that the distortion does not depend on the probability density of
Y :

D ≈ 1

12

∫

R

fY (y)g
−2
C dy

=
1

12
g−2
C =

1

12
∆2. (7.35)

Next, we consider the rate. We start using the vantage point of section 5.2.4, which
discusses the rate obtained when a lossless code is mismatched to the actual symbol
probability distribution. We consider the quantization indices j of Y to be distributed
according to pJ(j) and the quantization indices ofX to be distributed according to pI(i).
Furthermore, we assume that l(x) = − log2(pI(i)) is integer for all i (this implies that
the Shannon code is optimal, and, therefore, that the Kraft inequality is an equality).
Under these conditions, if we transmit the random variable Y using the optimal scalar
encoding of a variable X , the overall rate is

Rmismatch = H(J) +H(pJ ||pI)

= −
∑

i∈I

fY (ci)∆ log(fY (ci)∆) +
∑

i∈I

fY (ci)∆ log(
fY (ci)

fX(ci)
)

= −
∑

i∈I

fY (ci)∆ log(fX(ci)/gC)

≈ −
∫

fY (y) log(fX(y)/gC)dy

= log(gC)−
∫

fY (y) log(fX(y))dy (7.36)

Now let us consider the special case that the variable X is Gaussian, with a variance
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σ2 that is identical to the variance of Y :

Rmismatch = log(gC)−
∫

fY (y) log(
1√
2πσ2

e
−y2

2σ2 )dy

= −1

2
log(12D) +

1

2
log(2πσ2) +

∫

fY (y)
y2

2σ2
dy

=
1

2
log(

σ2

D
) +

1

2
log(

2πe

12
). (7.37)

This result is independent of fY , optimal for Gaussian fY with fY = fX , and 1
2 log2(

2πe
12 ) ≈

0.25 bit above the rate-distortion function for a Gaussian. In other words, the rate of
this encoder is independent of the statistics of the input variable Y , other than that
we must ensure that the variance of Y is σ2. Thus, we have constructed a high-rate
robust encoder that provides a fixed mean rate for a given distortion, independently of
the probability density of the input variable! The mean rate is identical to that of the
Gaussian variable X with variance σ2.

Comparison to the Rate-Distortion Function

It is interesting to compare the relation between rate and distortion obtained with the
high-rate theory for the scalar case with those obtained using the rate-distortion function
approach discussed in chapter 6, both for the squared-error criterion. As it turns out,
the equations look very similar when the constrained-entropy case is considered for the
high-rate theory. We use the Shannon lower bound for the rate-distortion function
given by equation 6.37. We can compare this with the high-rate, constrained-entropy
expression for the scalar quantizer of equation 7.33. Combining equations 7.33 and 6.37
results in

H(I)−R(D) ≤ 1

2
log(

2πe

12
). (7.38)

The inequality becomes an equality in the case of a Gaussian source and the squared-
error criterion, where the Shannon lower bound equals the rate-distortion function.
Thus, we see that at a given distortion and in the high-rate approximation, the optimal
constrained-entropy scalar quantizer can perform within 1

2 log2(
2πe
12 ) ≈ 0.25 bits of the

rate-distortion function1.

The above results show that, for many practical purposes, the performance of scalar
quantizers in combination with efficient lossless coding is sufficient if the rates are high
and the samples of the process are identically distributed. The independence condition
can be satisfied by applying suitable transformations of the signal; such transformations
is discussed in chapters 9 and 10.

7.4 High-Rate Vector Quantization

We now move on to considering high-rate theory for the vector quantization case. Many
of the procedures in this section form a generalization of the methods seen in section
7.3.

1It is more difficult to obtain such bounds for the unrestricted (i.e., not high-rate) case. It has been
shown that the best scalar quantizer always performs within about 0.75 bit of the rate-distortion limit
[30].
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For clarity, we re-list the assumptions for the vector-quantization case. We assume that
the quantizers are regular and that the centroids are located so as to provide minimum
distortion. We use the assumption that the distortion criterion is of the form given by
equation 7.12. It is also assumed that the unbounded cells are not of significance in the
derivations. In general, at a given rate per dimension the fraction of the cells that are
unbounded increases with the dimensionality of the quantizer. Thus, this assumption
is not as natural as it was in the scalar case. This issue is addressed in [31].

7.4.1 Distortion and Centroid Density

We first determine the average distortion for each cell, on a per dimension basis:

Di =
1

k

∫

Vi
fXk(xk)‖xk −Q(xk)‖rdxk

∫

Vi
fXk(xk)dxk

≈ 1

kVi

∫

Vi

‖xk − cki ‖rdxk

= V
r
k

i

1

k
V

− r+k
k

i

∫

Vi

‖xk − cki ‖rdxk

= V
r
k

i C(r, k,G(i)), (7.39)

where the volume of the cell Vi is Vi, c
k
i is the centroid and C(r, k,G(i)) is the normal-

ized moment of inertia or coefficient of quantization:

C(r, k,G(i)) = 1

k

1

V
k+r
k

i

∫

Vi

‖xk − cki ‖rdxk, (7.40)

where G(i) indicates the geometry of cell i. As was mentioned, we assume that the
centroid cki is always located so as to minimize the normalized moment of inertia. The
coefficient of quantization is then a scale-independent and rotation-independent param-
eter that is dependent only on r, k, and the geometry of the cell. In general, an objective
of quantization is to find cell shapes that minimize the value of C(r, k,G(i)). If we con-
sider only a single cell, the optimal geometry that minimizes the normalized moment
of inertia is a hypersphere. With increasing k (and for the trivial case k = 1) practical
tessellations of cells facilitate shapes that approach a hypersphere.

To evaluate quantizer performance we must know the mean distortion per dimension
over all cells. To obtain this, we make the additional assumption that, if fXk(xk)
is sufficiently smooth and the number of centroids is sufficiently large, then the cell
geometry varies slowly with the cell index and we can modify the notation for the
geometry

G(i) → G(xk). (7.41)

The function C(r, k,G(xk)) of xk is referred to as the inertial profile [32]. We then
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obtain for the mean distortion per dimension:

D =
∑

i∈I

pI(i)Di

≈
∑

i∈I

pI(i)V
r
k

i C(r, k,G(i))

≈
∫

Rk

fXk(xk)C(r, k,G(xk))gCk(xk)−
r
k dxk. (7.42)

It is commonly assumed that for the optimal geometry the normalized moment of inertia
does not vary with the cell index, i.e.,

Gopt(x
k) = Gopt,k. (7.43)

This property is called Gersho’s conjecture [33]. If Gersho’s conjecture holds, equa-
tion 7.42 can be written as

D ≈ C(r, k,Gopt,k)

∫

Rk

fXk(xk)gCk(xk)−
r
k dxk. (7.44)

Example 7.3: Values for the normalized moment of inertia for r = 2
Assuming the Gersho conjecture is correct, it is interesting to find the normalized
moment of inertia of the optimal geometry for different dimensions. For the one-
dimensional case, geometry plays no role, and we have that the normalized moment
of inertia of a cell is fixed at

C(r = 2, k = 1, G(i)) = C(r = 2, k = 1) =
1

∆
3
1
i

∫ ∆/2

−∆/2

x2dx =
1

12
≈ 0.0833,

a result we could have seen immediately from equation 7.13.

For the two-dimensional case, the optimal geometry gopt,k=2 is hexagonal:

C(r = 2, k = 2, Gopt,k=2) =
5

36
√
3
≈ 0.0802.

For the case k → ∞ the optimal geometry gopt results in

lim
k→∞

C(r = 2, k = ∞,Gopt,k=∞) = (2πe)−1 ≈ 0.0585.

Equation 7.39 shows that for a fixed cell volume, the distortion depends only on the

normalized moment of inertia. Let us consider a k-dimensional cell for k → ∞. For

the optimal geometry the normalized moment of inertia is (2πe)−1. For hypercubic

cells, the normalized moment of inertia is 1/12. The difference in the normalized

moment of inertia for the hypercube and optimal geometries results in a difference

in distortion per dimension of 1.53 dB.

Example 7.4: The inertial profile of a scalar quantizer for r = 2
Consider a k-dimensional vector with independent components. It is straight-
forward to write down the inertial profile for a scalar quantizer for r = 2. The
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inertial profile of the k-dimensional vector quantizer that is the product of k scalar
quantizers is

C(2, k,G(xk)) =
1

k

1

V (xk)
k+2
k

∫

V(xk)

k
∑

i=1

y2
i dy

k

=
1

12k

k
∏

j=1

gCj (xj)
2
k

k
∑

i=1

1

gCi(xi)2

= C(2, 1,G1)
1

k

k
∑

i=1

∏k
j=1 gCj (xj)

2
k

gCi(xi)2
.

We can use this inertial profile to compute directly the distortion per dimension
of a k-dimensional quantizer that uses the cells of the scalar quantizer:

Dscalar =

∫

Rk

C(2, k,G(xk))
k
∏

i=1

(fXi(xi)gCi(xi)
−2
k )dxk

=

∫

Rk

1

12k

k
∑

l=1

∏k
j=1 gCj (xj)

2
k

gCl
(xl)2

k
∏

i=1

(fXi(xi)gCi(xi)
−2
k )dxk

=
1

12k

k
∑

i=1

∫

R

gCi(xi)
−2fXi(xi)dxi

which is, as expected, simply the distortion as provided by equation 7.15 averaged

over the dimensions.

7.4.2 Constrained Resolution

The resolution constraint limits the size of the codebook. In the high-rate vector-
quantization case we can write this as

∫

Rk

gCk(xk)dxk = N, (7.45)

where N is the codebook size, i.e., the number of centroids. Assuming Gersho’s conjec-
ture holds, the goal is to find an expression for gCk(xk) that results in a minimum for
equation 7.44, under constraint 7.45. Using the familiar method of Lagrange multipliers,
we write the augmented distortion criterion

η = C(r, k,Gopt,k)

∫

Rk

(fXk(xk)gCk(xk)−
r
k + λgCk(xk))dxk. (7.46)

The Euler-Lagrange equation for this optimization is

−r
k
fXk(xk)gCk(xk)−

r+k
k + λ = 0. (7.47)

Equations 7.47 and 7.45 lead to the optimal constrained-resolution centroid den-
sity

gCk(xk) = N
fXk(xk)

k
k+r

∫

Rk fXk(xk)
k

k+r dxk
. (7.48)



7.4. HIGH-RATE VECTOR QUANTIZATION 159

The associated distortion is obtained by inserting equation 7.48 into equation 7.44:

DCR(r, k,Gopt,k, N) ≈ C(r, k,Gopt,k)N
− r

k

∫

Rk

fXk(xk)

(

fXk(xk)
k

k+r

∫

Rk fXk(xk)
k

k+r dxk

)− r
k

dxk

= C(r, k,Gopt,k)N
− r

k

(∫

Rk

fXk(xk)
k

k+r dxk
)

r+k
k

= C(r, k,Gopt,k)N
− r

k 〈fXk(xk)〉 k
r+k

, (7.49)

where the subscript in DCR indicates “constrained resolution” and where2

〈fXk(xk)〉α ≡
(∫

Rk

fXk(xk)αdxk
)

1
α

. (7.50)

Considering that the logarithm of the cardinality of the codebook is the rate, R, we can
write equation 7.49 in the form

DCR(r, k,Gopt,k, R) ≈ C(r, k,Gopt,k)e
− r

k
R〈fXk(xk)〉 k

r+k
, (7.51)

where the rate is given in nats. Equation 7.51 provides the relation between distortion
and rate for the high-rate constrained-resolution case.

An interesting fact is that the distortion per cell multiplied by the probability of the
cell is constant [34]. This so-called equidistortion principle for constrained resolution
and high rate can be shown as follows:

Di pI(i) = C(r, k,Gopt,k)V
r
k

i fXk(cki )Vi

= C(r, k,Gopt,k)fXk(cki ) gCk(cki )
− r+k

k

= C(r, k,Gopt,k)fXk(cki )N
− r+k

k fXk(cki )
−1

(∫

Rk

fXk(xk)
k

r+k dxk
)

r+k
k

=
1

N
DCR, (7.52)

where we used equations 7.39 and 7.49. Thus, for the optimal constrained-resolution
quantizer, each cell contributes equally to the mean distortion.

7.4.3 Constrained Entropy

We first relate the (first-order) entropy of the indices to the differential entropy of the
source. This derivation is again a straightforward generalization of the scalar case:

H(I) = −
∑

i∈I

pI(i) log(pI(i))

= −
∑

i∈I

fXk(cki )Vi log(fXk(cki )Vi)

≈ −
∫

Rk

fXk(xk) log(
fXk(xk)

gCk(xk)
)dxk. (7.53)

2The expression of equation 7.50 is a seminorm, since it is nonnegative and satisfies the conditions:
〈bf(·)〉α = |b|〈f(·)〉α and 〈f(·)〉α + 〈g(·)〉α ≥ 〈f(·) + g(·)〉α.
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From equation 7.53 it follows that we can write

H(I) ≈ −h(fXk‖gCk/N) + log(N), (7.54)

where N is the number or centroids. However, as is seen below, this number is not finite
for the optimal quantizer, rendering this approach more difficult. Alternatively, we can
write

H(I) ≈ h(Xk) + E[log(gCk(Xk))]. (7.55)

From equation 7.55, and the fact that h(Xk) is not affected by the quantizer, we
see that a constraint on the first-order index entropy is equivalent to a constraint on
E[log(gCk(Xk))]:

E[log(gCk(Xk))] =

∫

Rk

fXk(xk) log(gCk(Xk))dxk = b, (7.56)

where b is a constant. Assuming that Gersho’s conjecture holds, the Lagrange multiplier
method can be used to extend the distortion criterion 7.44 with the constraint to obtain

η = C(r, k,Gopt,k)

∫

Rk

fXk(xk)(gCk(xk)−
r
k + λ′ log(gCk(xk)))dxk, (7.57)

which renders the Euler-Lagrange equation

gCk(xk)−
r+k
k + λgCk(xk)−1 = 0. (7.58)

An important consequence is that the centroid density gCk(xk) is constant for high-
resolution constrained-entropy quantization. In other words, the centroid density does
not depend on the probability density fXk(xk).

The solution of the Euler-Lagrange equations, constraint 7.56, and equation 7.55 is

gCk(xk) = eH(I)−h(Xk), (7.59)

where we assumed the entropy and differential entropy to have been specified in nats.
Thus, the entropy-constrained optimization results in a vector quantizer with a uniform
reconstruction point density, which depends only on the constrained index entropy and
the differential entropy of the random variable.

Inserting the density of equation 7.59 into the expression for the mean distortion per
dimension, 7.44, we obtain for the mean distortion, on a per dimension basis:

DCE(r, k,Gopt,k, H(I)) ≈ C(r, k,Gopt,k)e
− r

k (H(I)−h(Xk)). (7.60)

It is useful to contrast our results for the constrained-resolution quantizer with that
of the constrained-entropy. In the first case, the contribution of each cell to the mean
distortion is constant and the cell size varies. In the second case, the size of the cells is
constant and the contribution to the mean distortion per cell varies.

Using the Gaussian case, and the fact that it maximizes the differential entropy given
the variance, it is possible to create an upper bound for the high-rate rate-distortion
function similarly to the scalar case discussed in section 7.3.3. More-over, the same
procedure can also be used to design robust vector encoders.
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7.4.4 Comparison to Rate-Distortion Function

It is interesting to compare our high-rate results for coding k-dimensional vectors to
the order-k rate-distortion function. It is natural to compare the result for constrained
entropy to the rate-distortion function first, since the constrained-entropy relation is
expressed in terms of rate, here represented as the first-order entropy of the indices,
H(I), and differential entropy, h(Xk). Both measures also appear in the Shannon lower
bound for the rate-distortion function. We characterize the rate-distortion function with
the order-k Shannon lower bound, which is (cf. equation 6.37)

R(D) ≥ 1

k
h(Xk)− 1

2
log(2πeD), (7.61)

where we have written D for the distortion per dimension, and where r = 2. Inequality
7.61 becomes an equality for the Gaussian case. We can write equation 7.60 as

1

k
H(I) ≈ 1

k
h(Xk)− 1

r
log(

DCE

C(2, k,Gopt,k)
). (7.62)

Subtracting equation 7.61 for the special case that r = 2 from equation 7.62 results in

1

k
H(I)−R(D) ≤ 1

2
log(2πe C(2, k,Gopt,k)), (7.63)

which is an equality for the Gaussian case. As we saw in section 7.3.3, the right-hand side
of equation 7.63 is about 0.25 bits for the scalar quantizer (i.e., k = 1). This corresponds
to the case where the cells are hypercubes. The difference decreases monotonically with
increasing dimension.

Assuming Gersho’s conjecture is correct, the rate-distortion theorem (see section 6.2.2)
tells us that the right-hand side of equation 7.63 should vanish when k → ∞. The
high-rate constrained-entropy quantizer then reaches the Shannon lower bound on the
rate-distortion function. This implies that the Shannon lower bound must be the rate-
distortion function for high rate. The coefficient of quantization C(2, k,Gopt,k) must
converge to (2πe)−1 when k → ∞ if the normalized moment of inertia C(2, k,Gopt,k), is
selected to be the infimum over the set of admissible moments (moments that correspond
to cell shapes that can be arranged to cover Rk without overlap) [35]. For hyperspherical
cells, C(2, k,G) also converges to (2πe)−1 for large k (which is not admissible at finite k).
By suitable averaging C(r, k,G) can also be defined for randomly distributed centroids.
Interestingly, it can be shown that such a “random lattice” also results in a convergence
of C(r, k,Gopt,k) to (2πe)−1 (see problem 7). Naturally, the moment of inertia converges
slower to this value for the random lattice than for the spherical cell case.

Next, let us consider the constrained-resolution case. Again, we discuss the result for
k → ∞. We rewrite equation 7.51 in the form

r

k
R = − log(

DCR

C(r, k,Gopt,k)
) + log(〈fXk(xk)〉 k

r+k
). (7.64)

We can find a bound on the rate. To obtain a simple analysis we make again the
assumption that the effect of a fraction of the cells being unbounded can be neglected.
This implies a requirement on codebook size that grows very rapidly with increasing
dimension, a condition that is not always satisfied. We first write equation 7.64 as

r

k
R = − log(

DCR

C(r, k,Gopt,k)
) +

r + k

k
log(

∫

Rk

fXk(xk)fXk(xk)
−r
k+r dxk). (7.65)
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Let us consider a density fXk that has (or can be approximated in the present context

with) a finite support range. We note that for sufficiently large k the factor fXk(xk)
−r
k+r

is near unity in the support range of fXk(xk). We then write this term in a convenient
form,

fXk(xk)
−r
k+r = e

−r
k+r

log(f
Xk (x

k)). (7.66)

and make a Taylor expansion of the exponent. We note that all terms of the Taylor
expansion are positive. Retaining only the first-order term, the rate distortion relation
ca be bound by

r

k
R = − log(

DCR

C(r, k,Gopt,k)
) +

r + k

k
log(1 − r

k + r

∫

Rk

fXk(xk) log(fXk(xk))dxk)

< − log(
DCR

C(r, k,Gopt,k)
) +

r + k

k
log(1 +

r

k + r
h(Xk))

= − log(
DCR

C(r, k,Gopt,k)
) +

r

k
h(Xk), (7.67)

which is identical to the the constrained-entropy result of equation 7.62. The bound
asymptotically becomes an equality with increasing k. Thus, if k is sufficiently large,
and if, despite the large k, the effect of boundary cells can be neglected, then the
high-rate constrained-resolution quantizer also reaches the Shannon lower bound on the
rate-distortion function.

If we analyze our results, we see some seemingly contradictory results. We noted that in
proving the rate-distortion theorem we implicitly assume that the codewords have equal
probability (since they are in the distortion-typical set). In the constrained-resolution
case, assuming that k is sufficiently large, the codewords also obtain identical prob-
ability (since the centroid density becomes equal to the data density). In contrast,
we use equal cells for the constrained-entropy case and, thus, have unequal codeword
probabilities (which we account for by lossless coding). How can these different situa-
tions lead to the same relation between distortion and rate? The answer lies, naturally,
in the high dimensionality of the data space. In section 6.2.5 we noted that, as a
result of equipartition, for high dimension the data density is uniform in its support
region. Thus, with increasing k, the sizes of the cells in a constrained-resolution coder
become constant in this support region. Similarly, the probabilities of the cells of a
constrained-entropy coder also become constant in this support region. In other words,
the constrained-resolution and constrained-entropy quantizers approach similarity with
increasing dimension.

7.5 Vector Quantization versus Scalar Quantization

In the previous sections, we have obtained expressions for the distortion per dimension
for both the constrained resolution and the constrained entropy cases. We can use these
expressions as a basis for comparing the performance of optimal vector quantizers and
scalar quantizers for a given stationary source, Xi, when the high-rate approximation
is valid.

We denote an arbitrary block of k consecutive samples by Xk
i . We make the compar-

ison by simply considering the ratio of the distortion for the scalar quantizer and the
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distortion for the optimal vector quantizer and then decomposing the expression into
contributions due to the coefficient of quantization, the product of the marginal densities
and the joint density, and a “remainder” term depending on the marginal density and
the product of the marginal densities. The analysis follows the basic approach described
in [36] with additional insights from [32]. We can write the ratio as a multiplication of
three factors:

RD ≡ D(dimension = 1)

D(dimension = k)

= RDsf(C(r, 1,G1), C(r, k,Gopt,k)) RDmem(fXk
i
,

k
∏

i=1

fXi
)

RDshape(fXi
,

k
∏

i=1

fXi
) (7.68)

All factors contribute to the advantage of vector quantization over scalar quantization.
The factor RDsf(·, ·) is referred to as the space-filling advantage and results from
the greater freedom to select cell shapes in higher dimensions. However, it is important
to note that the name space-filling advantage is somewhat misleading since it accounts
only for the advantage of the optimal cell geometry Gopt,k over that of a k-dimensional
hypercubic cell. In a practical constrained-resolution quantizer the cells can be, for
example, hyperrectangles; the advantage that a hypercubic cell has over a hyperrectangle
cell is not included in the space-filling advantage (it is part of the shape advantage).

The factor RDmem(·, ·) represents the memory advantage, which accounts for the
dependencies between the samples of the process Xi. The memory advantage factor
becomes unity if the vector components in Xk are independent, i.e., if

∏k
i=1 fXi

(xi) =
fXk

i
(xki ).

The remainder factor RDshape(·, ·) is called the shape advantage. This advantage
includes the advantage that hypercubic cells have over hyperrectangles, and the fact
that the k-dimensional centroid density obtained from scalar quantization of a stationary
signal is not optimal for hypercubes (the exponential of the density is nonoptimal, see
equation 7.48). The shape advantage does not disappear (numerically become unity)
when the data are independent. For the constrained-entropy case, the centroid density
is uniform and all scalar quantization results in hypercubic cells. Thus, the shape
advantage does not exist for the constrained-entropy case.

7.5.1 Constrained Resolution

We start with the constrained-rate case. We consider a rate log(N) per sample, which
corresponds to a codebook of size N for the scalar case and a codebook of size Nk for the
vector case. From equation 7.49 we see that the ratio, RDCR, between the distortion
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of a one-dimensional and a k-dimensional quantizer can be written as

RDCR =
DCR(r, 1,G1, N)

DCR(r, k,Gopt,k, Nk)

=
C(r, 1,G1) 〈fXi

〉 1
r+1

C(r, k,Gopt,k) 〈fXk
i
〉 k

r+k

=
C(r, 1,G1)

C(r, k,Gopt,k)

〈∏k
i=1 fXi

〉 k
r+k

〈fXk
i
〉 k

r+k

〈fXi
〉 1

r+1

〈
∏k

i=1 fXi
〉 k

r+k

. (7.69)

The space-filling advantage is thus

RDCR,sf =
C(r, 1,G1)

C(r, k,Gopt,k)
. (7.70)

The space filling advantage is always less than about 1.5 dB (corresponding to 0.25 bits),
reaching its maximum value when the vector quantizer dimension approaches infinity.
Optimal vector quantization reaches the rate-distortion bound when the dimension goes
to infinity, and this result thus coincides with that obtained in the comparison of the
scalar quantizer performance and the rate-distortion bound in section 7.3.3.

Often the most significant factor for the constrained-resolution case is the memory
advantage factor,

RDCR,mem =
〈∏k

i=1 fXi
〉 k

r+k

〈fXk
i
〉 k

r+k

. (7.71)

The shape advantage factor is

RDCR,shape =
〈fXi

〉 1
r+1

〈∏k
i=1 fXi

〉 k
r+k

=
〈fXi

〉 1
r+1

〈fk
Xi

〉 1
r+k

. (7.72)

The shape advantage factor becomes unity (i.e., the advantage vanishes) for the “box-
car” (uniform over finite support region) marginal density function and increases with
dimension for other densities. The shape advantage can be up to 2.8 dB for a Gaussian
density, more than that for a Laplace density, and again more (up to about 12 dB)
for the two-sided gamma density (in each case the advantage increases monotonically
with k) [36]. Long “tails” of the density result in a strong shape advantage for vector
quantization.

The above description did not explicitly account for the fact that the cells of a scalar
quantizer are not hypercubes. We can factor the shape advantage (the remainder factor)
into advantages due to removal of so-called oblongitis [32], the advantage of hypercubic
cell shape over hyperrectangular cell shape, and a remainder term related to density.
We call these advantages the cubic advantage and density advantage:

RDCR,shape = RDCR,cubicRDCR,density. (7.73)

Let us consider the distortion of a quantizer with the same centroid distribution as
a scalar quantizer, but with cubic cells. The inertial profile of such a quantizer is



7.5. VECTOR QUANTIZATION VERSUS SCALAR QUANTIZATION 165

C(2, k,G(xk)) = C(2, k,Gcubic,k)). In the general case we obtain, based on equations
7.42 and 7.48,

DCR,cubic =

∫

Rk

C(r, k,G(xk))
k
∏

i=1

(fXi
(xi)gCi

(xi)
−r
k )dxk

= C(r, k,Gcubic,k)

∫

Rk

k
∏

i=1

(fXi
(xi)gCi

(xi)
−r
k )dxk

= C(r, k,Gcubic,k)(

∫

R

gCi
(xi)

−r
k fXi

(xi)dxi)
k

= C(r, k,Gcubic,k)
1

N r
(

∫

R

fXi
(xi)

1
1+r dxi)

r(

∫

R

fXi
(xi)

(k+kr−r)
k+kr dxi)

k (7.74)

From equation 7.74 and equation 7.44 for the case k = 1, we see that the advantage of
having cubic cells rather than the rectangular cells associated with scalar quantization
is

RDCR,cubic =
C(r, 1,G1)

C(r, k,Gcubic,k)

∫

R
fXi

(xi)
1

1+r dxi

(
∫

R
fXi

(xi)
(k+kr−r)

k+kr dxi)k
. (7.75)

For the constrained-resolution case the cell shape advantage of an ideal vector quantizer
over a scalar quantizer consists of the multiplication of the space-filling and cubic-cell
advantages:

RDCR,cellshape = RDCR,sfRDCR,cubic (7.76)

From the factorization 7.73 it follows that the advantage of vector quantization related
to the centroid density is

RDCR,density =

C(r, k,Gcubic,k)

C(r, 1,G1)

(
∫

R
fXi

(xi)
(k+kr−r)

k+kr dxi)
k(
∫

R
fXi

(xi)
1

1+r dxi)
r

〈fk
Xi

〉 1
r+k

. (7.77)

For the case that r = 2 we have that C(2, k,Gcubic,k)) =
1
12 does not depend on dimen-

sionality. The density advantage reduces then to

RDCR,density|r=2 =
(
∫

R
fXi

(xi)
(3k−2)

3k dxi)
k(
∫

R
fXi

(xi)
1
3 dxi)

2

〈fk
Xi

〉 1
2+k

. (7.78)

7.5.2 Constrained Entropy

We now compare vector and scalar quantizers for a stationary process Xi for the
constrained-entropy case. We denote the constrained first-order entropy per sample



166 7. HIGH-RATE QUANTIZATION

by H1. Using equation 7.60 we can write

RDCE =
DCE(r, 1,G1, H1)

DCE(r, k,Gopt,k, kH1)

=
C(r, 1,G1) e

−r(H1−h1(Xi))

C(r, k,Gopt,k) e−
r
k
(kH1−khk(Xi))

=
C(r, 1,G1)

C(r, k,Gopt,k)

erh1(Xi)

erhk(Xi)
. (7.79)

We can draw a number of conclusions from equation 7.79. First, we note that the
space-filling advantage, (the advantage that disappears when the vector quantizer is
required to use hypercubes as cells) is identical for the constrained-entropy case and the
constrained-resolution case.

Since we used the first-order index entropy, H1(I), the constrained-entropy case does
have a memory advantage. We note that the differential entropy kh(Xi) and, thus,

h(Xi) is determined by the product of the marginal densities
∏k

i=1 fXi
and that h(Xk

i )
is determined by the joint density fXk

i
. This means that we can interpret 7.79 without

requiring a shape factor. The memory factor is

RDCE,mem = er(h(Xi)−
1
k
h(Xk

i )) (7.80)

and there is no shape advantage. This is intuitively reasonable since the shape advantage
is related to the constraint on variation of the cell sizes that scalar quantizers impose.
In a high-rate entropy-constrained quantizer, the density of the centroids is uniform and
the constraint has no effect.

Finally, we note that the memory advantage for the constrained-entropy case is a func-
tion of the redundancy for a block of length k,

ρk(Xi) = h(Xi)−
1

k
h(Xk

i ). (7.81)

Example 7.5: Scalar quantization with joint index encoding

It is interesting to consider the role of lossless coding for constrained-entropy quan-

tization. First, we consider scalar quantization with joint lossless coding for k

indices. We note that this is equivalent to constrained-entropy vector quantiza-

tion with a cubic cell shape. A conventional k-dimensional constrained-entropy

vector quantizer has only a space-filling advantage over such a coder. In the

constrained-entropy case, the lossless coding of vectors accounts for the dependen-

cies between the components of the random vector. As a result, the lossless coder

generally has high computational or storage complexity. This contrasts with the

constrained-resolution vector quantizer, where the variation in the centroid density

accounts for the dependencies between the vector components. In other words, in a

constrained-resolution vector quantizer the computational complexity of the quan-

tizer generally increases with the vector dimensionality; in a constrained-entropy

vector quantizer the increase in the computational complexity of the lossless coder

generally dominates.
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7.5.3 Vector Quantization, Modeling, and Source Coding

In sections 7.5.1 and 7.5.2, we studied the advantage of vector quantization, of possi-
bly finite dimension, over scalar quantization. It is straightforward to generalize the
problem and compare a vector quantizer of higher vector dimension with a vector quan-
tizer of lower dimension. The expressions for this comparison are very similar. In
general, performance decreases with decreasing vector dimension, and this decrease can
be attributed to contributions resulting from the space filling advantage, the memory
advantage, and the shape advantage (consisting of the cubic and density advantages).
The shape advantage of higher dimensionality exists for resolution-constrained vector
quantization only.

It is common that the computational complexity required for the codebook search (or
for the lossless coder) provides a hard constraint on the dimensionality of the vector
quantizer. For quantizers that are based on a full search over the codebook, the compu-
tational complexity of the quantizer increases exponentially with the dimension of the
vector quantizer. For example, if the rate is 1 bit per dimension, then a 10-dimensional
vector has a codebook of 1024 entries, but a 20-dimensional vector has a codebook with
10242 entries.

In classical vector quantization a full search is performed. To allow a practical imple-
mentation of such a source coder, the quantizers must have a dimension that makes the
problem computationally tractable. It is then natural to ask when does the performance
of vector quantizers of relatively small dimension approach that of vector quantizers
of higher dimensions? The answer to this question suggests what to do to make a
source coder both efficient (i.e., perform close to the rate-distortion limit) and imple-
mentable. We first note that the space-filling advantage is fixed for optimal quantizers.
However, generalizing the result of sections 7.5.1 and 7.5.2 (see problem 3), we find
that the memory advantage of the large-dimensional vector quantizer over that of low-
dimensional vector quantizers vanishes if the low-dimensional vectors are independent.
A decrease in the dependency (as defined by the memory factor) reduces the memory
advantage.

The above reasoning suggests that we can make low-dimensional vector quantizers and
scalar quantizers efficient by removing redundancy from the signal and, thus, the mem-
ory advantage from a vector quantizer. Naturally, this statement is valid only if we can
do so without affecting the form of the distortion criterion. This forms a motivation for
introducing models or transforms in chapters 9 and 10 to reduce the interdependency
of variables. The general idea is to transform the original source signal into one or more
signals that have low redundancy (defined in equation 2.34) prior to quantization. The
inverse transform is then performed after the decoding of the indices.

We have not yet discussed how we can limit the shape advantage of high-dimension
quantizers. The shape advantage depends on the density functions of the data vectors.
For resolution-constrained quantization it vanishes when the density has a boxcar shape.
For entropy-constrained vector quantization it always vanishes. Thus, to limit this
factor, entropy-constrained quantization in combination with lossless coding must be
used. If a constant rate is required, then a buffer must be introduced and the decrease
in bit rate results in an increase in delay.
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7.6 Practical High-Rate Quantization

In this chapter we have so-far mainly been concerned with analyzing the asymptotic
high-rate behavior of quantizers. The theory provides equations for centroid density
and knowledge about optimal cell geometry that can be exploited in the construction
of quantizers. We now use these results to obtain practical quantizers. While the
quantizers are based on theory that applies to high rate only, it is often found that the
resulting quantizers perform well at relatively low (practical) rates.

In a practical situation, one generally does not have knowledge of the probability density
that is used in high-rate theory. Thus, we must first obtain an analytic description of
the density for the data. It is important to note that it is the resulting density model
that captures the properties of the source. The density-estimation techniques described
in section 4.3 can be used for this purpose, e.g., [37, 38, 39, 28, 40].

Density models consisting of an additive mixture of components are particularly suitable
for quantization. For a mixture model of the density, separate quantizers can be used
for each mixture component [38, 39, 28]. Each quantizer can then be designed for the
density of a single component, which generally has nice analytic properties (Gaussian
components are usually selected). In other words, the quantizers are designed for the
generic kernels that make up the mixture, independently of the source properties. The
overlap of the component densities is generally associated with a loss of optimality, but
in practice the quantizers perform well. Particularly when the quantizers of a mixture
quantizers do not require the storage of a codebook, as is the case for high-rate theory
based quantizers, they facilitate scalability of the rate. Scalability is useful for systems
where the channel capacity varies and is known (so-called informed coding). For the
encoding with a mixture quantizer, one must classify a data point as belonging to
a certain component and corresponding quantizer. The component index is encoded
separately. The optimal bit allocation and centroid densities of mixture quantizers are
described in more detail in section 7.6.1.

Once we have the bit allocation and the centroid density for the mixture components, the
remaining problems for mixture quantization are to design a practical quantizer that ex-
ploits knowledge obtained from high-resolution theory and, for the entropy-constrained
case, to design an appropriate lossless coder. Thus, we design the quantizers to ex-
ploit knowledge about the optimal distribution of the centroids, as expressed by equa-
tions 7.48 and 7.59 and minimize the coefficient of quantization of equation 7.40. For
constrained-entropy quantizers, uniform centroid densities were obtained and this sug-
gests the usage of quantizers with regularly-spaced centroids. Such quantizers, so-called
lattice quantizers, are discussed in section 7.6.2. Good lattices provide a low coefficient
of quantization. Lattice quantizers are also used for constrained-resolution quantiza-
tion. In this context, companding is often employed to transform a uniform density
into a density that approaches the asymptotically optimal constrained-resolution den-
sity. However, as we see in section 7.6.3, even with companding, constrained-resolution
quantizers often can not provide asymptotically optimal performance in the vector case.
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7.6.1 Mixture Quantizers

The principle of a mixture quantizer is to model the density function as a weighted
addition of mixture components, and to create a quantizer for each component. In this
subsection, we discuss the bit allocation and centroid density of the mixture components.

The mixture model for a density is given by equation 4.16, which we repeat here for
convenience:

fXk(xk) =
∑

i∈Icomp

pI(i)fi,Xk(xk), (7.82)

where we simplified the notation, defined Icomp as the set of mixture component indices,
and defined fi,Xk as the density of component i. In practical mixture quantizers, the
components are usually selected to be Gaussian densities. The bit allocations and
centroid densities for all components are optimized simultaneously. The optimization
can be performed for the constrained-entropy and the constrained-resolution cases. It
should be noted that the actual encoding methods are generally inconsistent with the
optimization method.

Constrained-Resolution Mixture Quantization

In the constrained-resolution mixture quantizer, the objective is to minimize the mean
distortion

D =
∑

i∈Icomp

pI(i)Dcompi, (7.83)

where Dcompi is the mean distortion within component i, given the sum of the number
of centroids for all component quantizers

N =
∑

i∈Icomp

Ni, (7.84)

where Ni is the number of centroids of the quantizer for component i. Normally we
select log2(N) to be an integer number of bits.

Using the method of Lagrange multipliers, the extended distortion criterion is

η =
∑

i∈Icomp

(pI(i)Dcompi(Ni) + λNi), (7.85)

where we have shown explicitly that Dcompi depends on Ni and where λ is the Lagrange
multiplier.

To solve the optimization problem, we must know the function Dcompi(Ni). It is clear
that for each component i, the distortion Dcompi must be minimal for the number of
centroids Ni. This relation between Ni and Dcompi is given by equation 7.49, which we
write in the present context as

Dcompi = C(r, k,G)N− r
k

i 〈fi,Xk(xk)〉 k
r+k

. (7.86)
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Inserting equation 7.86 into equation 7.85, we obtain

η =
∑

i∈Icomp

(

pI(i)C(r, k,G)N− r
k

i 〈fi,Xk(xk)〉 k
r+k

+ λNi

)

. (7.87)

Differentiating equation 7.87 towards Ni and setting the result equal to zero renders the
solution

Ni = λ′
(

pI(i)〈fi,Xk(xk)〉 k
r+k

)
k

r+k

= λ′pI(i)
k

r+k

∫

Rk

fi,Xk(xk)
k

r+k dxk, (7.88)

where λ′ is a constant.

Using equation 7.88 in equation 7.84 allows us to find λ′ for a given N ,

λ′ =
N

∑

i∈Icomp

(

pI(i)〈fi,Xk(xk)〉 k
r+k

)
k

r+k

. (7.89)

Equation 7.88 then provides the values for Ni. Equation 7.48 can be used to specify the
centroid density for each mixture component density model,

gi,Ck(xk) = Ni
fi,Xk(xk)

k
k+r

∫

Rk fi,Xk(xk)
k

k+r dxk
. (7.90)

The quantizer given by equation 7.90 is optimal for that component. This means it is
optimal for a mixture quantizer encoder where the component is specified from extrane-
ous information. In a practical application this situation does not occur. We can classify
a realization of Xk as belonging to a mixture component using the maximum-likelihood
measure and then use that quantizer. However, this approach implies that a subset of
centroids is never used. To obtain better performance, we can, for each realization, try
all component quantizers and select the one that provides the lowest distortion. That is,
we minimize the average distortion measure of equation 7.85 by minimizing it for each
realization of Xk. However, also for this implementation the quantizer design is not
consistent with the actual quantization method if overlap of the mixture components
occurs.

Constrained-Entropy Mixture Quantization

As in constrained-resolution mixture quantization, the goal of constrained-entropy mix-
ture quantization is to minimize the mean mixture distortion of equation 7.83 under a
constraint. Let Ii be the set of indices of the quantizer of mixture component i and
let Ii be the random index variable of component i. The index entropy of the mixture
quantizer is then

H = −
∑

i∈Icomp

∑

j∈Ii

pIcomp(i)pIi(j) log(pIcomp(i)pIi(j))

= −
∑

i∈Icomp

pIcomp(i) log(pIcomp(i))−
∑

i∈Icomp

pIcomp(i)
∑

j∈Ii

pIi(j) log(pIi(j))

= H(Icomp) +
∑

i∈Icomp

pIcomp(i)H(Ii), (7.91)
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where H(Icomp) is the entropy of the component indices and H(Ii) is the entropy of the
quantizer index of component i. In the following, Hi = H(Ii) is considered a variable
(the rate associated with component i). The entropy of the component indices, H(Icomp)
is fixed for a given data model and the constraint can be written as

∑

i∈Icomp

pIcomp(i)Hi = b, (7.92)

where b is a constant.

Using again the method of Lagrange multipliers, the extended criterion becomes:

η =
∑

i∈Icomp

pIcomp(i)(Dcompi(Hi) + λHi), (7.93)

where the dependency of the mean component distortion Dcompi on Hi is shown explic-
itly.

According to equation 7.91, the overall entropyH is the weighted sum of the entropiesHi

plus an additional fixed term. To obtain a minimum overall distortion for a given set of
component entropies {Hi}i∈Icomp, the distortion of each component must be minimized
for its given entropy. This implies that the rate-distortion relation for each component
is given by equation 7.60, which in the present context takes the form

Dcompi(Hi) = C(r, k,G)e− r
k (Hi−h(f

i,Xk )), (7.94)

where we replaced “approximately equal” with “equal” for convenience and where, to
obtain a simple and nonambiguous notation, we use the density component fi,Xk rather
than the random variable as argument of h(·). Inserting equation 7.94 into equation
7.93 renders

η =
∑

i∈Icomp

(

pIcomp(i)C(r, k,G)e−
r
k (Hi−h(f

i,Xk )) + λpIcomp(i)Hi

)

. (7.95)

Differentiating towards Hi, setting the result equal to zero and solving for Hi renders

Hi = h(fi,Xk) + λ′′, (7.96)

where λ′′ is a constant. Comparing this result with equation 7.59 we see that the
constant centroid density gCk for all of the component quantizers is the same. More-
over, we can rewrite equation 7.96 as

Hi = h(fi,Xk) + log(gCk). (7.97)

Note that it follows from equations 7.97 and 7.94 that the distortions Dcompi of all
the components are equal. If we insert equation 7.97 into equation 7.91, we see that,
to obtain a certain overall index entropy H , we must select the centroid density gCk ,
shared by all quantizers, as

log(gCk) = H −H(Icomp)−
∑

i∈Icomp

pIcomp(i)h(fi,Xk). (7.98)

As in the case of constrained-resolution, the actual implementation of the mixture quan-
tizer is inconsistent with the design. In the constrained-entropy case it is most natural
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to classify the realization first to a component, and then quantize with the selected
quantizer. However, as in the constrained-resolution case, this implies that a set of
centroids that was assigned finite probability is never used. A more efficient procedure
is to minimize, for each realization of Xk, the measure

η = d(xk,Q(xk)) + λl(xk), (7.99)

where d(xk,Q(xk)) is the quantization distortion and l(xk) is the codeword length as-
sociated with an original sample xk. Equation 7.99 is the unaveraged equivalent of
equation 7.93. To obtain best performance it is advantageous if the uniform quantizers
of the different components are interlaced. However, we note again, that the design
method is not entirely consistent with the quantizer if the mixture components overlap.

7.6.2 Lattice Vector Quantizers

A quantizer of low computational complexity can be obtained by placing the centroids
at known fixed intervals in Rk. A lattice is a regular arrangement of points in Rk that
is commonly used for this purpose.

Definition of a Lattice

A lattice L is a set of points defined by means of a set of n independent vectors in R
k

with n ≤ k. If this set of vectors is denoted {gki }i=1,··· ,n, then the lattice is defined by

L = {ck : ck =
n
∑

i=1

uig
k
i , ∀ui ∈ Z}. (7.100)

To allow a good description of Rk, the number of vectors gki in the generating set is
typically k (in other words, n = k) and the vectors gki are independent (i.e., nondegen-
erate). In the following, we assume that n = k.

Often, the generating set is written in the form of a matrix, called the generator
matrix:

G =
[

gk1 · · · gkn
]T
. (7.101)

Considering the typical case where n = k, multiplication of the transpose generator
matrix by any vector uk ∈ Zn results in a lattice point (codebook entry) ckuk ∈ Ck:

ckuk = GTuk, uk ∈ Zk. (7.102)

To be useful in a practical application, the lattice must be truncated. That is, only
a finite number of contiguous centroids are used. This is natural for the constrained-
resolution case, which has only a finite number of centroids. It is less natural for the
constrained-entropy case, for which we showed in section 7.4.3 that the centroid density
should be uniform. In practice, a finite lattice is needed also for the constrained-entropy
case to facilitate existing codeword assignment methods. When truncation is used, the
region inside the truncated lattice is called the granular region and the region outside
the truncated lattice is called the overload region3.

3We note that the discussed low-computational-complexity methods for lattice quantization apply
to the granular region; there is no well-accepted method for fast quantization in the overload region.
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Example 7.6: Scalar quantizers as a lattice

As an example of a lattice quantizer, consider a sequence of k variables (dimen-

sions), each with a scalar quantizers of unity step size. Such a set of k scalar

quantizers is equivalent to a lattice quantizer with the unit vectors as generating

set. The generating matrix is thus simply the identity matrix: G = I .

From input vector xk to lattice index uk

As said, the major motivation for lattice quantization is that one can find the nearest
lattice point to an input vector at low computional cost [41, 42]. A generic method [42]
to map an input vector xk ∈ Rk to a vector uk ∈ Zk labeling a lattice point starts with
performing the inverse transformation G−T and rounding to obtain an estimate of uk:

ûk = ⌊G−T (xk + ak)⌋. (7.103)

where ak is an offset selected to minimize the squared error remaining after rounding
(cf. problem 9). It is easy to see that for the scalar quantizer (a trivial one-dimensional
lattice), a1 = 0.5. However, in general, the resulting ûk does not correspond in the
optimal (nearest) lattice point. The nearest point is found by searching over all lattice
points within a given radius r of xk −GT ûk of the origin:

ukcorrection = argmin
{uk:‖GTuk‖<r∧uk∈Zk}

‖(xk −GT ûk)−GTuk‖2. (7.104)

The set {uk : ‖GTuk‖ < r ∧ uk ∈ Zk} has a small cardinality, thus facilitating a fast
search procedure. The final solution is then

ukopt = ûk + ukcorrection. (7.105)

For many lattices, faster search procedures exist [41, 43].

From lattice index uk to codeword; lattice truncation

The mapping from uk to a codeword is usually nontrivial and depends on the par-
ticularities of the quantization method. We first consider the mapping from uk to
the index for a constrained-resolution lattice quantizer with two types of trunca-
tions. Note, however, that the uniform centroid density of the lattice is not optimal for
constrained-resolution quantization, where the centroid density should follow equation
7.48. However, the optimal centroid density becomes flatter with increasing dimension
d and increasing distortion power r, making lattices more attractive. We return to this
issue in section 7.6.3.

A very simple truncation is that obtained when the truncated lattice is defined by the
uk contained by a “cubic” truncation of uk: {uk : uki ∈ U , ∀i=1,··· ,k}, where U =
{0, 1, · · · ,M − 1}. If we select M to be a power of two, we can define a codeword of
log2(M) bits for dimension i for any lattice point in R

k as ci = mod (uki ,M), where
mod (a, b) is the a modulo b. The method provides a good encoding for data that lie
within the truncated lattice. A two-dimensional example of such a truncated lattice is
shown on the left side of figure 7.2. The method maps points outside the parallelogram to
points inside the parallelogram. The modulo operation implies that the set of all points
that map to the same point inside the parallelogram form an offset sublattice4 with a

4A sublattice of a lattice C is a lattice that contains a subset of the points of the lattice C
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generator matrix M G. The fixed-length codeword specifying a point of the truncated
k-dimensional lattice is then a simple concatenation of the k codewords obtained for the
k dimensions. The method is easily generalized to include the case where only Mk is a
power of two (and not M). Unfortunately, the present cubic truncation is generally not
very attractive, since it does not approximate the shape of most practical data densities.

Exploiting that good cell shapes are close to spherical, an attractive truncation for
spherically symmetric densities is obtained by using a lattice truncation shape that is
identical to that of the cell shape. We scale up the cell shape by a factor M to obtain
the truncation shape. We can construct the codeword as for the case of cubic trunction.
That is, we select M to be a power of two and ci = mod (uki ,M) forms a log2(M)
bit codeword for dimension i. The concatenation of the k indices provides an index
for the corresponding lattice point in Rk. Each codeword can have been generated by
input vectors that have as nearest lattice point a lattice point that is on a sublattice
with generator matrix M G with a particular offset (remember that M is an integer,
G a matrix). Interestingly, no explicit knowledge of the truncation shape is needed at
the encoder. At the decoder, we must select the point that is the intersection of the
truncated lattice and the offset sublattice.

We now construct the intersection of a truncated lattice and the offset sublattice needed
at the decoder. We first construct a decoded lattice index ũk from the codewords
(generally ũk = [c1, · · · , ck]T ) and then compute the corresponding lattice point

c̃k = GT ũk (7.106)

that may be outside our truncated lattice. Next we determine the sublattice point bk:

bk =argmin
vk∈Zk

‖c̃k + ak −MGT vk‖, (7.107)

where the offset ak is now used to ensure that no lattice points fall on the truncation
boundary and where we note that in practice only a small, finite subset of Zk needs to
be searched. The desired lattice point is then ck = c̃k −MGT bk.

Example 7.7: Hexagonal lattice truncation

The hexagonal lattice has the generator matrix

G =

[

1 0
1
2

√
3

2

]

.

Simple truncation of this lattice, such that each dimension of u2 has elements in

the set {0, 1, · · · , 11} leads to the lattice displayed on the left in figure 7.2. The

hexagonal truncation, with the same number of points, is shown on the right in

figure 7.2. The latter truncation shape is more natural for spherically symmetric

densities as commonly used in components of mixture density models.

To obtain good performance, the lattice must be scaled appropriately. The scaling is
often based on heuristics. For the constrained-resolution case, the number of points
of the lattice is fixed if one constrains the rate. The methods described at the end of
section 7.6.3 can be used to obtain an optimal scaling.

So-far, we have discussed the mapping from lattice index to codeword for a lattice
quantizer for the constrained-resolution case. However, the uniform density of a lattice
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Figure 7.2: Truncated hexagonal lattices with 144 centroids embedded in an untruncated
lattice. On the left, straight truncation of uk. On the right, the truncation into a
hexagonal shape that is more useful for spherically symmetric data densities.

quantizer is more suited for entropy-constrained lattice quantization. To avoid
storage of codewords, the usage of arithmetic coding in combination with a parametric
description of the cumulative distribution function is desirable. The codewords can
then be computed for each realization of the random variable. However, in practice it is
difficult to obtain a parametric description of the cumulative distribution function. A
particular method that uses storage is described in [44]. It uses two levels of truncation
of the lattice. The first truncation is defined by a subset A ⊂ Zk that contains the
vectors uk that have a probability above a certain threshold. A lossless code is designed
for the subset A and stored in a table. A second truncation is defined by the subset
B ⊂ Zk, with B ∩ A an empty set, that includes all other vectors uk that have some
practical chance of occurring. All vectors in B are assigned an identical-length codeword
of sufficient length based on the indices uki . The codeword length for the vectors in B
has no significant effect on the mean rate because of their low probability. Other vectors
uk, not part of A or B are assigned to a default index, thus ensuring low computational
complexity at the expense of a rarely occurring large distortion.

Lattice Quantization Noise

We now consider the quantization noise of a lattice quantizer that is optimal for the
squared error criterion (r = 2). In particular, we consider properties of the covari-
ance matrix of lattice quantization noise. Most importantly, we show that the noise
covariance matrix is a scaled identity matrix for an optimal lattice.

To start we note that the noise covariance matrix determines the quantization coefficient,
which equation 7.39 shows to be a normalized measure of distortion. For the squared
error criterion, and considering that all cells of a lattice are identical, equation 7.40 can
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be written as

C(k,G(i)) =
1

k

1

V
k+2
k

i

∫

Vi

(xk − cki )
H(xk − cki )dx

k

=
1

k

1

V
k+2
k

∫

V

vkHvkdvk

=
1

k

1

V
k+2
k

∫

V

tr(vkvkH)dvk

=
1

k
V−

2
k tr

(

1

V

∫

V

vkvkHdvk
)

=
1

k
V−

2
k tr(Rv), (7.108)

where vk = xk − ck is the quantization noise vector and Rv is the covariance matrix of
vk (for minimal distortion, ci ∈ Vi is selected so that E[vk] = 0),

Rv =
1

V

∫

V

vkvkHdvk = E[vkvkH ], (7.109)

and where we omitted the subscripts i since all cells have identical geometry.

It is straighforward to prove that, for the ideal spherical cell, Rv is a scaled identity
matrix: Rv = kDiI, where Di is the distortion per dimension of one cell (cf. equation
7.39) of the lattice. In the case of a lattice, we can change the noise covariance matrix,
by multiplying all points defining the lattice (i.e., the centroids and the partition) with
a shaping matrix A. If we constrain A to have a unity determinant,

det(A) = 1, (7.110)

then the mean density of the centroids does not change (note that the unit cube is
mapped by A onto a region with volume det(A)). The noise covariance matrix is affected
by the transformation as

Rv,shaped = ARvA
H , (7.111)

where Rv is the covariance matrix for the unshaped lattice. We can then write for the
coefficient of quantization

C(k,G(i, A)) = V−
2
k
1

k
tr(ARvA

H)

≥ V−
2
k det(ARvA

H)
1
k

= V−
2
k det(Rv)

1
k , (7.112)

where we used an equality proven in Appendix D. Thus, a lower bound for the coefficient
of quantization is V−

2
k det(Rv)

1
k . This lower bound can be attained by selecting A such

that tr(ARvA
H) = det(Rv)

1
k . We achieve the lower if the shaping matrix maps the

covariance matrix Rv into a scaled identity matrix:

A =
R

− 1
2

v

det(R
− 1

2
v )

, (7.113)
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where R
− 1

2
v is a root of R−1

v . The resulting scaled identity matrix form of the covariance
matrix, is commonly referred to as a white covariance matrix. Conversely, the above
result implies that the optimal lattice for any dimension k has a scaled identity matrix
as noise covariance matrix,

Rv(optimal lattice) = Di(optimal lattice)I, (7.114)

where Di(optimal lattice) is the distortion per cell and per dimension of the optimal
lattice. Moreover, any lattice that has been subjected to an optimal shaping results in
white quantization noise. The fundamental result that Rv(optimal lattice) is white was
first obtained by Zamir and Feder [45].

7.6.3 Companding

Equation 7.48 shows that the optimal centroid density for constrained-resolution cod-
ing is nonuniform. This implies that straight application of a lattice quantizer to the
constrained-resolution case is not optimal. A seemingly obvious modification of the
quantizer structure is a method called companding. Companding introduces a one-to-
one (i.e., invertible) mapping h : AXk → AY k , that maps the random variable Xk into
the random variable Y k, such that the support AXk ⊂ Rk of the density of a random
variable Xk maps onto a finite region of support AY k of a uniform quantizer. The
region of support of AY k is usually selected to be a hyperrectangle or a hyperellipsoid.
Quantization is then performed in AY k and the decoder maps the centroids back to the
original domain using the inverse mapping h−1. Companding was originally introduced
by Bennett [26] for the scalar case. For historical reasons the mapping h is often referred
to as the compressor and the inverse mapping h−1 as the expander.

An important side benefit of companding is that the resulting quantizer has no over-
load region. Thus, the common assumption in high-rate theory that only the cells in
the granular region need to be considered is more generally valid, resulting in a more
accurate analysis for practical situations. The Gersho conjecture that all cells have the
same shape is violated at the edges of AY k , but this effect is generally minor compared
to the neglect of an overload region.

Upon more careful evaluation, we see that companding is not without its problems for
the multi-dimensional case, e.g., [33, 46]. Consider the effect of the mapping h−1 on the
partition associated with the lattice. In general, the cell shapes are scaled differently in
different dimensions by the inverse mapping. Thus, if the lattice in AY k was selected
to have an optimal cell shape (optimal G), this optimality of the shape are lost in the
inverse mapping. A white quantization-noise covariance matrix is generally changed into
a nonwhite covariance matrix. More-over the manner in which the cell shape is changed
varies with the value that Xk takes. The effect of the compander on the cell shapes
in the partition for Xk can affect quantization performance significantly. However, it
should be noted that despite the discussed nonoptimality, companding-based lattice
quantization structures can result in high quality at low computational effort.

The nonoptimality problems associated with multi-dimensional companding can be
avoided by exploiting the properties of random codebooks [40]. As has been mentioned
before, random codebooks are asymptotically optimal with increasing dimension. Fur-
thermore, the random codebook remains a random codebook upon a mapping h−1. By
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using a superposition of conventional lattices, each with a random displacement, this
advantage of a random codebook is obtained, while retaining the efficient search pro-
cedures associated with the lattices. A disadvantage of this method is that to obtain
near-optimality, generally a large number of codebooks is needed.

Below we consider in detail the design of companders. The methods can be exploited for
conventional companding-based lattice quantization, or in combination with a random
lattice superposition.

Optimal Companding for a Lattice (Squared Error)

Let us consider the effect of a compander h on the performance of a lattice quantizer.
We consider the squared-error case only. We first consider the distortion of the lattice
quantizer on the random variable Y k and then show how this expression must be mod-
ified to obtain the distortion for Xk. The overall distortion for Y k can be written as a
sum over the cells:

D(Y k,Q(Y k)) =
∑

i∈I

∫

V
i,Y k

(yk − cki )
H(yk − cki )fY k(yk)dyk

≈
∑

i∈I

fY k(cki )

∫

V
i,Y k

(yk − cki )
H(yk − cki )dy

k

≈
∫

A
Y k

fY k(ck)
1

VY k

∫

V
Y k

vkHvkdvkdck (7.115)

=
1

VY k

∫

V
Y k

vkHvkdvk, (7.116)

where vk is the quantization noise, and where we exploited that according to the Gersho
conjecture all cells Vi,Y k are of identical shape and can be denoted as VY k and have
volume VY k .

Next, we evaluate the overall distortion obtained after the mapping h−1 from AY to
AX . We must describe the mapping in more detail. The mapping h−1 maps a vector yk1
into xk1 = h−1(yk1 ). We consider a mapping h such that both h and h−1 are continuous,
differentiable functions. Then, for an ǫ with sufficiently small Euclidean norm ‖ǫ‖, we
have

xk2 = h−1(yk2 ) = h−1(yk1 + ǫk)

≈ h−1(yk1 ) +A(xk)ǫk, (7.117)

where A(xk) is the Jacobian matrix of the function h−1(·)

Ai,j(x
k) =

∂(h−1(yk))i
∂(yk)j

∣

∣

∣

∣

yk=h(xk)

, (7.118)

where (h(xk))i is the i’th component of the vector h(xk) and (xk)j is the j’th component
of the vector xk. Using this notation, the mapping h−1 changes the distortion per cell
at location xk in AX as follows:

1

VY k

∫

V
Y k

vkHvkdvk
h
−1

−→ 1

VY k

∫

V
Y k

vkHAH(xk)A(xk)vkdvk. (7.119)
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Using the structure of equation 7.115 (but replacing, for simplicity, ≈ with =), we can
then write the mean squared error for X in the support region AXk of fXk as

D(Xk,Q(Xk)) =

∫

A
Xk

fXk(xk)
1

VY k

∫

V
Y k

vkHAH(xk)A(xk)vkdvkdxk

=

∫

A
Xk

fXk(xk)
1

VY k

∫

V
Y k

tr
(

vkvkHA(xk)AH(xk)
)

dvkdxk

=

∫

A
Xk

fXk(xk) tr

(

1

VY k

∫

V
Y k

vkvkHdvkA(xk)AH(xk)

)

dxk

=

∫

A
Xk

fXk(xk) tr
(

D(Y k,Q(Y k))A(xk)AH(xk)
)

dxk

= D(Y k,Q(Y k))

∫

A
Xk

fXk(xk) tr
(

A(xk)AH(xk)
)

dxk, (7.120)

where we assumed that the quantization noise vector vk has a white covariance matrix,
i.e., that Rv = D(Y k,Q(Y k))I (which we showed to be true for optimal lattices in
section 7.6.2) in AY and where we used the trace properties

vkHAH(xk)A(xk)vk = tr(A(xk)vkvkHAH(xk))

= tr(vkvkHA(xk)AH(xk)). (7.121)

Equation 7.120, which separates the effect of companding and quantization in separate
distinct factors, is a result originally obtained by Bucklew [47].

Equation 7.120 forms a criterion that must be minimized to find the optimal compander
function h. In general, this optimization is a difficult task. We restrict our discussion
to cartesian companding and restrict it even more by considering only vectors Xk

with independent components,

fXk =

k
∏

i=1

fXk
i
(xki ), (7.122)

where xki is component i of the vector xk. Such companders have been considered
in [48, 39]. It is relevant to remember that the Karhunen-Loève transform, which
is discussed in more detail in section 9.4.1, can transform any multi-variate Gaussian
distributed vector into a vector with independent components. In cartesian companding
the function h is constrained to be of the form

h(xk) = [h1(x
k
1), · · · , hk(xkk), ], (7.123)

where the hi(x
k
i ) are scalar functions. It immediately follows that for the cartesian

compander the matrix A(xk) is diagonal, with

Aii(x
k
i ) =

1

ḣi(xki )
, (7.124)

where ḣi is the derivative of hi.

We constrain the function h to map R
k onto a hyperrectangle AY that has range [0, ai]

for each dimension i. (Naturally, if all ai are equal, then the mapping is onto a hyper-
cube.) This implies k constraints of the form

∫

Rk

ḣ(xki )dx
k
i =

∫

Rk

1

Aii(xki )
dxki = ai, ∀i∈{1,··· ,k}. (7.125)
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For our purposes, it is convenient to write the constraints 7.125 as

∫

Rk

∏k
j=1 fXk

j
(xkj )

fXk
i
(xki )

1

Aii(xki )
dxk = ai, ∀i∈{1,··· ,k}, (7.126)

where we exploited the property that (marginal) densities integrate to unity.

Noting that

tr(A(xk)AH(xk)) =

k
∑

i=1

A2
ii(x

k
i ). (7.127)

we see that finding the mapping h that minimizes the criterion 7.120 under the con-
straints 7.126 is equivalent to finding the functions Aii(·) that minimize

η =

∫

Rk

k
∑

i=1





k
∏

j=1

fXk
j
(xkj )A

2
ii(x

k
i ) + λi

∏k
j=1 fXk

j
(xkj )

fXk
i
(xki )

1

Aii(xki )



 dxk, (7.128)

where the λi are Lagrange multipliers. The Euler-Lagrange equations are

2
k
∏

j=1

fXk
j
(xkj )Aii(x

k
i )− λi

∏k
j=1 fXk

j
(xkj )

fXk
i
(xki )

A−2
ii (xki ) = 0, ∀i∈{1,··· ,k}, (7.129)

which leads to the solution

Aii(x
k
i ) =

λi
2
(fXk

i
(xki ))

− 1
3 . (7.130)

Combining this with the constraint 7.126, we obtain:

Aii(x
k
i ) =

1

aibi
(fXk

i
(xki ))

− 1
3 , (7.131)

where we used the notation

bi =
1

∫

R
(fXk

i
(xki ))

1
3 dxki

. (7.132)

We thus obtain the cartesian companding functions

hi(x
k
i ) =

∫ xk
i

−∞

1

Aii(wk
i )
dwk

i = aibi

∫ xk
i

−∞

(fXk
i
(wk

i ))
1
3 dwk

i (7.133)

For a companding-based quantizer, the number of centroids is proportional to the vol-
ume of the hyperrectangle AY . We now determine the set {ai}i∈{1,··· ,k} that minimizes
the distortion of equation 7.120 under the constraint that the number of centroids, i.e.,
the volume of AY is constant,

k
∏

i=1

ai = 1. (7.134)
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Table 7.1: Encoding-decoding operation for constrained-resolution lattice quantizer with
cartesian companding.

1. decorrelating transform (the Karhunen-Loève transform of section of 9.4.1) to
the input vector to obtain approximately independent components

2. cartesian compander

3. uniform lattice quantizer encoder

4. uniform lattice quantizer decoder

5. inverse cartesian compander

6. inverse of decorrelating transform

Using equation 7.133, 7.127, and 7.120 we find that this is equivalent to minimizing

η =

∫

Rk

k
∑
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j=1 fXk

j
(xkj )

a2i b
2
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∏
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=
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1

b3i a
2
i

+ λ
k
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ai. (7.135)

We find the optimal set {ai} by differentiating towards the individual ai and setting the
result to zero. We then find that for the optimal cartesian compander is of the form of
equation 7.133 with

ai = λ′b
− 3

2

i = λ′(

∫

R

(fXk
i
(xki ))

1
3 dxki )

3
2 , ∀i∈{1,··· ,k}, (7.136)

where λ′ is a constant that selects the rate. This result is qualitatively supported by
intuition: bi is large when fXk

i
(xki ) is concentrated over a small region of xki . It then

follows that dimensions with a large bi should require only a small support in AY .

Table 7.1 summarizes the steps for a typical constrained-resolution lattice quantizer with
cartesian companding. In the mixture quantizer case, each of these steps is applied for
each component of the mixture quantizer. It should be noted that the decorrelating
transform is only properly motivated for the Gaussian data case. It furthermore should
be remembered that a constrained-resolution lattice quantizer, even when companding
is used cannot attain optimal performance. In practice, however, good performance can
be obtained at very low computational complexity, e.g., [39].

7.7 Problems

1. Consider a variable with a density fX(x), a distortion criterion d(x, y) = |x − y|
and a scalar quantizer with step size ∆i. Assume high-rate. Denote the centroid
density as gC(x).
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(a) Derive a relation between the average distortion for a cell and ∆i.

(b) Derive an expression for the distortion as a function of the centroid density
function gC(x).

(c) Under the constraint that the total number of centroids is N , obtain the
optimal centroid density.

2. We evaluate quantitatively the advantages of vector quantization for the constrained-
resolution case when the high-rate approximation is valid.

(a) Evaluate and plot the shape advantage for the boxcar, Laplace, and Gaussian
densities as a function of the dimension k.

(b) Evaluate and plot the memory advantage for a Gauss-Markov source as a
function of the dimension k for the following correlation coefficients: 0.0, 0.5,
and 0.9.

3. In this problem, we extend the “vector-quantization advantage” results assuming
high-rate and Gaussianity. We consider the constrained-resolution case. Work
out the simplest form possible for equations expressing the advantage of a vector
quantizer of dimension k over that of dimension m, with k > m in terms of a
space-filling, shape, and memory advantage.

x1

x2

1

1

2

2

−1

−1

−2

−2

Figure 7.3: The density function of problem 4.

4. Consider the random vector X = [X1, X2] of figure 7.3. We want to evaluate the
advantage of vector quantization (two-dimensional) over scalar quantization for
the case of the squared-error criterion.

(a) Consider constrained-resolution scalar quantization. Draw a two-dimensional
figure with the optimal quantizer grid for the case that each scalar quantizer
gets 3 bits. Clearly show where the centroids are.

(b) Consider constrained-resolution vector quantization. You again have 6 bits
total. Draw a figure that shows the location of the centroids for a system
with optimal or near-optimal performance.

(c) Draw the optimal lattice for an optimal two-dimensional vector quantizer
assuming uniform density.

(d) For a given distortion and at high rate, estimate how many bits less per
dimension you need for the two-dimensional vector quantizer as compared
to the scalar quantizer, to obtain the same performance with the density of
figure 7.3.
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5. Consider a cell of dimension k and unity radius. The phenomenon of sphere
hardening implies that the fraction of the volume located near the surface increases
with k. Compute the fraction of the volume of a sphere located within 0.01 of the
surface for k = 1, 10, 100 and 1000.

6. Consider the Laplace density fX(x) = a
2 e

−a|x| and the absolute diffence distortion
measure.

(a) Find and plot the relation between rate and distortion for high-rate constrained-
resolution scalar quantization.

(b) Find and plot the relation between rate and distortion for high-rate constrained-
entropy scalar quantization.

(c) Compare your results to the rate-distortion function.

7. Prove that C(r, k,G) →
k→∞

(2πe)−1 for a random codebook.

8. Consider a Gaussian mixture probability-density model with two components,
both of unit variance. The first component has probability 0.75 and a mean of
0. The second component has a probability of 0.25 and a mean of 2. We use the
squared-error distortion measure.

(a) Plot the overall probability density.

(b) Evaluate the differential entropy of this probability density by stochastic
integration.

(c) Plot the Shannon lower bound for the rate-distortion function for the prob-
ability density. Is the bound tight?

(d) Write a program for a constrained-entropy mixture-model based quantizer
and run it on artificially generated data for mean squared distortions 0.1 and
0.01. Estimate the resulting practical rate-distortion relation and plot the
two points you obtained in the plot of the Shannon lower bound. Comment
on the plausibility of your results.

9. Consider the offset ak of equation 7.103. For a three-dimensional lattice that has
as generator matrix the identity matrix I, find the optimal ak.

10. You must quantize a scalar variable with the absolute error criterion under the
constrained-entropy constraint. The high-rate assumptions can be assumed to
be valid. You decide to use density model that is a mixture of Laplacian densi-
ties, mainly because that allows you to obtain a good estimate of the rate of the
quantizer even if you don’t know the distribution of the variable.

(a) Compute the coefficient of quantization, C(r, k,G(i)) for the absolute error
criterion for one dimension.

(b) The rate depends of both the actual distribution and the modelled distribu-
tion according to

R = −
∑

i∈I

fY (ci)∆ log(fX(ci)/gC).

State and explain what fY and fX are (that is, explain which is the actual
and which one is the modelled density and why).
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(c) Let us assume that you have a correct estimate of E[|x|] and, thus, of the
parameter a for a Laplacian model. Then, starting from the above expression,
obtain a relation between R and the distortion D that shows that the rate
R does not depend on the actual density (except through E[|x|]).

(d) Consider a Laplacian mixture quantizer. Write down a relevant equation
relating the total rate and total distortion. Exploit that the centroid density
is the same for all components. (Note that this is independent of the details
of the overall density.)

11. Dithering is the addition of random noise, V , to the input variable, X . That is,
the variable X + V is quantized. In the following, consider a uniform quantizer
with step size ∆ and a noise V that is uniformly distributed over [−∆/2,∆/2].
Where needed, make the high-rate assumption that the density fX(x) varies slowly
compared to the quantization step size ∆.

(a) Compute the mean-squared error of the uniform quantizer without dithering.

(b) Compute the mean-squared error (relative to X) of the dithered quantizer
output Q(X + V ).

(c) If the decoder knows the noise variable V (possible if pseudo-noise sequence is
used), we can subtract the noise at the output to obtain X̂ = Q(X+V )−V .
Again compute the mean-squared error.

(d) Show that for an ideal quantizer (no dithering, vector quantization) that
reaches the Shannon lower bound the quantization error X̂−X is independent
of the decoded signal X̂. Hint: this problem has nothing to do with dithering;
simply find the Shannon lower bound starting from I(X ; X̂).

(e) The result of 11c suggests that there are cases where dithering does not affect
performance (note that the result would also hold for a vector quantizer!). It
can be shown that the quantization noise, is not independent of the output
in this case. However, the result of 11d indicates then that, in general,
dithering cannot reach the Shannon lower bound. Provide an explanation of
these seemingly contradictory results.

12. In this problem we consider high-rate entropy-constrained scalar multiple-description
coding with two channels (HRECSMDTC). In two-channel multiple-description
coding we have two quantizers operating on the same variable. We transmit the
index of each variable. Each of the indices is sometimes lost (for example, because
a router in the network is overloaded and clears its queue.) If we receive one index
we simply use the corresponding centroid as reconstructed value and get a side
distortion Ds. If we receive both indices we try to combine both into a better de-
coded value and obtain a central distortion Dc. We consider the case where each
channel receives an identical rate R and where the variable is a Gaussian with
variance 4 and mean 2 and the distortion criterion is the squared-error criterion.

(a) Consider the case where both high-rate scalar quantizers are identical (this
is simply transmitting the information twice). Find Ds(R) and Dc(R) (re-
member that R is the rate of one channel).

(b) Consider the case where the quantization levels of the two high-rate scalar
quantizers have an offset α∆, where ∆ is the step size. Find Ds(R) and
Dc(R) as a function of α. Find the optimal offset α.
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(c) At a given distortion and for the case of no loss of indices, express the ad-
vantage of optimal HRECSMDTC over the simple method of 12a in bits.

(d) At a given rate and for the case of no loss of indices, express the advantage
of optimal HRECSMDTC over the simple method of 12a in dB.

13. Let fG(x) be a Gaussian density with unity variance. The density of the random
variable X is fX(x) = 1

2fG(x) +
1
2fG(x − 6). We consider the squared error

criterion.

(a) Compute the differential entropy of X (be careful!).

(b) Derive a formula for the Shannon lower bound for X .

(c) Is the Shannon lower bound tight? If it is, provide the density of the recon-
structed signal and your logic.

(d) You have designed an appropriate high-rate, mixture, scalar constrained-
entropy (CE) quantizer with two mixture components. Explain the steps
your quantizer makes from the data point coming in to the codeword going
into the channel.

(e) Derive the rate-distortion relation of your CE quantizer.

(f) Explain the difference between the rate-distortion function and the perfor-
mance of your CE quantizer in terms of shape, space-filling, and memory
advantages.

14. To improve the understanding of high-rate quantization, we approximate a uni-
form density

fX(x) =

{

1, x ∈ (0, 1]
0, elsewhere

by a set of N uniformly spaced Gaussian densities:

fX(x) =

N
∑

n=1

1

NσG
fG((x − n

N
)/σG)

where fG(x) is a unit variance Gaussian density and σG = 1/N . An example for
N = 6 is shown in figure 7.4. In the following we assume that N=100 (i.e., large)
and use the squared error criterion.

(a) In this subproblem we do not consider the expansion, but use fX(x) as defined
in the first equation of this problem. Compute the Shannon lower bound for
fX(x). Is this lower bound tight? Is your lower bound close to being tight
for high or low rates?

(b) Based on the expansion, design a high-rate, constrained-entropy, Gaussian-
mixture constrained-entropy quantizer with a mean distortion D = 10−6.
Provide all parameters needed to describe the quantizer (such as thresholds,
step size(s), whatever) and provide a diagram that clearly shows all process-
ing stages in both encoder and decoder.

(c) Provide an operational rate-distortion relation for the basic, unmodified high-
rate, constrained-entropy, Gaussian mixture quantizer. Compare your result
with the rate-distortion bound that you found in 14a .
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0 1

Figure 7.4: The approximation to fX(x) and its constituent components for N = 6 for
problem 14 .

(d) For the particular case of this problem, suggest an improved design for the
Gaussian mixture quantizer. (No need for any calculations.)

15. Consider a two-dimensional Gaussian density with the identity matrix as covari-
ance matrix and zero mean. The density represents one kernel in a Gaussian
mixture model of a probability density function. To create a mixture quantizer,
we must design a generic lattice quantizer that applies for each Gaussian kernel
separately. We consider the design of a 128-centroid truncated lattice for the
Gaussian probability density function.

(a) Look up the generator matrix for the optimal lattice. Plot a truncated lattice
where u1 and u2 take the values {0, 1, 2, 3}. Determine the optimal offset for
the lattice for the Gaussian data.

(b) Using a simple full-search over all centroids, write a program that determines
the distortion by stochastic integration. Using this program, search for the
optimal scaling of the lattice. Make a scatter plot with an overlay of your
best scaled parallelogram-truncated lattice quantizer and list the measured
distortion.

(c) Next consider sublattice based truncation. Determine M so that we get
a 16-centroid quantizer. Determine the optimal offset. Write a program
that determines the distortion by stochastic integration. Using this program,
search for the optimal scaling of the lattice. Make a scatter plot with an
overlay of your best scaled parallelogram-truncated lattice quantizer and list
the measured distortion.

(d) For 16 centroids, the rate is 4 bits for the (nonoptimal) constrained-resolution
quantizer. Using stochastic integration, determine the best rate possible with
an constrained entropy quantizer for the sublattice based truncation.

16. We consider the encoding of the phase of a sinusoid. We model it as a single
random variable Φ that is periodic in its amplitude, with period 2π. It has a
uniform density of 1/2π on this interval. We use the squared error criterion.

(a) Find the Shannon lower bound for the periodic signal.
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(b) Argue/prove that the Shannon lower bound is or is not tight.

(c) Derive the reconstruction-point density of the optimal constrained-entropy
quantizer. Provide its rate-distortion relation.

(d) Derive the reconstruction-point density of the optimal constrained-resolution
quantizer. Provide its rate-distortion relation.
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8

Low-Rate Quantization

8.1 Introduction

The lossy encoding of signals is an important aspect of modern communication. Thus-
far, we have discussed bounds on the rate given a distortion (or vice-versa) in chapter
6 and the behavior of quantizers when the rate is high in chapter 7. The latter chapter
also discussed the design of practical high-rate quantizers. However, it is quite common
(e.g., in speech and audio coding) that the high-rate conditions are not satisfied. Under
such circumstances, quantizers designed using principles derived from high-rate theory
are generally not optimal (although they are often surprisingly good). In this chapter,
we describe methods to design practical quantizers that perform well at low rate. These
design methods are based on iterative training procedures.

Our discussion of training-based quantization will describe common methods for both
constrained-resolution and constrained-entropy training methods. Constrained-resolution
quantizers, i.e., quantizers with a finite, given codebook size dominate in existing ap-
plications. As was mentioned earlier in section 7.2.2, there are a number of reasons for
using constrained-resolution quantizers: an existing infrastructure for fixed-rate, real-
time communication, simpler design algorithms, and no requirement for lossless coding.
Furthermore, our proof of the rate-distortion theorem in section 6.2.6 shows that, asymp-
totically with increasing dimension, constrained-resolution quantization can perform at
the rate-distortion limit. However, at lower dimensionality, constrained-entropy quan-
tizers will provide a better rate-distortion trade-off. Since there is a clear trend towards
both statistical networks and increased computational capacity, constrained-entropy
quantizers will likely play an increasingly important role in the future.

The most important topic in this chapter is the Lloyd algorithm, a method origi-
nally developed at AT&T Bell Laboratories in the nineteen fifties, but published much
later [49]. It is also known as the k-means algorithm. The Lloyd algorithm, which is
ubiquitous in quantization design, is an iterative procedure for improving a constrained-
resolution quantizer. The method is applicable to both scalar and vector quantizers.
While it was originally developed for the resolution-constrained case, it has been ex-
tended to the entropy-constrained case.

189
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We discussed earlier how the rate-distortion theorem (cf. section 6.2.6) suggests that
vector quantization can solve all source-coding problems and that this promise cannot
be fulfilled because of computational constraints. The computational effort for a full
search for the best of all entries in a codebook grows exponentially with the codebook
size. One way towards mitigating this problem is to transform the data prior to encoding
such that they are more amenable to scalar quantization; two variants on this approach
will be discussed in chapters 9 and 10, respectively. Another method of obtaining low-
complexity quantization with high fidelity is to reduce the computational requirements
of vector quantization. This is generally done by introducing structure into the code-
books and the practical high-rate theory based methods discussed in section 7.6 are an
example of that. Structured vector quantization methods that are optimized without
high-rate assumptions are discussed in section 8.4 of this chapter. We discuss a number
of the most commonly used procedures. It should be remembered that structure in a
codebook often implies that the codebooks are not optimal. We also discuss briefly
methods for exchanging the computational effort required for vector quantization by
large tables. While these methods are optimal, they are not commonly used, since the
cost of the required fast accessible memory would be very high.

8.2 Resolution-Constrained Quantization

Practical quantizers for most applications are designed under a resolution constraint:
they are designed to minimize mean distortion under the constraint of a given codebook
size. Such resolution constrained quantizers form the focus of this section. Entropy-
constrained quantizers are discussed in section 8.3.

General design procedures that guarantee optimality of a quantizer for an arbitrary
distribution do not exist. As a result, iterative methods that guarantee only local opti-
mality are used instead. We proceed in a manner seen earlier for the EM (section 4.3.4)
and Blahut (section 6.5.2) algorithms: we first express the criterion to be minimized
(the distortion in this case) as a double minimization. We can then iteratively improve
the quantizer by alternating between the two minimizations.

As was described in section 7.2.1, a quantizer is a mapping, Q, of k-dimensional Eu-
clidean space, Rk, onto a countable set of points. It is often convenient to separate the
mapping performed by a quantizer into a first mapping E from the original vector in Rk

to an index, and a second mapping D from an index to a reconstruction point (centroid)
in a codebook Ck. The first mapping is defined by the partition, V = {Vi}i∈I , and the
second mapping is defined by the set of centroids, Ck = {cki }i∈I , where in both cases
I is the set of indices. The minimization of the distortion criterion by optimizing the
quantizer can then be written as

Dmin = min
V, Ck

E[d(Xk,Q(Xk))], (8.1)

where the minimum is over all allowed partitions and centroid sets. By alternate ap-
plication of the minimization over V and Ck, a quantizer is obtained that is locally
optimal. We start with a section discussing the optimality conditions, and follow this
with a section on quantizer design.
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8.2.1 Optimality Conditions

In this section, we discuss the separate optimization of the encoder (the partition) and
the decoder (the set of centroids). These conditions can then be used to perform the
iterative optimization. We first discuss the encoder, then the decoder.

Optimizing the Encoder

The goal of designing an optimal encoder given the decoder is equivalent to finding a
set of cells Vi that minimizes the mean distortion D of equation 8.1 for a given set of
reconstruction points, Ck = {cki }i∈I . Since the distortion can be written as

D =

∫

Rk

fXk(xk)d(xk ,Q(xk))dxk, (8.2)

it is clear that D is minimized if d(xk,Q(xk)) is minimized for all xk. That is, optimality
of the encoder is ensured if, for an input vector xk, we select the index i such that

i =argmin
m∈I

d(xk, ckm). (8.3)

In the following, we will assume that d(xk, yk) is a monotonically increasing function
of the Euclidean distance1‖xk − yk‖. Most practical distortion measures satisfy this
condition, partly because it is usually consistent with the problem at hand, and partly
because it makes the quantizer easier to implement.

A minor problem with equation 8.3 is that for xk ∈ R
k the minimum is not always

unique, since points exist that are equidistant to two centroids. The nonuniqueness can
be eliminated by selecting the index as follows:

i = {j ∈ I : d(xk, ckj ) ≤ d(xk, ckm) ∀m∈I,m<j,

d(xk, ckj ) < d(xk, ckm) ∀m∈I,m>j}. (8.4)

The optimal encoder, for given decoder, is then defined by

Vi = {xk ∈ R
k : d(xk, cki ) ≤ d(xk, ckm) ∀m,i∈I,m<i,

d(xk, cki ) < d(xk, ckm) ∀m,i∈I,m>i}. (8.5)

The cells Vi of equation 8.5, together with the centroids ci, define a nearest-neighbor
quantizer or Voronoi quantizer. The cells are sometimes referred to as Voronoi
regions (this terminology is more common in the vector quantization case). A Voronoi
quantizer is a regular quantizer.

For the scalar case, it is straightforward to find the cell boundaries explicitly. Assuming
that the indexing is from left to right, on the real line, the cell boundaries bi are the
points for which

d(bi, ci) = d(bi, ci+1). (8.6)

For a codebook with |I| entries, {ci}i∈I , only |I| − 1 boundaries {b1, · · · , b|I|−1} are
defined.

1We remember that distance is the norm of the difference between two points in a Euclidean space.
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Example 8.1: Optimal encoder given decoder for the scalar case

Figure 8.1 shows the construction of an optimal encoder given a decoder. The

top figure shows a set of reconstruction values, i.e., the decoder, for an interval

of R. The bottom figure, shows the optimal encoder for the given decoder. From

equation 8.6 it follows that the optimal encoder is simply a partitioning with

boundaries in the middle between the reconstruction points (and at the interval

ends). This is true independently of the data density.

decoder

decoder with corresponding optimal encoder

Figure 8.1: Construction of the optimal encoder given a decoder as described in example
8.1. Top: the decoder. Bottom: decoder with the optimal encoder inserted.

For the vector quantization case, the definition of the cell boundaries is in practice much
more difficult. Figure 8.2 shows the boundaries for a two-dimensional quantizer. Even
for this simple case, the computation of the cell boundaries is not trivial. As a result,
the cell boundaries are generally not computed explicitly for the vector case. Instead,
the cells are defined simply as the set of points satisfying equation 8.5.

Figure 8.2: Left: a decoder (a set of reconstruction points). Right: the nearest-neighbor
(Voronoi) quantizer for this decoder.

Optimizing the Decoder

Next, we turn our attention to the decoder, which is specified by the codebook Ck =
{cki }i∈I . Our task is to find the codebook that minimizes D in equation 8.1 given the
encoder, i.e., given the set of cells (partition) {Vi}i∈I . Since the cells are fixed, it is
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useful to write equation 8.1 in the form

Dmin = min
Ck

E[d(Xk,Q(Xk)]

= min
Ck

∑

i∈I

pI(i) E[d(X
k, cki )|Xk ∈ Vi]

=
∑

i∈I

pI(i)min
cki

E[d(Xk, cki )|Xk ∈ Vi]. (8.7)

The encoder (the partition) is fixed, which means that each term in the summation
depends on only one codebook entry. We can optimize the terms individually. For a
given encoder, the entries of the optimal codebook (the centroids) are given by

cki = argmin
yk∈Rk

E[d(Xk, yk)|Xk ∈ Vi]. (8.8)

While equation 8.8 is general, it is not very attractive from a computational viewpoint.
Fortunately, it is possible to simplify the criterion for the commonly used squared error
distortion measure. Noting that cki is deterministic, we have:

cki = argmin
yk∈Rk

E[‖Xk − yk‖2|Xk ∈ Vi]

= argmin
yk∈Rk

E[‖Xk‖2|Xk ∈ Vi]− 2ykHE[Xk|Xk ∈ Vi] + ‖yk‖2

= argmin
yk∈Rk

−2ykHE[Xk|Xk ∈ Vi] + ‖yk‖2

= argmin
yk∈Rk

‖E[XkH |Xk ∈ Vi]‖2 − 2ykHE[Xk|Xk ∈ Vi] + ‖yk‖2

= argmin
yk∈Rk

‖E[Xk|Xk ∈ Vi]− yk‖2. (8.9)

Thus, for the squared error distortion measure, the optimal decoder is

cki = E[Xk|Xk ∈ Vi]. (8.10)

That is, the centroid is the mean of Xk over the cell.

Example 8.2: Optimal decoder given encoder for the scalar case

Figure 8.3 shows the construction of an optimal decoder for the squared error

criterion, given an encoder and a density. In the top figure the density is shown, and

below that the encoder. In the bottom figure, the centroids, computed according

to equation 8.10, are inserted. Note that while the encoder is the same as in figure

8.1, the optimal decoder is not the same as the original decoder of figure 8.1.

8.2.2 The Lloyd Algorithm

The Lloyd training procedure [49] (the k-means algorithm) is based on the optimality
conditions discussed in the section 8.2.1. If we use equation 8.5 to optimize the encoder,
the mean distortion of the quantizer decreases (or is constant). Similarly, if we use 8.8
to optimize the decoder, the mean distortion of the quantizer decreases (or is constant).
Thus, if we optimize the encoder, then optimize the decoder, and repeat these two steps
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density

encoder

encoder with corresponding optimal decoder

Figure 8.3: Construction of the mean squared error decoder given an encoder as de-
scribed in example 8.1. Top: the density. Middle: the encoder. Bottom: encoder with
the centroids (optimal decoder) inserted.

in alternating order, then the distortion decreases with each optimization step. This
iterative procedure is the Lloyd algorithm. In the case of vector quantization, it is often
referred to as generalized Lloyd algorithm or GLA.

Table 8.1 shows the Lloyd algorithm. To obtain the scalar case, simply set k = 1. To
make the algorithm practical, the boundaries of the cells must be defined explicitly. As
was mentioned before, this is generally very complicated in the vector case. Thus, it
can be concluded that the algorithm in table 8.1 is useful mainly for the case of scalar
quantization.

In our discussion of the optimality conditions and the Lloyd algorithm, we have so-far
assumed that the probability density of the random variable to be quantized is known.
In most practical situations, this is not the case. Usually, one only has a set of so-called

training data, and this means that E[d(Xk, yk)|Xk ∈ V
(q)
i ] cannot be evaluated. A

solution is to determine an expression for the density based on the experimental data
(we can use the methods discussed in section 4.3, but this approach is not commonly
used.

The standard solution to the problem of not knowing the probability density is to use
the training data directly. We denote the training data as a set T k consisting of points
in R

k. We can interpret the training data as being a discrete probability distribution.
That is, we have a discrete probability distribution where each training data point has
a probability of 1/|T k|, where |T k| is the cardinality of the set of training data (i.e.,
the number of training data). The cells Vi then become subsets T k

i of the training data
T k. If we assume that the decoder, Ck, is known, the sets T k

i are

T k
i = {xk ∈ T k : d(xk, cki ) ≤ d(xk, ckm) ∀m,i∈I,m<i,

d(xk, cki ) < d(xk, ckm) ∀m,i∈I,m>i}. (8.11)

Note that the sets T k
i are easily computed in practice. Using the sets T k

i as an indication
of the distribution fXk , it is straightforward to estimate the optimal decoder for the
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Table 8.1: The Lloyd algorithm for known density function. q is the iteration index,
and T a threshold. For clarity, the superscript k has been omitted from the variables.

1. set q = 1,
set D(0) = ∞,

define an initial codebook C(1) = {c(1)i }i∈I

2. find the optimal encoder:

V
(q)
i = {x ∈ R

k : d(x, c
(q−1)
i ) ≤ d(x, c(q−1)

m ) ∀m,i∈I,m<i,

d(x, c
(q−1)
i ) < d(x, c(q−1)

m ) ∀m,i∈I,m>i}

3. find the optimal decoder:

c
(q)
i =argmin

y∈Rk

E[d(X, y)|X ∈ V
(q)
i ]

4. evaluate D(q) =
∑

i∈I E[d(X, ci)|X ∈ V
(q)
i ];

stop if D(q−1) −D(q) < TD(q); otherwise set q := q+1 and go to 2

discrete distribution using the relation

E[d(Xk, yk)|Xk ∈ V
(q)
i ] =

1

|T k
i |

∑

xk∈T k
i

d(xk, yk), (8.12)

where |T k
i | is the cardinality of the set T k

i . Having defined a new decoder, we can
compute a new set of sets {T k

i }i∈I . The discrete Lloyd algorithm or discrete
GLA consists of alternatingly optimizing the encoder and decoder . Upon completion
of the training, we convert the cell definitions so that they apply to R

k instead of T .
That is, we assume that the discrete distribution leads to a set of centroids that is
accurate for the underlying continuous distribution. The complete algorithm is given in
table 8.2.

The discrete Lloyd algorithm has several advantages over the basic Lloyd algorithm.
First, there is no need to define the cell boundaries, since the mean distortion for a cell
is replaced by a sum over a known finite set of data points T k

i . Second, the probability
density of the data does not need to be estimated. Third, the discrete Lloyd algorithm
is guaranteed to converge in a finite number of iterations. This last advantage exists
since only a finite number of partitions of T k into sets T k

i is possible, and since the
change in the distortion is nonnegative at each iteration.

For the discrete Lloyd algorithm to perform well, the partition of T k must provide a
reasonable representation of the actual Voronoi region in R. This can only be the case
if the number of data points is sufficiently large. It is often suggested that in practice
at least 10 points are required for each cell.
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Table 8.2: The discrete (generalized) Lloyd algorithm. q is the iteration index, and T a
threshold. For clarity, the superscript k has been omitted from the variables.

1. set q = 1,
set D(0) = ∞,

define an initial codebook C(1) = {c(1)i }i∈I

2. find the sets of data points {T (q)
i }i∈I such that

T (q)
i = {x ∈ T : d(x, c

(q−1)
i ) ≤ d(x, c(q−1)

m ) ∀m,i∈I,m<i,

d(x, c
(q−1)
i ) < d(x, c(q−1)

m ) ∀m,i∈I m>i}

3. find the optimal decoder:

c
(q)
i =argmin

y∈Rk

∑

x∈T
(q)
i

d(x, y)

4. evaluate D(q) =
∑

i∈I

∑

x∈T
(q)
i

d(x, c(q))

if D(q−1) −D(q) < TD(q) go to 5; otherwise set q := q+1 and go to 2

5. define the corresponding partition in Rk:

Vi = {x ∈ R
k : d(x, c

(q)
i ) ≤ d(x, c(q)m ) ∀m,i∈I,m<i,

d(x, c
(q)
i ) < d(x, c(q)m ) ∀m,i∈I, m>i}

The LBG Initialization Procedure

As mentioned before, the Lloyd algorithm is locally optimal, i.e., any small change in the
Voronoi regions or in the reconstruction points results in a degradation of performance.
However, practical probability distributions often have many such minima. As a result,
it is found that the Lloyd algorithm, particularly for the vector case, is sensitive to the
initial codebook that is used.

A good design of the initial codebook is, therefore, important. Often, the training
procedure is run multiple times, with different initial codebooks, and the best codebook
is selected from these multiple runs. An alternative initialization procedure, which
generally performs well, and which is commonly used, is the LBG algorithm, named
after the authors who originally proposed the procedure [50]. (While there is some
confusion about naming conventions, we adopt the nomenclature of [24] here.) The
LBG algorithm starts from a zero-bit (single-entry) codebook that is the mean of the
distribution. The size of the codebook is multiplied by two, by “splitting” the centroid
into two centroids: one that is identical to the original centroid, and one that is a small
random distance away from the first centroid. This codebook is then subjected to the
GLA, and, upon convergence, the codebook is split again, and so-on. Thus, the LBG
algorithm generates codebooks of a size that is a power of 2 (which renders codewords
of integer length in bits). It is described more formally in table 8.3.
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Table 8.3: LBG splitting algorithm for codebook initialization and training (m is a
splitting index).

1. set m = 0
set C(0) = {E[Xk]}

2. stop if 2m is desired codebook size

3. generate 2m random vectors ǫki , small ‖ǫki ‖
define: C(m+1) = {ck1 , ck1 + ǫk1 , c

k
2 , c

k
2 + ǫk2 , · · · }

4. starting from the C(m+1) defined in 3 as an initial condition, train C(m+1) with
the discrete Lloyd algorithm

5. set m := m+1 and go to 2

The Equidistortion Correction

Another useful procedure that lowers the chance of obtaining a local optimum with rela-
tively low quantizer performance is based on the equidistortion criterion. The procedure
does not guarantee that performance improves, but it often does result in significant
performance improvements. The basic idea behind the method is that the equidistortion
principle, which was shown to hold at high resolution in section 7.4.2, should be approx-
imately valid at lower resolutions [34]. To satisfy this requirement, the contribution of
a cell to the overall distortion is explicitly evaluated for each cell at regular intervals
during the iterations. Let us assume that each point in the data base is unique. Then
the cell contribution to the overall distortion can be written as

Di =
∑

xk∈T k
i

d(xk, cki ). (8.13)

The cells with maximum and minimum Di are selected and if the ratio of their distortion
exceeds a threshold, the cell with the lowest contribution to the distortion is removed,
and the cell with the highest distortion is split. We refer to this method as the equidis-
tortion correction. The algorithm is formalized in table 8.4. The algorithm in table
8.4 should be inserted between steps 4 and 2 of table 8.2.

8.2.3 Quantization Error and the Lloyd Algorithm

It is useful to have quantitative information about the nature of the quantization error.
We know from rate-distortion theory (cf. section 6.4.2) that, at least when the Shan-
non lower bound is tight, the quantization error and the source, xk, are dependent; we
furthermore saw that the quantization error is independent of the reconstructed vari-
able Q(xk). These relations are reflected in the outcome of the Lloyd algorithm for the
squared error criterion: the quantization error and the reconstructed variable are uncor-
related while the source and the quantization error have nonvanishing correlation. That
the correlation between the reconstructed variable and the quantization error vanishes
is easily derived by using the optimal decoder condition (equation 8.10):

E[(Q(Xk)−Xk)Q(Xk)T ] =
∑

i∈I

pI(i)E[c
k
i −Xk|Xk ∈ Vi]c

kT
i = 0. (8.14)
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Table 8.4: Equidistortion correction that is to be inserted in the discrete generalized
Lloyd algorithm. Te is a threshold.

1. consider codebook: C(q) = {cki }i∈I

2. find cells with maximum and minimum contributions to mean distortion;

imin =argmin
i∈I

Di

imax =argmax
i∈I

Di

3. if
Dimax

Dimin
> Ti then:

(a) generate random vector ǫk, |ǫk| small

(b) replace ckimin
of codebook with ckimax

+ ǫk

The correlation matrix for quantization error then satisfies

E[(Q(Xk)−Xk)(Q(Xk)−Xk)T ]

= −E[(Q(Xk)−Xk)XkT ] + E[(Q(Xk)−Xk)Q(Xk)T ]

= −E[(Q(Xk)−Xk)XkT ]. (8.15)

8.3 Entropy-Constrained Quantization

The strong trend towards statistical networks has made training methods for entropy-
constrained quantizers more important. In this section, we extend the methods de-
veloped in section 8.2 for the resolution-constrained case to apply to the entropy-
constrained case. The principles of the approach presented in this section were first
introduced in [51].

As was discussed before, we can consider a quantizer to consist of a first mapping E ,
defined by the partition V = {Vi}i∈I , from the original vector in Rk to an index, and a
second mapping D, defined by a codebook, Ck = {cki }i∈I , from an index to a centroid
from a codebook Ck. In the constrained-entropy case, the minimizaton of the distortion
criterion, D = E[d(Xk,Q(Xk))], with respect to V and Ck must now be performed under
an entropy constraint on the quantization indices. This constraint can be written as

R = −
∑

i∈I

pI(i) log(pI(i))

= −
∑

i∈I

∫

Vi

fXk(xk)dxk log(

∫

Vi

fXk(xk)dxk), (8.16)

where R is the given rate. Let us define an equivalent codeword length for each cell2:

lV(i) = − log(

∫

Vi

fXk(xk)dxk). (8.17)

2We recall from chapter 5 that such noninteger rates per symbol can be approached by means of
arithmetic coding.
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The entropy constraint can then be written as

R = E[lV(i(X
k))], (8.18)

where the dependency of i on Xk is made explicit. Using the method of Lagrange
multipliers to minimize distortion under the entropy constaint, the objective is then to
find the V and Ck that minimize the extended criterion

η = E[d(Xk,Q(Xk))] + λE[lV(i(X
k))], (8.19)

where λ is a Lagrange multiplier and where we omitted the constant term −λR. A
local minimum can be found by alternating the minimization over V with that of Ck. It
is seen from equaton 8.19 that the Lagrange multiplier assigns a relative weight to the
distortion and the rate. That is, with increasing λ we can expect the minimization to
result in a rate-distortion pair with lower rate and higher distortion.

Even the iterative minimization of equation 8.19 is generally not straightforward. The
minimization over the encoder, i.e., over the partitions V , is complicated by the depen-
dency of lV on the partition. This problem can be eliminated if we consider the results
of section 5.2.1 to realize that the set of codeword lengths LV = {lV(i)}i∈I minimizes
the expected codeword length E[l(i(Xk))] that permits unique decoding for a given
partition V and density fXk(xk). The minimum can then be written as

ηmin = min
V, Ck,L

E[d(Xk,Q(Xk))] + λE[l(i(Xk))], (8.20)

where L = {l(i)}i∈I is a set of codeword lengths that facilitates unique decoding given
the encoder. A locally optimal constrained-entropy quantizer can then be found by
iteratively optimizing the partition (encoder), set of centroids (decoder), and set of
codeword lengths.

8.3.1 Optimality Conditions

In this section, we specify three optimality conditions to minimize the expression of
equation 8.20 iteratively. We first consider the optimal encoder, then the optimal set of
codeword lengths, and finally the optimal decoder.

By considering equation 8.20, we see that the optimal encoder given the decoder and
the set of codeword lengths is obtained by minimizing d(xk,Q(xk)) + λl(i(xk)) for all
xk. Proceeding as for the constrained-resolution case (cf. section 8.2), we obtain as
optimal encoder V = {Vi}i∈I for a given decoder Ck = {cki }i∈I and set of codeword
lengths L = {l(i)}i∈I :

Vi = {xk ∈ R
k : d(xk, cki ) + λl(i) ≤ d(xk, ckm) + λl(m) ∀m,i∈I,m<i,

d(xk, cki ) + λl(i) < d(xk, ckm) + λl(m) ∀m,i∈I,m>i}. (8.21)

Next, we consider the optimal set of codeword lengths, given the encoder and decoder.
This task is trivial, since we introduced this optimization to facilitate the optimization
of the partition V by decoupling the set of codeword lengths L from the partition. The
optimal L is LV, and the individual lV(i) are given by equation 8.17. We note that the
optimal set of codeword lengths does not depend on the decoder.
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Finally, we consider the optimal decoder given the set of codeword lengths and the
encoder. The optimal decoder Ck for a given encoder V is based on the minimization

Dmin = min
Ck

E[d(Xk,Q(Xk))] + λE[l(i(Xk))]

= min
Ck

∑

i∈I

pI(i) E[d(X
k, cki )|Xk ∈ Vi]

=
∑

i∈I

pI(i)min
cki

E[d(Xk, cki )|Xk ∈ Vi]. (8.22)

Thus, the optimal decoder given the encoder for the constrained entropy case is identical
to that for the constrained-resolution case:

cki = argmin
yk∈Rk

E[d(Xk, yk)|Xk ∈ Vi]. (8.23)

Having defined the optimality conditions we can now proceed with deriving a modified
Lloyd algorithm that applies to the constrained-entropy case.

8.3.2 The Constrained-Entropy Lloyd Algorithm

A constrained-entropy generalized Lloyd algorithm (constrained-entropy GLA) is ob-
tained by selecting a λ, i.e., a particular weighting of distortion versus rate, and iter-
ating over the three the optimality conditions described in section 8.3.1. This leads
to a particular rate and distortion (R,D) pair. To obtain a desired rate or distortion,
one has to try different values of λ. For the case λ = 0, the algorithm reduces to the
constrained-resolution GLA.

As in the constrained-resolution case, the probability density function is generally un-
known, and even when it is known, the description of the partition is difficult to accom-
plish for the multi-dimensional case. In practice, the constrained-entropy GLA is used
for a given set of training data T k. As for the constrained-resolution case, usage of the
training data as probability distribution eliminates the need for knowing the probability
density, the need for defining the cell boundaries and guarantees convergence in a finite
number of iterations.

The discrete version of the constrained-entropy GLA algorithm is obtained by replacing
the continuous density with the discrete data distribution. As before, we define the cells
as subsets T k

i of the database T . For good performance, all cells need to be populated
sufficiently (typically 10 or more data points per cell). For the discrete distribution
given by the training data we can compute the optimal codeword length as

lV(i) = − log(pI(i)) = − log(P (T k
i )) = − log(

|T k
i |

|T k| ). (8.24)

The conversion to the discrete data distribution of the optimal encoder and decoder
conditions (equations 8.21 and 8.23) are identical to the corresponding conversions for
the constrained-resolution case. The resulting discrete constrained-entropy GLA is given
in table 8.5.

It is interesting to note that the constrained-entropy GLA is based on a fixed codebook
size. The size of the codebook forms a constraint on the performance of the algorithm.
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At least in principle, best performance should be obtained with the largest codebook.
Naturally, for a given codebook size, the constraining effect of the codebook size becomes
increasingly important with increasing rate.

As for the constrained-resolution GLA, the constrained-entropy GLA is sensitive to
the configuration of the initial codebook. While the LBG algorithm can be used for
initialization, this is not natural for the entropy-constrained case. Instead, we can
use the high-resolution results to create a good initialization procedure. We know
that optimal high-rate entropy-constrained quantizers are uniform. This implies that
a simple truncated uniform hypercube lattice forms a reasonable starting point for an
entropy-constrained quantizer.

Table 8.5: The discrete constrained-entropy GLA for given λ. The value of λ determines
the rate versus distortion trade-off. q is the iteration index, and T a threshold. For
clarity, the superscript k has been omitted.

1. select λ
set η(0) = ∞,

define an initial codebook C(0) = {c(0)i }i∈I

define an initial set of codeword lengths L(0) = {l(0)(i)}i∈I

set q = 1

2. find the sets of data points {T (q)
i }i∈I such that

T (q)
i = {x ∈ T : d(x, c

(q−1)
i ) + λl(q−1)(i) ≤ d(x, c(q−1)

m ) + λl(q−1)(m) ∀m,i∈I,m<i,

d(x, c
(q−1)
i ) + λl(q−1)(i) < d(x, c(q−1)

m ) + λl(q−1)(m) ∀m,i∈Im>i}

3. find the optimal set of codeword lengths:

l(q)(i) = − log(pI(i)) = − log(
|T (q)

i |
|T | ), ∀i∈I

4. find the optimal decoder:

c
(q)
i =argmin

y∈Rk

∑

x∈T
(q)
i

d(x, y)

5. evaluate η(q) =
∑

i∈I

∑

x∈T
(q)
i

d(x, c
(q)
i ) + λl(q)(i)

if η(q−1) − η(q) < Tη(q) go to 6; otherwise set q := q + 1 and go to 2

6. define the corresponding partition in Rk:

Vi = {x ∈ R
k : d(x, c

(q)
i ) + λl(q)(i) ≤ d(x, c(q)m ) + λl(q)(m) ∀m,i∈I,m<i,

d(x, c
(q)
i ) + λl(q)(i) < d(x, c(q)m ) + λl(q)(m) ∀m,i∈I, m>i}
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8.4 Structured Vector Quantizers

In a vector quantizer, the transmitted index is selected by searching through a codebook.
If an exhaustive search must be performed, the computational complexity of this search
depends exponentially on the codeword length. The size of the required training data
base grows similarly rapidly with a general vector quantizer design. Thus, despite the
rapid advances in hardware technology, there is a strong incentive for using structured
vector quantizers that have reduced computational and training data requirements. In
this section, a brief overview of some of the most important techniques will be given.
Most of the descriptions will focus on constrained-resolution quantizers, which are most
commonly used. For a more complete overview we refer to [24].

Most structured vector quantizers fall into the class of product code vector quantiz-
ers. The essence of this approach is to divide up one large task of high complexity into a
number of smaller tasks of much lower total complexity. This is generally accomplished
by structuring the codebook so that the search for the codebook entries with the lowest
distortion becomes equivalent to several searches through two or more sub-codebooks
of much smaller size. The index into the structured codebook can then be seen as the
product of the indices into the sub-codebooks (the codeword becomes the concatenation
of the codewords for each sub-codebook). We note that a structured codebook involving
a search through two codebooks of 1000 entries each has an effective codebook size with
106 entries, but with a complexity that is a factor 500 lower. In certain cases (e.g., the
gain-shape and mean-removed quantizers) independent or sequential searches through
the sub-codebooks result in the optimal product codebook entry, but in general a se-
quential or independent search through the sub-codebooks (the only way to obtain the
computational advantage) does not necessarily result in the best combination of indices
in the sub-codebooks. In addition, the structure generally means that the codebook is
nonoptimal.

8.4.1 The Tree-Structured Quantizer

A tree-structured quantizer combines a number of vector quantizers, each of relatively
low complexity. Let us first consider the encoding with a tree quantizer. We consider a
symmetric tree (this is consistent with constrained resolution). We start with defining a
codebook for the root node, Ck

0 = {cki }i∈I0, where the subscript indicates the tree depth.
We define a unique codebook at tree depth one for each index selected at tree depth
zero, and we indicate this by writing the depth-one codebooks as Ck

1 (i0). At tree depth
two, we have codebooks Ck

2 (i0, i1), and so on. The quantizer at depth zero renders an
index i0 defined as

i0 = argmin
i∈I0

d(xk, cki )

= E(xk|Ck
0 ), (8.25)

where we introduced the notation E(xk|Ck
0 ) for the mapping Rk onto the set of codebook

indices I0 that is associated with finding the nearest neighbor in the codebook Ck
0 . If

we define the initial residual error vector to be the input vector, ek0 = xk, then we can
set up a recursion of the form

ekm = ekm−1 −Q(ekm−1|Ck
m−1(i0, i1, · · · , im−2)), (8.26)



8.4. STRUCTURED VECTOR QUANTIZERS 203

with

il = E(ekl |Ck
l (i0, · · · , il−1)), (8.27)

where Q(ekm|Ck
m(i0, i1, · · · , im−1)) is the mapping from Rk to Ck

m(i0, i1, · · · , im−1). We
assume for simplicity that all codebooks at a particular level l have identical cardinality.
For a codebook of depthm, the composite index will be a concatenation ofm+1 indices:
i0 · · · im. In practical applications, the distortion criterion used for the sub-codebooks
of the tree-structured codebook is generally set to be identical for all sub-codebooks.

Ck
0

Ck
1 (1)

Ck
1 (0)

Ck
2 (1, 1)

Ck
2 (1, 0)

Ck
2 (0, 1)

Ck
2 (0, 0)

Figure 8.4: A binary tree-structured vector quantization codebook.

The training of a tree-structured codebook is straightforward. For the root node one
applies the Lloyd algorithm. Next, consider a particular codebook at the node associated
with index i0. To train this codebook, we must first encode all data with codebook Ck

0 .
We select all training data associated with i0, subtract the centroid, and use this as the
training data set for Ck

1 (i0). We continue this procedure for nodes at greater depths.

8.4.2 The Multi-Stage and Split Vector Quantizers

The multi-stage vector quantizer can be seen as a constrained form of the tree-structured
vector quantizer. The multi-stage vector quantizer is a tree-structured vector quantizer
where the codebooks are dependent only on the depth of the quantizer in the tree and
not on the indices of the lower-depth quantizers. Thus, for a multi-stage quantizer we
have that Ck

m(i0, i1, · · · , im−1) = Ck
m. To be more specific, in figure 8.4 we would have

Ck
1 (0) = Ck

1 (1) = Ck
1 and Ck

2 (0, 0) = Ck
2 (0, 1) = Ck

2 (1, 0) = Ck
2 (1, 1) = Ck

2 .

The training of a multi-stage codebook must be modified accordingly. For the root node
one again applies the Lloyd algorithm. To train the codebook Ck

1 , one computes the
residual error e1 = e0 −Q(e0|Ck

0 ) for the entire data base. This method is continued for
greater depths.

As with the tree-structured codebook, the error criterion used for the sub-codebooks
is generally the same. However, the split vector quantizer can be interpreted as a
special case of the multi-stage vector quantizer with a distortion criterion that varies
with the depth. At each depth into the tree, the distortion criterion considers only a
sub-vector of the input vector. Thus, in the split vector quantizer, each vector is split
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into sub-vectors, and these sub-vectors are quantized separately. If the sub-vectors are
relatively independent, split vector quantizers can perform well. This has been shown,
for example, for quantization of (a transform of the) linear-prediction coefficients [52].
To make the sub-vectors relatively independent, transformations are useful.

8.4.3 The Gain-Shape Quantizer

In the gain-shape vector quantizer, the input vector xk (here assumed to be real) is
approximated by x̂k = λck, where λ is a scalar from a codebook of scalar gains, and
where ck is a vector from a codebook of shape vectors of unit Euclidean norm. Usually,
a squared error distortion criterion is used:

d(xk, λck) = (xk − λck)TW (xk − λck), (8.28)

where W is a real and symmetric (W = WT ) weighting matrix. Often, the weighting
matrix varies from one quantization operation to the next.

The most common procedure for gain-shape quantization is outlined as:

1. Obtain an expression for the optimal gain, given an arbitrary shape.

2. Select the best shape vector from the shape codebook assuming the optimal gain.

3. Select the best gain value from the gain codebook for the selected shape vector.

We now go through these steps. Let us consider a particular input vector xk and a
shape vector ck. The optimal gain that minimizes d(xk, λck) for a given ck is

λopt(c
k) = argmin

λ∈R

(xk − λck)TW (xk − λck)

= argmin
λ∈R

−2λckTWxk + λ2ckTWck

= argmin
λ∈R

λ2 − 2λ
xkTWck

ckTWck

= argmin
λ∈R

(λ− xkTWck

ckTWck
)2

=
xkTWck

ckTWck
. (8.29)

Equation 8.29 can now be used for the second step in the quantization procedure, the
quantization of the shape, assuming the optimal gain. Let Cck = {cki }i∈A be the shape
codebook with index set Ick . We then see that the optimal shape index assuming the
optimal gain is

ic = argmin
i∈I

ck

(xk − λopt(c
k
i )c

k
i )

TW (xk − λopt(c
k
i )c

k
i )

= argmax
i∈I

ck

(xkTWcki )
2

ckTi Wcki
. (8.30)
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Next we quantize the gain. Let the gain codebook be Cλ = {λi}i∈Iλ
with index set Iλ.

Using the same reasoning as in equation 8.29, the index iλ of the optimal gain codebook
entry is then

iλ = argmin
i∈Iλ

(xk − λic
k)TW (xk − λic

k)

= argmin
i∈Iλ

(λi − λopt(c
k))2. (8.31)

Thus, if the selected shape vector is ck, straightforward quantization of the optimal gain
for this vector using the squared error criterion minimizes the overall distortion.

In the special case that W does not vary, which means that cki can be normalized such
that |ckTi Wcki | = 1, and that the gain codebook is symmetric around zero, it is possible
to find the optimal entry in the product codebook with only two sequential searches.
To make this possible, the shape codebook must satisfy |ckTi Wcki | = 1 for all entries. In
this case, it follows that

min
i∈Iλ,j∈I

ck

d(xk − λic
k
j ) = min

i∈Iλ,j∈I
ck

(xk − λic
k
j )

TW (xk − λic
k
j )

= min
i∈Iλ,j∈I

ck

−2λic
kT
j Wxk + λ2i

= min
i∈Iλ

(λ2i − 2λi max
j∈I

ck

(|ckTj Wxk|)). (8.32)

From equation 8.32 it is seen that the product codebook CλCck is optimally searched if
we first search the shape by maximizing the criterion ckTj Wxk and then search the gain
codebook by minimizing the criterion in equation 8.32 (which is equivalent to the final
expression in equation 8.31).

The gain-shape quantizer is quite common in the area of speech coding, e.g., [53, 54],
where the dynamic range of the signal often varies greatly. Unfortunately, in these gain-
shape quantizers W varies with the speech, and the product codebook entry found by
the usual sequential search in the sub-codebooks is thus not guaranteed to be the best.

8.4.4 The Mean-Removed Vector Quantizer

The mean-removed quantizer is somewhat similar to the gain-shape quantizer in philos-
ophy. In the mean-removed quantizer, the mean of the input vector is computed first
and then subtracted from the data vectors. Let 1k denote the k-dimensional vector
with all k elements being 1: 1k = [1, 1, · · · , 1]T . Furthermore, Cµ is the codebook for
the mean value and Cck is the codebook for the mean-removed vector3. We restrict the
mean-removed vector codebook to be zero mean, i.e., 1kT ck = 0, and we denote the

3For notational convenience, we select directly from the codebooks Cµ and Cck rather than from
index sets as in section 8.4.3.
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mean of xk by µx = 1
k1

kTxk. For a simple squared error criterion we then have that

min
µ∈Cµ,ck∈C

ck

d(xk, µ1k + ck)

= min
µ∈Cµ,ck∈C

ck

(xk − µ1k − ck)T (xk − µ1k − ck)

= min
µ∈Cµ,ck∈C

ck

−2µxkT 1k − 2xkT ck + 2µ1kT ck + kµ2 + ckT ck

= min
µ∈Cµ,ck∈C

ck

−2kµµx + kµ2 − 2xkT ck + 2µx1
kT ck + ckT ck

= min
µ∈Cµ,ck∈C

ck

k(µ− µx)
2 + (xk − µx1

k − ck)T (xk − µx1
k − ck), (8.33)

where we exploited that 1kT ck = 0. Equation 8.33 shows that an independent quanti-
zation of the mean and the residual shape vector xk −µx1

k results in the optimal entry
in the product codebook.

8.5 Unstructured Quantizers: Fast Search Methods

We saw that the motivation for structured quantizers is that they reduce computational
and storage requirements. In this section, we show that it is possible to reduce the
computational requirements of unstructured nearest-neighbor (Voronoi) quantizers over
that required by a full search. Unfortunately, this generally results in an increase of the
storage requirements, but in certain cases this increase may be manageable.

8.5.1 Neighbor Descent

Neighbor descent methods employ a table that stores for each Voronoi cell the indices
for the neighboring Voronoi cells. (The determination of the set of neighboring cells is
a nontrivial task that we will not discuss.) Using this table, methods can be designed
that, on average, find the entry in a codebook that minimizes distortion very fast. An
algorithm to find the nearest centroid cki for a vector xk is:

1. Select a cell index j to start the iteration procedure.

2. Compute d(ckn, x
k) for all neighbors of j and select the centroid n that minimizes

d(ckn, x
k).

3. If d(ckn, x
k) < d(ckj , x

k) set j = n and go to 2, else set i = j and terminate.

A variation on this algorithm makes it computationally faster [55]:

1. Select a cell index j to start the iteration procedure.

2. Compute d(ckn, x
k) for neighbors until one is found for which d(ckn, x

k) < d(ckj , x
k)

or until all neighbors have been tested.

3. If no suitable neighbor is found set i = j and terminate, else set j = n and go to
2.
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Neighbor descent algorithms have two drawbacks. The first drawback is that the time
to find the best-matching codebook entry varies with the input vector. In practice,
one limits the number of comparisons to a reasonable number, which results almost
always in the determination of the best codebook entry and which guarantees that
the codebook entry is at least close in performance to the best codebook entry. A
more serious drawback is the requirement for the table storing the indices to all the
neighboring cells. The large computational requirement for this table is generally not
an issue, since it is done only once. However, the very large storage requirement for
the table is often prohibitive and forms the main reason why these methods are not
commonly used in practical applications.

8.5.2 The k-Dimensional Tree

Whereas vector quantizers require a large computational effort for a full search, scalar
quantizers can be searched rapidly. These facts immediately suggest a simple fast search
procedure. In this procedure, space is partitioned with scalar quantizers and codebook
vectors are searched within each partition. To be more precise: during the design
procedure one partitions Rk with k scalar quantizers into hypercubes, which we will
refer to as buckets. Then one creates a table that lists for each bucket the indices for
the cells of the vector quantizer that have a nonzero intersection with that bucket. The
fast search procedure for the optimal codebook entry cki for a vector xk then proceeds
as follows: i) determine the bucket in which xk falls, ii) perform an exhaustive search
over all codebook entries whose cells have nonzero intersection with the bucket.
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Figure 8.5: The k-d tree of depth 4 for example 8.3.

The k-dimensional tree (e.g., [56]), usually referred to as k-d tree, is created using the
same principle of partitioning space as discussed above. The k-d tree method partitions
the space one hyper-plane at a time. The position relative the hyper-plane is easy to
find: take the inner product of the vector normal to the plane and the difference between
the input vector and any vector on the plane and determine its sign. The first step of the
k-d tree search method for vector quantization is often a principle-component analysis
to make the partitioning by the k-d tree more efficient. Good placement of the hyper-
planes is a nontrivial problem [56], but even when the placement of the hyper-planes is
not optimized, the method will function.
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Example 8.3: A k-d tree of depth four

An example of a k-d tree with depth four is given in figure 8.5 (the input vector is

given by “x”). As a first step, we split the space (R2 in this case) with the hyper-

plane A. In this case, the input vector is found to be to the right of hyper-plane

A. The next partition is B; the input vector is found to be above this hyper-plane.

We perform the same operations with the hyperplanes C and D and thus find that

the point is in the cross-hatched bucket that forms a terminal branch of this k-d

binary tree of depth four. To exploit this in a vector quantizer covering R
2, one

looks up in the table which Voronoi regions intersect with this particular bucket

and performs an exhaustive search over the corresponding centroids (codebook

entries) to find the nearest entry in the codebook.

8.6 Problems

1. Figure 8.6 displays the beginning of the Lloyd algorithm for a scalar random
variable with a simple density and four quantization levels. The top of the figure
shows the density, which consists of two regions of identical uniform density. The
center of the “X” denotes decoded values, and the vertical bars denote the cell
boundaries. The squared error criterion is used.
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Figure 8.6: Density function and initial Lloyd iterations for problem 1.

(a) Copy the picture and continue the iterative process in a qualitative manner.
Continue your iterations until the changes are not visible in your picture.

(b) Has your solution converged exactly?

(c) In what sense is the solution optimal?

(d) How would your answer under 1b change if you were to optimize given a data
base and not given a density function?

(e) Suggest optimal centroids and cell boundaries for the illustrated density dis-
tribution. Show that they satisfy the optimality conditions.

2. You are to encode two processes consisting of independent identically distributed
samples. The marginal densities are shown in figure 8.7.
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(a) Write down the optimality conditions and based on these find the codebooks
that are likely the optimal 2-bit (4 codebook entries) scalar constrained-
resolution quantizers.

(b) Compute the index entropy for the 2-bit constrained resolution quantizer for
your design for quantizer A and quantizer B.

(c) Make a codeword assignment for both cases with a fixed number of bits per
sample (trivial).

(d) Make a codeword assignment that minimizes the average number of bits per
sample. (The codeword assignment is on a per-sample basis.)

(e) Sometimes codewords are assigned to blocks of indices to reduce the average
bit rate. Would this help in case A and/or case B?

3. Let Xi be a process consisting of iid samples, each uniformly distributed on [0, 1].
Define an N -level uniform quantizer Q(·) on [0, 1] as

Q(x) = (k + 1/2)/N, k/N ≤ x < (k + 1)/N.

Thus, [0, 1] is divided into N equal intervals. Application of the quantization to Xi

yields a new process Q(Xi) and the quantization-error process ǫi = Q(Xi)−Xi.

(a) Find the probability density function for ǫi.

(b) Find E(ǫi), E(ǫ2i ), and E(ǫiQ(Xi)).

(c) Find the covariance E[(ǫj − E[ǫj ])(ǫi − E[ǫi])] for the process ǫi.

(d) Find the spectral density for the process ǫi.

4. You are supposed to design a 2-bit scalar quantizer that uses a squared error
criterion. Consider the experimental data {0, 0, 1, 2, 2, 6, 6, 6, 8, 8, 8}. You use as
initial condition for your codebook {0, 1, 2, 3}.

(a) Apply the Lloyd algorithm to train the above codebook with the given data.

(b) In what sense is the solution of the Lloyd algorithm optimal?

(c) Compute the total error for the solution you found above. Is the initial
condition a “good” one and why? Can you define a better one?

5. Determine a practical expression for an optimal decoder for the absolute error
criterion, d(xk, yk) = ‖xk − yk‖.

0.7

0.1

1 32 6

density A

0.25

1 32 6

density B

Figure 8.7: Marginal density functions.
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6. Consider a scalar Gaussian density with unit variance and zero mean. Write a
program to generate 10000 data.

(a) Compute the Shannon lower bound for a rate of 4 bits per sample.

(b) Design a 16-entry codebook by drawing 16 points from the density.

(c) Using the Lloyd algorithm optimize the random 4-bit codebook. Plot the
centroids and cell bounds.

(d) Compare the experimental performance of your random and trained code-
books with the bound on distortion; provide reasons for why you do not
reach the bound.

(e) Under the (optimistic) assumption that high-resolution approximations hold,
design an entropy-constrained codebook for a 4-bit entropy.

(f) Use a practical Huffman code to encode the indices of the entropy-constrained
codebook. Compare its experimental performance with the other methods.

7. Consider a two-dimensional density fXY (x, y) = fX(x)fX(y) where fX(x) is Gaus-
sian with unit variance. Write a program to generate 100000 data.

(a) Use the constrained-resolution Lloyd algorithm with LBG initialization to
find a set of 16 centroids. Plot the centroids and measure the distortion.

(b) Use the constrained-entropy Lloyd algorithm with LBG initialization to plot
the empirical rate-distortion function between 0 and 5 bits. Obtain separate
curves for codebooks with 16, 32, 64, 128, and 256 entries. Plot the centroids
for the 64-entry codebook for an approximately 3-bit rate.

(c) Use a practical Huffman code to encode the indices of your 4-bit entropy-
constrained (size 64) and resolution-constrained codebooks and estimate the
resulting true mean bit rate. Comment on their performance. Can you do
better?

8. Consider again the density function in figure 7.3. Generate a data base of 10000
points according to this density.

(a) Starting with a codebook with 4 reconstruction points in each cluster, use
the Lloyd algorithm to optimize the codebook. Make a plot showing the
centroids.

(b) Starting with a codebook with all 8 reconstruction points in the top right
cluster, use the Lloyd algorithm to optimize the codebook. Make a plot
showing your centroids.

(c) Starting with a codebook with all 8 reconstruction points in the top right
cluster, use the Lloyd algorithm with an equidistortion correction to optimize
the codebook. Make a plot showing your centroids.

(d) Use the LBG algorithm to design a codebook with 8 reconstruction points.
Make a plot showing the centroids.

(e) Comment on your results.

9. Consider an iid Gaussian process with unit variance and and a squared-error
distortion criterion.
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(a) Write a program that generates data according to this process and make a
scatter plot containing 10000 data points for two-dimensional vectors.

(b) Using the Lloyd algorithm, design vector quantizers of fixed rate 2 (remember
that rate refers to bits per dimension) with dimensions 1, 2, 3, 4, and 5.

(c) Using the entropy-constrained Lloyd algorithm, design vector quantizers of
mean rate 2 (remember that rate refers to bits per dimension) with dimen-
sions 1, 2, 3, 4, and 5.

(d) Plot the rate-distortion function for a Gaussian iid process; plot the distor-
tions for your vector quantizer implementations in the rate-distortion plot
(evaluate over a test database).

10. Consider a first-order Gauss-Markov process with unit variance and with correla-
tion coefficient 0.9 and a squared-error distortion criterion.

(a) Write a program that generates data according to this process and make a
scatter plot containing 10000 data points for two-dimensional vectors.

(b) Using the Lloyd algorithm, design vector quantizers of rate 4 with dimensions
1, 2, 3, 4, and 5.

(c) Evaluate and plot the rate-distortion function for the process.

(d) Plot the distortions for your vector quantizers in the rate-distortion plot
(evaluate over a test database).

11. Consider problem 10.

(a) Using the constrained-entropy Lloyd algorithm, design constrained-entropy
vector quantizers of rate (close to) 4 with dimensions 1, 2, 3, 4, and 5. Explain
your choice of codebook size.

(b) Plot the distortions for your constrained-entropy vector quantizers in the rate
distortion plot.

12. Provide several reasons for not using the partitioning obtained by a k-d tree di-
rectly as Voronoi regions for a vector quantizer.

13. With a random number generator, we want to generate a noise signal that has the
same covariance matrix as a Lloyd algorithm optimized quantizer. The generated
noise is of the form αX+βW , where X is the random vector to be quantized, and
W is a random vector. Find the covariance matrix for W , and describe a method
to generate W .
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Transforms and Filter Banks

9.1 Introduction

In chapter 7, we saw that scalar1 quantization is a computationally simple procedure
that can perform within 0.25 bit of the rate-distortion bound under certain conditions,
assuming high rate. Most important is the condition that the variables to be quantized
are independent. This condition forms a powerful argument to design a coding system
that makes the data independent by means of invertible mappings. The forward map-
ping can then be applied prior to quantization and encoding and the inverse mapping
can be applied to the decoded values. Most practical source coders include such map-
pings. The mappings can roughly be divided into block transforms and filter banks on
the one hand, and prediction techniques on the other hand. In this chapter, we discuss
the block transforms and filter banks, while prediction is discussed in chapter 10.

Block transforms and filter banks are popular in image coding and audio coding. Their
application is less common in speech coding. Examples of coders that use linear block
transforms are JPEG for images [57] and MPEG-2 [1] in audio coding.

In the fore-mentioned practical implementations, the transforms are fixed. If the statis-
tics are known, coding performance benefits, in general, from adapting the transform
to the statistics of the input signal. Since this adaptation can be done before the actual
signal vector is known, we refer to this adaptation as a-priori adaptation.

Many recent coding methods adapt the transform to the actual signal samples. We call
this a-posteriori adaptation. These methods are not subject to the above-mentioned
motivation for transforms. Rather it is more natural to consider the transform adapta-
tion to be part of the codebook structure. In an example of a-posteriori adaptation, for
a sequence of vectors that is to be encoded, a particular transform can be selected from
a dictionary of transforms for each vector in the sequence. In the case of a-posteriori
transform adaptation, the encoded information generally consists of information about
the transform, and a set of conventional scalar quantization indices. Naturally, a trade-

1For the case of entropy-constrained quantization, our reasoning leading to the desirability of in-
dependence assumes that the constraint is on the first-order entropy. This additional assumption of
scalar character is also motivated by the strong demands on computation and storage by lossless coders.

213
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off exists between the information required for the transform specification and for the
indices. Because of their structure, it is often difficult to relate the coding efficiency
of methods with a-posteriori transform adaptation to results in information theory.
Furthermore, the adaptation generally implies that these transforms are nonlinear
operators2.

This chapter is organized as follows. For a proper understanding of transforms and filter
banks, we first discuss the principles of linear transforms that map Ck onto Cm, and
their interpretation as basis expansions and frame expansions. These principles are then
extended to the discrete and continuous Hilbert spaces and the discrete Hilbert space
is used to define filter banks. Next, we discuss some common examples of non-adapting
transforms (the DFT and the DCT transforms). We then move on to a-priori adaptation,
in a section that mostly focuses on the the Karhunen-Loève transform. This section also
explains the relation between the DFT, DCT, and the Karhunen-Loève transform. We
end the chapter with a section on methods for a-posteriori adaptation of the transform.

9.2 Fundamentals of Linear Transforms

In this section, we discuss linear transforms from a coding perspective. We start with
transforms that map a k-dimensional complex vector space C

k onto itself, then move
on to more general transforms that map Ck onto Cm with m ≥ k (the transformed
vector is embedded in an m-dimensional complex vector space), and end with a brief
discussion of transforms in discrete Hilbert space.

9.2.1 Transforms that Map C
k onto Itself and Bases

The coding of random vectors using an invertible linear transform is illustrated in figure
9.1. The forward transform is performed on the realization vector xk using a k × k
matrix U and the resulting vector yk is coded and decoded. The resulting quantized
vector Q(yk) is then converted to QU−1(xk) by the inverse transformation, where the
subscript on the quantizer operator indicates the linear transform after quantization.

xk yk

Q(·)
Q(yk) QU−1(xk)

U U−1

Figure 9.1: A transform coder using an invertible k × k matrix U .

Square-Matrix Transformations and Bases

In the coding scheme of figure 9.1, the quantizers operate on a vector yk in Ck that is
obtained by the linear transform

yk = Uxk, (9.1)

2Linearity of an operator implies that scaling the input is equivalent to scaling the output and that
summing inputs is equivalent to summing outputs. The latter property generally fails in a-posteriori
adaptation.
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where U is a square, invertible matrix.

Let us compare the matrix multiplication with the definition of a standard inner product.
We write the inner product between the k-dimensional column vectors xk and zk as

〈xk, zk〉 ≡
k
∑

l=1

zk∗l xkl , (9.2)

where ∗ indicates complex conjugate. We see that the inner product has a simple relation
to the matrix multiplication:

ykn = 〈xk, UH
n 〉, (9.3)

where H indicates the conjugate transpose or Hermitian transpose and where UH
n is

the n’th column of UH .

The transform of equation 9.1 (or, alternatively, the inner product of equation 9.3)
results in the representation of the vector xk in a new basis in Ck. This can be seen as
follows. The inverse transform is of the form

xk = U−1yk. (9.4)

Since U is invertible, the columns of U−1 must span Ck. In other words, the columns
of U−1 must form a basis of Ck. Equation 9.4 can be interpreted as an expansion of
xk into these basis vectors. Each of the basis vectors is multiplied by a component of
yk. This basis expansion interpretation of the inverse transform (equation 9.4) can
be made more explicit as follows:

xk =

k
∑

n=1

yknU
−1
n =

k
∑

n=1

〈xk, UH
n 〉 U−1

n , (9.5)

where U−1
n is the n’th column of U−1.

Distortion-Invariant Transforms and Orthonormal Bases

In our source-coding context, the purpose of the transform U is to make scalar quan-
tizers or low-dimensional vector quantizers more efficient while using a given distortion
criterion. However, the distortion is in general not the same when measured with the
same method on xk and yk = Uxk. Transforms that do not affect the distortion are
particularly convenient to use. In the following, we will determine under what condi-
tions the transform is distortion invariant for the class of distortion criteria that are of
the form

d(yk,Q(yk)) = d(‖yk −Q(yk)‖), (9.6)

where ‖ · ‖ indicates the Euclidean norm, based on the standard inner product: ‖yk‖ =
√

ykHyk. This set of criteria includes the distortion criteria given by equation 7.12.

The requirement that the Euclidean norm of the quantization error is invariant with
respect to the inverse transformation U−1 can be written as

‖yk −Q(yk)‖ = ‖xk − U−1Q(yk)‖ = ‖U−1(yk −Q(yk))‖, (9.7)
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which results in the simple requirement that

U−HU−1 = I. (9.8)

Multiplying equation 9.8 by UH on the left and U on the right, we obtain

I = UHU. (9.9)

A matrix U satisfying equation 9.9 preserves the Euclidean norm and is called unitary.
The unitarity condition implies that the columns of U are orthonormal and form an
orthonormal basis:

〈Un, Um〉 = δnm, (9.10)

where δnm is the Kronecker delta.

In the present case we are more interested in the columns of UH rather than the columns
of U , since the columns of UH are used for the inner product of equation 9.3. Fortu-
nately, for a square matrix U , if UUH = I then also3 UHU = I and the columns of UH

also form an orthonormal basis:

〈UH
n , U

H
m 〉 = δnm, (9.11)

Equation 9.9 shows that for a unitary transform UH = U−1 and that

xk = UHyk. (9.12)

The inverse mapping 9.12 can be interpreted as an orthonormal basis expansion:

xk =

k
∑

n=1

yknU
H
n =

k
∑

n=1

〈xk, UH
n 〉 UH

n . (9.13)

Equation 9.13 is equation 9.5 for the specific case of a unitary matrix U .

Example 9.1: A simple orthonormal basis

Figure 9.2 illustrates a simple basis in R
2. Let us use this as the expansion basis.

That is

UH
1 =

1√
2

[

−1
1

]

and

UH
2 =

1√
2

[

1
1

]

.

The transform matrix is thus

U =
1√
2

[

−1 1
1 1

]

.

It is easily verified that equality 9.9 holds for this matrix.

3In general, for a square matrix U the left and the right inverse are the same: if CU = I and
UD = I, then C = C(UD) = (CU)D = D.
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1

1−1

−1

Figure 9.2: A simple orthonormal basis in R2.

9.2.2 Linear Transforms that Map Ck onto Cm and Frames

We now remove the restriction that the matrix U has to be square. Instead of assuming
invertibility, we assume that the rows of U span the space of the input vectors and that
the distortion criterion is of the form given by equation 9.6. The transform is thus

ym = Uxk, (9.14)

wherem does not have to equal k. Again, this transform can be interpreted as computing
the inner products of the complex conjugates of the row vectors of U and the vector xk.

Since we required that the rows of U span the input vector space, we must have m ≥ k
and we must have that Uxk is zero only if xk is zero. The latter result and the linearity
of the mapping imply that the mapping from Ck to Cm is one-to-one: if both zm = Uxk

and ym = Uxk then also zm − ym = 0 and thus zm = ym. It is important to note that
the columns of U span a k-dimensional subspace of Cm.

Since the forward mapping is one-to-one, it is invertible, suggesting it may be useful
for coding. The corresponding coding system is illustrated in figure 9.3. In practice,
there are some problems. First, the output of the quantization operation Q(ym) is
not constrained to be in the column space of U . Second, the inverse of U , denoted by
Ũ , is, in general, not unique. In a coding system, it is natural to use the particular
inverse transform that minimizes the mean distortion associated with quantization of
the output. It is straightforward to find such a transform for the mean squared-error
distortion measure and that is what we will do in this section.

xk ym

Q(·)
Q(ym) QŨ (x

k)
U Ũ

Figure 9.3: A transform coder using an m× k matrix U .

We introduce a dimension redundancy in the transform domain variables if m > k.
This type of redundancy, which is often simply referred to as “redundancy” should
not be confused with the redundancy rate defined in equations 2.34 and 3.10. The
dimension redundancy is generally undesirable when scalar quantization is used, since
we must quantize more variables than we started with. However, dimension-redundant
representations are useful in certain cases. For example, this type of redundancy can
be used to counter the loss of information packets in a packet network. Also, in the
more general setting of Hilbert space, it can be shown that a signal expansion in terms
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of smoothly windowed complex exponentials is possible only if the representation is
redundant (cf. section 9.3.3).

Projections, the Pseudo-Inverse, and Quantization

In the mapping of equation 9.14, ym is a weighted addition of the k columns of the
matrix U . That is, Uxk must be within a k-dimensional subspace of Cm spanned by the
columns of U . We call this subspace the column space of U or the image of U . We
already know that any point Uxk in the image of U has a one-to-one correspondence
with a point in Ck. This means that there is an inverse Ũ such that for any xk ∈ Ck

xk = ŨUxk. (9.15)

It is convenient to separate Cm into the image-of-U subspace and its orthogonal com-
plement. An arbitrary vector ym in Cm can thus be decomposed into a component in
the image of U , denoted as ymU and a component orthogonal to that, which is denoted
as ymU⊥,

ym = ymU + ymU⊥. (9.16)

The inverse mapping for points in the image of U is given: it is the inverse of the
forward mapping U . However, if we require only that Ũ is an inverse, then the linear
mapping for the orthogonal complement of the image of U is arbitrary. Let us consider
the particular inverse U ♯ for which U ♯ymU⊥ = 0. We then have for an arbitrary ym in
C

m that

UU ♯ym = UU ♯ymU + UU ♯ymU⊥

= UU ♯ymU

= ymU . (9.17)

Thus, UU ♯ is the projection of ym onto the column space of U . Similarly, it is seen
that I − UU ♯ is the projection of ym onto the complement of the column space of U ,

(I − UU ♯)ym = ym − ymU

= ymU⊥. (9.18)

Given the significance of the inverse U ♯ such that U ♯ymU⊥ = 0, it is useful to find a
convenient expression for this inverse. We know that there exists a unique xk such
that ymU = Uxk and thus that UHymU = UHUxk. By definition, the columns of U are
orthogonal to the orthogonal complement of U , that is UHymU⊥ = 0. We thus have the
following conditions:

UHymU = UHUxk, (9.19)

UHymU⊥ = 0. (9.20)

Summing these conditions gives us

UHym = UHUxk. (9.21)

The inverse we are looking for, the so-called pseudo-inverse, is then

U ♯ = (UHU)−1UH . (9.22)

U ♯ indeed satisfies both U ♯Uxk = xk and U ♯ymU⊥ = 0.
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Example 9.2: Finding the pseudo-inverse through minimization

The pseudo-inverse is also found from a minimization criterion. To simplify the
derivation, we assume that xk and the transform U are real, but this restriction is
not necessary. Consider the vector ym that is

ym = Uxk + ǫm,

where ǫm is a remainder vector. We define the pseudo-inverse as the transform
mapping R

m onto R
k that minimizes the Euclidean norm of ǫm for a given ym.

This inverse mapping is defined if we express the optimal xk in terms of ym. The
square of the norm is

ǫmHǫm = ymHym − 2xkHUHym + xkHUHUxk.

Differentiating with respect to the vector xk and setting the result to zero results
in

0 = −2UHym + 2UHUxk,

which means that

xk = (UHU)−1UHym.

We can now turn to the task of finding the inverse transform that minimizes, in general,
the mean squared-error E[‖Xk − QŨ (X

k)‖2] where quantization is performed on the

random vector Y m = UXk with a squared-error criterion. We want an inverse Ũ such
that

E[‖Xk −QŨ (X
k)‖2] = E[‖Ũ(Y m −Q(Y m))‖2] (9.23)

is minimized, where ‖ · ‖ is the Euclidean norm. We decompose the error into the
orthogonal components Y m − Q(Y m)U and Q(Y m)U⊥ (recall that since Y m = UXk

we have that Y m = Y m
U ). We assume that the covariance of the quantization error

ym −Q(ym) is a scaled identity matrix (that is, we assume an “ideal” quantizer; it was
shown in section 7.6.2 that optimal lattice quantizers satisfy this condition ). We can
then write equation 9.23 in the following form:

E[‖Xk −QŨ (X
k)‖2] = E[‖Ũ(Y m −Q(Y m)U )‖2] + E[‖ŨQ(Y m)U⊥‖2]. (9.24)

The first term on the right-hand side of equation 9.24 is fixed; the second is minimized
if ŨQ(ym)U⊥ = 0, which is true for Ũ = U ♯. In other words, the pseudo-inverse is
optimal in a mean squared-error sense for the transform, quantization, inverse-transform
operation sequence shown in figure 9.3.

Frames in Ck

Let us consider again an m×k matrix U , whose rows span Ck. If these row vectors have
finite norm, as they normally do, then they form a frame. The row vectors of U , or,
equivalently, the column vectors of UH form a frame, if the so-called frame condition
holds:

AxkHxk ≤ xkHUHUxk ≤ BxkHxk, ∀xk∈Ck , (9.25)
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where A > 0 and B < ∞ are scalars4. A and B are called the frame bounds. The
condition that A > 0 implies that the frame vectors (the columns of UH) must span Ck.
In Ck, B < ∞ states that the vector norms of the frame vectors are finite. Whenever
A = B, then the frame is called tight.

It is useful to relate the inequality 9.25 to the eigenvalues of the k × k matrix UHU .
We start with noting that the k× k matrix UHU is positive definite and that U ♯U ♯H is
its inverse. We can then write UHU = V HΛV , where Λ is a diagonal matrix with the
eigenvalues along the diagonal and V is unitary. It follows that if the frame bounds are
tight (not to be confused with the frame itself being tight) then the frame bounds are
simply the lowest and the highest eigenvalues of UHU .

It is now easily proven that, if the column vectors of UH form a frame with frame bounds
A and B, then the column vectors of U ♯ form a frame with frame bounds 1/B and 1/A.
This follows immediately from the relation of the frame bounds with the eigenvalues of
UHU :

U ♯U ♯H = (UHU)−H

= (V HΛV )−H

= V HΛ−HV. (9.26)

Thus, the eigenvalues of U ♯U ♯H fall between 1/B and 1/A. This implies that 1/B and
1/A form frame bounds for the rows of U ♯H (and the columns of U ♯∗ and U ♯).

We have now shown that the columns of U ♯ form a frame with frame bounds 1/B and
1/A. This frame is called the dual frame of the frame associated with the columns of
UH . We sometimes use the nomenclature analysis frame for the columns of UH and
synthesis frame for the columns of U ♯. The names analysis and synthesis frames are
related to their function. The analysis frame is used to analyze the input xk, by means
of inner products. This is obvious when we rewrite equation 9.14 as

ymn = 〈xk, UH
n 〉. (9.27)

We use the synthesis frame to resynthesize the original vector (in a coding system: a
quantized version there-of). This becomes clear when we write the inverse transform in
the form of a frame expansion,

xk = U ♯ym =

m
∑

l=1

yml U
♯
l =

m
∑

l=1

〈xk, UH
l 〉U ♯

l , (9.28)

where the U ♯
l are the columns of U ♯. Note again, that the frame expansion is equivalent

to the inverse mapping from the frame coefficients 〈xk, UH
l 〉 to the vector xk.

The operation Uxk is sometimes referred to as a frame operation. U can then be
interpreted as the frame operator associated with the frame formed by the columns of
UH .

Example 9.3: The duality of the dual frame

When using U ♯H for the analysis, we have

ym
n = 〈xk, U ♯

n〉.
4Our usage of the notation A and B for the frame bounds is motivated by the near-universal usage

of this notation in the literature.
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Furthermore, the generalized inverse of U ♯H is

(U ♯H)♯ = (U ♯U ♯H)−1U ♯

= ((UHU)−1UHU(UHU)−1)−1(UHU)−1UH

= UH .

The corresponding synthesis is thus

xk =
m
∑

l=1

〈xk, U ♯
l 〉U

H
l .

Contrasting these equations with equations 9.27 and 9.28 illustrates the duality

between the frames formed by the columns of UH and U ♯, respectively.

From the frame condition it follows immediately that for a tight analysis frame with
frame bound A we have

UHU = AI. (9.29)

The corresponding synthesis frame has a frame bound of 1/A. Furthermore, in the case
of a tight frame, the pseudo-inverse reduces to the following simple form:

U ♯ = (UHU)−1UH

=
1

A
UH . (9.30)

Equation 9.30 implies that a tight frame is its own dual, except for a constant.
In other words, for a tight frame the analysis and synthesis frames are identical except
for a constant.

In closing the discussion on frames in Ck, we note that the relation between the frame
bounds of a frame and its dual do not carry over to the columns of an arbitrary gen-
eralized inverse Ũ . For finite dimensionality and inverses with finite coefficients, the
columns of Ũ do form a frame, however.

Example 9.4: An orthonormal basis is a tight frame with A = 1
Let U be a k × k matrix with orthonormal row vectors. In other words, the row
vectors form an orthonormal basis:

UUH = I.

It immediately follows that
UHU = I

and, therefore, that
xkHUHUxk = xkHxk

for any xk. Comparing this to the frame conditions (equation 9.25), we see that

an orthonormal basis corresponds to a frame with frame bound A = B = 1.

Example 9.5: A simple tight frame

Figure 9.4 illustrates a simple frame in R
2. The frame forms the rows of U :

UH
1 =

[
√

3
2
1
2

]

,
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UH
2 =

[

−
√
3

2
1
2

]

,

and

UH
3 =

[

0
−1

]

.

We note that UH is a 2× 3 matrix,

UH =
[

UH
1 UH

2 UH
3

]

and that

UHU =
3

2

[

1 0
0 1

]

.

The frame bound is thus 3
2
and U ♯ = 2

3
UH is an inverse of U .

1

1

−1

−1

Figure 9.4: A simple tight frame in R2.

Example 9.6: Construction of a tight frame from two orthonormal bases

Consider a k × k transform matrix D and a k × k transform matrix E, such
that DHD = I and EHE = I . Thus, the rows of D and the rows of E each
form an orthonormal basis of Ck. We can construct a frame by joining the bases
corresponding to D and E. The new frame consists of the rows of F in

F =

[

D
E

]

.

We then have that

FHF = DHD +EHE = I + I = 2I.

Thus, the rows of F form a tight frame with frame bound 2. We can construct

frames with higher redundancy by using more orthonormal bases.

Example 9.7: Multiple-description coding

In packet networks, the bit stream is transmitted in the form of discrete packets,
each containing a header and a payload (the actual bit stream). If the network
operates under real-time constraints and at high loads, packets are often lost. An
obvious method to increase robustness is to transmit all packets twice. It is natural
to throw away one packet if both packets arrive. Using frames we can do better
than that.

Let each packet contain k coded samples of the signal, with each packet repeated
twice. We can write this in a convenient manner using frame notation. Let xk
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represent the data of one packet. The data of the two packets then form a frame
y2k = Uxk with

U =

[

I
I

]

.

The first k components of Q(y2k) are encoded in the first packet, and the second
k components in the second packet.

We use three decoders. If we receive both packets we use the central decoder, if
we receive one packet we use the appropriate side decoder. The first side decoder
is activated if we receive only the first packet (the first k samples of Q(y2k)) and
it implements QU−1(xi) = Q(yi) for i = 1, · · · , k. Similarly, second side decoder
implements QU−1(xi) = Q(yi+k) for i = 1, · · · , k.
Next, we consider the central decoder. We note that the pseudo-inverse for U is
in this case

U ♯ =
1

2
UH .

We set up the encoding so that the quantization errors of the components of y2k

are independent. This can be accomplished by adding a known noise vector to
the input vector to the quantizer, y2k, and subtracting the same noise vector
after decoding, a process called “dithering”. Let the quantization error be v2k =
y2k−Q(y2k). The mean squared quantization , for the case that both descriptions
are received, is

E[‖Xk −Q(Xk)‖2] = 1

4
E[‖V 2k‖2] = 1

2
E[‖V k‖2],

where V k contains only the first k components of V 2k. Thus, by quantizing and
encoding the same samples twice with independent quantization error, we reduced
the mean squared error by a factor two (a gain of about 3 dB) for the case that
both descriptions are received.

In the above case, we assumed that the quantizers generate random quantization

noise and exploited that for the multiple-description encoding. It is more advanta-

geous to exploit the deterministic nature of a quantizer. Let us consider the case

of high-rate entropy-constrained scalar quantization. We have seen in chapter 7

that the optimal quantizer for this case is uniform. It is natural to interleave the

quantization levels of the first and second packets. That is, the centroids for the

second quantizer are set midway between the centroids of the first quantizer. It

is easily shown that also for this case U ♯ = 1
2
UH is optimal. The interleaving of

the two scalar quantizers is equivalent to doubling the number of levels and, thus,

to adding one bit to the encoding. This implies that, if both packets are received,

then this method reduces the mean squared quantization error for decoding two

packets by a factor four (6 dB) over the simple method of transmitting the same

packet twice.

Norm-Preserving Linear Transforms that Map Ck onto Cm Correspond to
Tight Frames

Let us again consider figure 9.3. Ideally, the distortion criterion minimized during the
quantization in Cm should equal to the distortion in Ck, even when m > k. For the
squared-error criterion, this corresponds to preservation of the Euclidean norm under
the inverse transform, which is impossible. Indeed, equality of ymHym and ymH ŨHŨym



224 9. TRANSFORMS AND FILTER BANKS

leads to the condition

ŨHŨ = I, (9.31)

which can, in general, not be satisfied since this matrix equation has m2 components,
while there are only k ×m components in the matrix U .

It is, however, possible to preserve the Euclidean norm when mapping from Ck to Cm

for k ≤ m. If we allow a scaling A, then we obtain the condition

UHU = AI, (9.32)

which is the condition that the rows of U form a tight frame.

Equation 9.32 implies for the squared-error distortion that

A‖xk −QUH (xk)‖2 = ‖Uxk − UQUH (xk)‖2

= ‖ym −Q(ym)U‖2. (9.33)

That is, for a tight frame, the squared-error component that falls within the image of U
is preserved. If the rows of U form a tight frame, and if the performance of the quantizer
is uniform over all dimensions of the m dimensional space, then minimizing the mean
distortion in the m-dimensional space is equivalent to minimizing the mean distortion
in the k-dimensional space.

9.2.3 Frames in Hilbert Space and Filter Banks

So-far the most general transforms we have discussed are those where the original vector
is in Ck and the transformed vector is in Cm (m ≥ k). We interpreted these transforms
in terms of analysis and synthesis frames. The resulting theory is useful in the coding of
vectors. We now generalize our discussion so that it becomes applicable to the coding
of processes (signals). For processes, we want to use filter banks in place of the matrix
transforms we used for the coding of random vectors. Indeed, filter banks are commonly
used to enhance the efficiency of source coding. To allow this transition to processes and
filter banks, we generalize frame theory to the discrete Hilbert space ℓ2(Z). Because of
its similarity, we also define frame theory for the continuous Hilbert space, L2(R). We
first discuss our previous results in the Hilbert-space setting without generalizing the
corresponding derivations and then discuss the interpretation of our results in terms of
filter banks.

Frames in Hilbert Space

We start with introducing a notation that is commonly used when defining frames in the
Hilbert space setting. In ℓ2(Z), we deal with vectors of infinite dimensionality and write
these as discrete functions of the index5. For example, ψk(n) is the value of function
ψk at sample n. Alternatively, in certain cases it is more convenient to say that the
component n of the vector ψk is ψk(n). We define the inner product of the discrete-time

5To avoid a confusing notation, we do not write the discrete time indices as subscripts.
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functions ψl and f as

〈f, ψl〉 =
∞
∑

n=−∞

ψ∗
l (n)f(n). (9.34)

In the case of L2(R), the functions are continuous and the inner product is defined by
an integral:

〈f, ψm〉 =
∫

R

ψ∗
m(t)f(t)dt. (9.35)

In ℓ2(Z), a frame consists of a set of functions, denoted as {ψm} (where m is a countable
function index with finite or infinite range) for which the frame condition holds:

A〈f, f〉 ≤
∑

m∈M

|〈f, ψm〉|2 ≤ B〈f, f〉, ∀f∈ℓ2(Z). (9.36)

The same relation holds for L2(R). As before, if A = B, then the frame is called tight.

As in the finite-dimensionality case, the forward transform is implemented by inner
products with the analysis frame. This forms the frame operation in the Hilbert-
space setting:

Uf(m) = 〈f, ψm〉, (9.37)

where U is the analysis frame operator. The frame condition forms a necessary and
sufficient condition for the frame operator to be invertible (on the image of U) and have
a bounded (i.e., finite) inverse. The frame condition thus guarantees completeness of
the frame.

We also define a conjugate frame operator, UH :

UHg(n) =
∑

m g(m)ψ∗
m(n). (9.38)

The conjugate frame operator will be used in section 9.2.4.

The notation Uf(m) indicates the inner product of f with ψm. These inner products
are often referred to as coefficients, since they form the coefficients that multiply the
dual frame functions in the frame expansion of the original function (signal),

f(n) =
∑

m∈M

〈f, ψm〉ψ♯
m(n)

=
∑

m∈M

Uf(m)ψ♯
m(n)

= U ♯Uf(n). (9.39)

The inverse frame operator U ♯ results in the frame expansion that corresponds to the
inverse mapping from the frame coefficients 〈f, ψl〉 to the function f(n). Its existence
is guaranteed by the frame condition.

For the tight frame case, A = B, the frame is its own dual except for a factor equal to
the frame bound:

ψ♯
m =

1

A
ψm. (9.40)
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Before continuing, let us summarize the correspondences between the finite-dimensionality
and more general Hilbert-space cases. The set of all analysis-frame functions ψm corre-
sponds to the set of row vectors of the finite-dimensionality transform matrix U . The
set of all synthesis frame functions ψ♯

m corresponds to the columns of the pseudo-inverse
U ♯.

While the notation introduced for this section is generally used in the continuous and
discrete Hilbert space cases, the matrix notation we used before is often helpful for
understanding the discrete Hilbert space ℓ2(Z) case. Naturally, the matrices are then
of infinite dimensionality, and we have to be careful with the consequences there-of.
Practical cases where we use such matrices will be discussed in section 9.3.4.

Perfect-Reconstruction Filter Banks

It is convenient in source coding if the signal can be processed with a finite delay. A
natural method to accomplish this is to use frame functions that are constructed from a
finite set of finite-support frame functions by repeating a standard time-shift operation.
That is, the frame functions can be described by a doubly indexed set of functions φj,m
such that

φj,m(n) = φj(n−mM), j = 1, · · · , J, m ∈ Z, (9.41)

where the time shift is set to M samples and where φj has finite support (is nonzero for
only a finite set of samples) to ensure the finite-delay property. The index m indicates
time, while the index j is often associated with frequency, scale, or a within-block time
location. This type of doubly indexed frame is sometimes called a uniform filter bank
(UFB) frame [58], a convention we use here as well. The term “uniform” refers to the
uniform time interval M when increasing the time index m in φj,m(n).

The structure given in equation 9.41 is particularly useful since the dual of this frame
has the same structure. That is, if an analysis frame is a UFB frame, then so is the
synthesis frame. Let SM be a time-shift operator such that SMf(n) = f(n +M). We
then have

f(n+M) =
∑

j,m

〈SMf, φj,m〉φ♯j,m

=
∑

j,m

〈SMf, φj,m+1〉φ♯j,m+1

=
∑

j,m

〈SMf, SMφj,m〉φ♯j,m+1

=
∑

j,m

〈f, φj,m〉φ♯j,m+1. (9.42)

Thus, to shift the signal byM samples, we simply move the coefficients by one time index
with respect to the synthesis frame functions. For this to be true for all f(n) ∈ ℓ2(Z),

we must have that φ♯j,m+1 = SMφ
♯
j,m.

While the naming convention of the UFB frame clearly connects it to a filter bank,
we have not yet discussed this relation explicitly. Let us denote a time-reversal by
x̆(n) = x(−n). Let us define gj(m) as the convolution of f(n) with φ̆∗j , down-sampled
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by a factor M . Then, the following relation holds between this down-sampled filter
output and the inner products between f(n) and φ̆j,m(n):

gj(m) =
∑

n

f(mM − n) φ̆∗j (n)

=
∑

n

f(mM − n)φ∗j (−n)

=
∑

n

f(mM + n)φ∗j (n)

=
∑

n

f(mM + n)φ∗j,m(n+mM)

= 〈f, φj,m〉. (9.43)

Thus, we conclude that the down-sampled convolution of f(n) with a filter with impulse

response φ̆∗j is equivalent to taking the inner product with the time-reversed frame
functions. In other words, computing the coefficients of the frame expansion is equivalent
to filtering with a filter bank and then down-sampling by a factor M , as is illustrated
in figure 9.5. To allow reconstruction, we must have that J ≥ M . If M = J , then M
samples of f(n) correspond to M coefficients gj(m) and the filter bank is critically
sampled. If J > M , then the filter bank is over-sampled.

f(n)
φ̆∗1(n)

φ̆∗2(n)

φ̆∗J (n)

↓M

↓M

↓M g1(m)

g2(m)

gJ(m)

Figure 9.5: Analysis filter bank equivalent of the analysis-frame operator for a UFB
analysis frame. For J > M the filter bank is over-sampled and for J = M the filter
bank is critically sampled.

Example 9.8: A simple analysis filter bank

The above discussion shows that performing the same linear transform on sequen-
tial blocks of a signal can be interpreted as a filter bank. As an example, we
consider a signal s(n). The signal is divided into sequential blocks of M samples,
thus creating a sequence of M -dimensional vectors; each vector is transformed by
multiplying with an M ×M matrix A. Following the above reasoning, these oper-
ations are equivalent to a critically-sampled filter bank of the form shown in figure
9.5, with filters φ̆∗

j (n), j ∈ {1, · · · ,M}, with discrete filter impulse responses

φ̆∗
j (n) =

{

Aj,M−n, n = 0, · · · ,M − 1
0, elsewhere.

The (synthesis) frame expansion can also be interpreted as a filter bank. This is seen

as follows. Let g↑Mj (m) be the factor-M upsampling of the signal gj(m) (insert M − 1
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zeros between each sample). Then we have that

f(n) =
∑

j,m

gj(m)φ♯j,m(n)

=
∑

j,m

gj(m)φ♯j(n−mM)

=
∑

j,m

g↑Mj (m)φ♯j(n−m)

=
∑

j,m

g↑Mj (n−m)φ♯j(m). (9.44)

The expansion of f(n) in the synthesis frame functions φ♯j,m is equivalent to filtering

g↑Mj (m) with φ♯j(n) and summing over the filter outputs, as is shown in figure 9.6.

f(n)
φ♯1(n)

φ♯2(n)

φ♯J (n)↑M

↑M

↑M
g1(m)

g2(m)

gJ(m)

Figure 9.6: Synthesis filter bank equivalent of the synthesis-frame expansion for a UFB
analysis frame.

We have seen that UFB frames correspond to perfect-reconstruction filter banks. Critically-
sampled filter banks correspond to analysis and synthesis frames that form a basis of
ℓ2(Z), whereas over-sampled filter banks correspond to redundant analysis and synthesis
frames. Furthermore, it follows from these correspondences that if the UFB frames are
tight, then the impulse responses of the analysis and synthesis filter banks are identical
except for conjugation and a scaling factor. If the frame is an orthonormal basis, then
the scaling factor is unity.

So-far we have ignored several issues. First of all, in a practical implementation, filters
must be causal and this means that the analysis-synthesis process introduces delay. If
the analysis and synthesis frame functions have finite support, it is straightforward to
add delay to the analysis and synthesis filter banks such that each is causal. Perfect
reconstruction is maintained, except for this delay. A more serious issue is that we have
not discussed how to create an analysis-synthesis frame pair. In finite dimensionalities,
the dual frame can be obtained using the pseudo-inverse of the corresponding matrix
representation. This procedure usually is not practical for the ℓ2(Z) case. The so-called
frame algorithm can often be applied and we will discuss this algorithm in section 9.2.4.
However, many common analysis-synthesis frame pairs have been found with procedures
specific to the particular frame. In section 9.3, a number of such well-known pairs will
be discussed. Below, we provide examples with a simple ad-hoc design method that
exploits the properties of tight frames and an implementation there-of.
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The performance of a filter bank for a particular application is determined by the be-
havior of the individual signals gi(m). The performance is often commonly analyzed in
terms of the severity of the well-known aliasing (frequency folding) phenomenon for
these signals. Aliasing is a function of frequency-band selectivity and the down-sampling
factor M and will be discussed in more detail in section 9.3.3.

Example 9.9: Simple perfect-reconstruction filter-bank design method

Consider a set of orthonormal functions {φj(n)}j∈{1,··· ,J} that have support in the

range (are nonzero only for) 0, · · · , J − 1. That is, the vectors {[φj(0), · · · , φj(J −
1)]}j∈{1,··· ,J} are orthonormal. The design method starts with selecting an appro-

priate set of such orthonormal vectors. Upon selecting such an orthonormal set, we

can construct an orthonormal basis A0 for the Hilbert space ℓ2(Z) by displacing

the functions by integer multiples of J : A0 = {φj(n− lJ)}j∈{0,··· ,J},l∈Z . Comput-

ing the coefficients for the orthonormal basis A0 corresponds to a block-by-block

transform of the signal. We note that A1 = {φj(n − lJ − 1)}j∈{1,··· ,J},l∈Z also

forms an orthonormal basis for ℓ2(Z). From the reasoning used in example 9.6,

we know that the joint set A0 + A1 forms a tight frame. It is easy to generate

many different tight frames in this manner. For example, the set A0 + · · ·+AJ−1

corresponds to the analysis filter bank (of a perfect-reconstruction filter bank)

where the filter outputs are not down-sampled. The corresponding synthesis fil-

ter banks are constructed by conjugation and division by the oversampling fac-

tor. It is simple to construct perfect-reconstruction filter banks with any desired

down-sampling rate. The performance of the perfect-reconstruction filter banks

constructed this way depends, naturally, on the selection of the orthonormal set of

vectors {[φj(0), · · · , φj(J−1)]}j∈{1,··· ,J}. An implementation of the design method

is illustrated in example 9.10.

Example 9.10: Simple three-band perfect-reconstruction filter bank

Following the method outlined in example 9.9, let us design a simple filter bank
with three bands, where the output from each filter retains the original sampling
rate. We start with constructing a vector {[φj(0), · · · , φj(J − 1)]}j∈{1,··· ,J} for
each band. We need three vectors, one for each band, and so J = 3. The low-pass
and high-pass filters are centered at ω = 0 and at ω = π, respectively. Their
center frequency differs by π, and it is reasonable to make them differ only by this
frequency displacement, which corresponds to a modulation with ejπn = (−1)n.
In other words, the sign of the vectors corresponding to the high-pass and low-pass
filters should be the same for odd components of the vectors and be the opposite
for even components of the vectors, or vice versa. The power spectrum of the
vector corresponding to the low-pass filter should be maximum at ω = 0, which is
true if we select the components to be symmetric, positive, and with the largest
value in the center. We then arrive at the two orthonormal vectors [1/2,

√

1/2, 1/2]

and [1/2,−
√

1/2, 1/2]. The third vector must be orthonormal to both and has to

be [
√

1/2, 0,−
√

1/2]. The filter bank impulse responses are obtained by simply
time-reversing the vectors

H1(z) =
1

2
+

1

2

√
2z−1 +

1

2
z−2

H2(z) = −1

2

√
2 +

1

2

√
2z−2

H3(z) =
1

2
− 1

2

√
2z−1 +

1

2
z−2.
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The transfer functions of these three filters are shown in figure 9.7. Resynthesis
from the signals that form the output of the analysis filter bank is obtained by
filtering the three signals with the filters

H♯
1(z) =

1

3
(
1

2
+

1

2

√
2z−1 +

1

2
z−2)

H♯
2(z) =

1

3
(
1

2

√
2− 1

2

√
2z−2)

H♯
3(z) =

1

3
(
1

2
− 1

2

√
2z−1 +

1

2
z−2).

and adding. The factor 1/3, which corrects the signal power, corresponds to the

inverse of the frame bound.

d
B

−10

−20

−30

0

0 π/2 π
ω

Figure 9.7: The transfer functions for the perfect-reconstruction filter bank of example
9.10.

9.2.4 The Frame Algorithm

It is often the case that an analysis filter bank that corresponds to a frame is given, but
that an associated synthesis (inverse) filter bank is not known. While the synthesis filter
bank is not unique, we prefer to find the one that corresponds to the dual frame and,
thus, to a minimum-squared-error reconstruction. The frame algorithm described in
this subsection is an iterative procedure to compute the dual frame. The first iteration
often provides a useful approximation to the inverse or even the exact inverse.

Let g = Uf be the result of the frame operation on f . We define the frame algorithm
by the estimate f(m) of f at iteration m:

f(m) = ρUHg + (Id− ρUHU)f(m−1), (9.45)

where ρ is a scalar relaxation parameter, Id is the identity operator, and f(0) = 0. The
estimation error at iteration m is then

f − f(m) = (Id− ρUHU)(f − f(m−1)) = (Id− ρUHU)mf. (9.46)

By selecting the optimal value for ρ, the estimation error can be bounded as follows:

‖f − f(m)‖ = min
ρ

‖(Id− ρUHU)mf‖

≤ min
ρ

max(|1− ρA|, |1 − ρB|)m‖f‖. (9.47)
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The values A and B form the minimum and maximum eigenvalues of the operator UHU
a, which are precisely the frame bounds (we have actually shown this for the Ck case).

Minimizing the bound on the estimation error results in ρ = 2
B+A and the error becomes

‖f − f(m)‖ = (
B −A

B +A
)m‖f‖. (9.48)

Thus, with the proper selection of ρ, the frame algorithm converges.

The first-iteration estimate of f by the frame algorithm is the expansion ρUHg =
ρ
∑

j gjψj , which implies that ρUH is an approximation to the inverse operator. This
approximation corresponds to a synthesis filterbank with impulse responses that are
the time-reversed impulse reponses of the analysis filterbank, scaled by ρ. Moreover,
we see from equation 9.48 that the relative error is bound by the factor B−A

B+A . Note
that the first-iteration estimate immediately provides the dual frame for A = B, which
corresponds to a tight frame.

9.3 Non-Adaptive Transforms and Filter Banks

Non-adaptive transforms (including filter banks) are commonly used in source coding.
However, it is not immediately obvious that such transforms are useful for this purpose.
Let us briefly revisit the arguments for using transforms in source coding. It is impor-
tant in practical source coding systems to have manageable computational and storage
complexity and this means that scalar quantizers or low-dimensional vector quantizers
are desirable. In section 7.5, we saw that such quantizers perform, at least asymptot-
ically at high rate, most efficiently if the variables to be encoded are independent. A
natural question is then if we can make data samples independent with a transform that
do not depend on signal properties.

In general, to make signal data independent, its statistics must be known. However, the
discrete-time Fourier transform and the discrete-time cosine transform can convert all
discrete stationary Gaussian signals into independent coefficients. Finite-dimensional
approximations by means of succesive application of the discrete Fourier transform
(DFT) and the discrete cosine transform (DCT) have been found to be powerful tools
in many source-coding applications.

The undesirable effects resulting from the approximation of the discrete-time transforms
by sequential application of the finite-dimensionality DFT or DCT to successive signal
segments can be minimized by using smooth windows and overlap-add synthesis. Thus,
the DFT is generalized to the Gabor transform, and the DCT to the modulated lapped
transform (MLT). As will be seen in this section, smooth windows require oversampling
for the Gabor transform (more coefficients are needed to describe the signal after the
transform), but not for the MLT.

We start this section with showing how the Fourier transform can make certain data
independent. We then discuss the DFT and DCT and their application to signals. We
conclude the section with a discussion of the MLT and the Gabor transform.
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9.3.1 The Fourier Transform and Stationary Gaussian Signals

For Gaussian coefficients, statistical independence is equivalent to being uncorrelated.
This means that a transform that decorrelates the data is sufficient for asymptotically
optimal source coding with a scalar quantizer or a low-dimensional vector quantizer.
For stationary Gaussian signals, such a transform is the Fourier transform.

Let Xw(e
jω) denote the discrete-time Fourier transform of the wide-sense stationary,

discrete-time signal X(n) windowed by a suitable window w and let R(n − m) =
E[X(n)X(m)] be the autocorrelation of this signal. Then we have

E[Xw(e
jω1)X∗

w(e
jω2 )]

= E[
∑

n∈Z

w(n)X(n)e−jω1n
∑

m∈Z

w(m)X(m)ejω2m]

=
∑

m∈Z

∑

n∈Z

w(n)w(m)R(n −m)e−jω1n+jω2m

=
∑

m∈Z

∑

l∈Z

w(l +m)w(m)R(l)e−jω1(l+m)+jω2m

=
∑

m∈Z

e−j(ω1−ω2)mw(m)
∑

l∈Z

R(l)e−jω1lw(l +m) (9.49)

Let R(ejω) be the discrete-time Fourier transform of R(n) and let R(n) decay suffi-
ciently rapidly. Let wS(t) denote a square window of support S. Then, for sufficiently
large support S, we have that the term

∑

l∈Z R(l)e
−jω1lw(l + m) equals R(ejω1) for

almost all values of m within the support region of wS(m). Furthermore, the factor
∑

m∈Z e−j(ω1−ω2)m approaches a Dirac delta function6 with increasing support S. We
write this asymptotic behavior as

E[Xw(e
jω1)X∗(ejω2)] →

S→∞
δ(ω1 − ω2)R(e

jω1). (9.50)

The asymptotic behavior of 9.50 indicates that the frequency components of stationary
Gaussian signals are uncorrelated. It is straightforward to derive an equivalent result
for continuous-time functions using the Fourier transform (see problem 11).

In practical applications, we have to use finite-block transforms in the form of the DFT
and DCT, which are discussed in the next section. We will see that the finite size of
these transforms, which corresponds to a finite window w(m) degrades the performance.
We note, however, that having a smooth window and an associated high frequency
resolution increases the sharness of the term

∑

m∈Z e−j(ω1−ω2)mw(m) in equation 9.49
and, therefore, the effective decorrelation.

9.3.2 Unwindowed Discrete Fourier and Cosine Transforms

The DFT and DCT are useful for the encoding of sequences of vectors. These vec-
tor sequences can be subsequent blocks of a one-dimensional signal and the sequential
application of the DFT or DCT to these blocks can then be interpreted as a filter bank.

6The delta function and the associated symbolic integrals are defined under the theory of distribu-
tions (e.g., [59])
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As we will see in this section, a finite-size DFT or DCT is an imperfect tool for decor-
relating a wide-sense stationary signal. The k-dimensional DFT and DCT decorrelate
wide-sense stationary, periodic sequences with a period k. In the case of the DFT, the
periodic sequence is simply a repetition of the vector, whereas in the DCT the relation
between the periodic sequence and the k-dimensional input vector is somewhat more
complicated.

If the input vector is long compared to the decay of the sample correlations, then the
DFT and the DCT generally perform an approximate decorrelation that is useful for
coding. Even if this is the case, the block boundaries between successive vectors are
often the source of significant perceptual distortion in image and audio coding (often
referred to as “blocking effects”). A natural solution to these problems is the usage
of smoothly windowed frame functions. However, such functions introduce additional
theoretical challenges and we postpone their discussion until section 9.3.3.

The Discrete Fourier Transform

The discrete Fourier transform (DFT) is the multiplication of a vector xk by a matrix
U of the form

UF =
1√
k











W0 W0 W0 · · · W0

W0 W−1 W−2 · · · W−(k−1)

...
...

...
. . .

...
W0 W−(k−1) W−2(k−1) · · · W−(k−1)(k−1)











, (9.51)

where we used the so-called twiddle factor

W = e
j2π
k . (9.52)

The matrix multiplication displayed here is, of course, not a very clever way of im-
plementing the DFT in terms of computational effort. It is useful for our purposes,
however; for the computational aspects of the DFT we refer to the extensive literature
on the fast Fourier transform (FFT) (e.g., [60]).

It is easily seen that the rows of UF form an orthonormal basis in Ck. The inverse matrix
is thus simply the transpose conjugate of UF and we have UH

F UF = I. By extending
the basis vectors with zeros, and then creating additional vectors by shifts as described
in section 9.2.3, a basis for ℓ2(Z) can be constructed. The associated frame operator
can be interpreted either as a filter bank or as a block-by-block transformation.

The above discussion shows that the DFT leads to straightforward transforms and
inverse transforms in both Ck and ℓ2(Z). Next, we examine whether the DFT is useful
for decorrelating signals. For this, let us consider its operation on a zero-mean k-
dimensional random vector Xk that is transformed into Y k = UFX

k. (Note that we
can always convert the random vector to be zero mean.) It is convenient for our purpose
to write the transform in the form

Y k
m =

k−1
∑

l=0

W−lmXk
l . (9.53)
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We now want to see what the correlations of the components of the random vector yk

are:

E[Y k
n Y

k∗
m ] = E[

k−1
∑

l=0

W−lnXk
l

k−1
∑

q=0

WqmXk∗
q ]

=

k−1
∑

l=0

k−1
∑

q=0

W−ln+qmE[Xk
l X

k∗
q ]. (9.54)

So-far the DFT does not seem to lead to a decorrelation. Looking for inspiration at the
derivation of equation 9.50 we see that we would like to write E[Xk

l X
k∗
q ] = R(l, q) =

Rl−q, i.e., the correlation should depend only on the difference l− q. This is true if the
sequence is a segment of a periodic and wide-sense stationary sequence. This implies
that any realization of Xk extends periodically:

xkn+mk ≡ xkn, n ∈ {0, 1, · · · , k − 1}, m ∈ Z. (9.55)

These extensions are shown in figure 9.8. The extensions allow us to decorrelate the
vectors (and also define values for the correlations for l − q > k). We can continue the
derivation in equation 9.54 to obtain

E[Y k
n Y

k∗
m ] =

k−1
∑

l=0

k−1
∑

q=0

W−ln+qmRl−q

=
k−1
∑

p=0

k−1
∑

q=0

W−pn+q(m−n)Rp

=

k−1
∑

q=0

Wq(m−n)
k−1
∑

p=0

W−pnRp

= δmn

k−1
∑

p=0

W−pnRp. (9.56)

Equation 9.56 shows that if we assume that the vectors xk extend periodically, then
E[Y k

n Y
k∗
m ] is diagonal and the components of Y k are decorrelated.

Let us consider qualitatively the consequences of our periodicity assumption. The pe-
riodic extension assumption results in a circulant autocorrelation matrix. Circulant
matrices are Toeplitz (constant along the diagonals) matrices, where each row (column)
forms a cyclically shifted version of the neighboring rows (columnns). The DFT per-
forms a better approximation to decorrelation of a block of samples of a stationary
signal if the differences between the circulant autocorrelation matrix and the actual
autocorrelation matrix are minor. This is more likely with increasing dimensionality
since Ri is generally a decreasing function of |i|.

Example 9.11: Circulant autocorrelation matrices

For an example with k = 5, the circulant autocorrelation matrix would be of the
form

R ≡ E[x5x5T ] =













R0 R1 R2 R2 R1

R1 R0 R1 R2 R2

R2 R1 R0 R1 R2

R2 R2 R1 R0 R1

R1 R2 R2 R1 R0













,
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where each row is a circular shift of the next row. In contrast, the “true” auto-
correlation function corresponding to a segment of a stationary signal would be of
the form

R =













R0 R1 R2 R3 R4

R1 R0 R1 R2 R3

R2 R1 R0 R1 R2

R3 R2 R1 R0 R1

R4 R3 R2 R1 R0













.

x8

x8 with DCT-II extension

x8 with DFT extension

0 8−8

Figure 9.8: An eight-dimensional vector, x8, and the extensions assumed for DFT and
DCT decorrelation.

The Discrete Cosine Transform

Like the DFT, the DCT has decorrelating properties. However, because of the symmetry
assumptions made, the DCT results in a better decorrelation for a given block size than
the DFT for most practical signals, e.g., [61, 62]. As a result, the DCT is more commonly
used in practical source coding applications than the DFT.

A number of different flavors of the DCT exist, each with different symmetries. We base
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our discussion on the so-called DCT-II transform:

yi = c(i)

√

2

k

k−1
∑

n=0

xn cos(
(2n+ 1)iπ

2k
), (9.57)

xi =

√

2

k

k−1
∑

n=0

c(n)yn cos(
(2n+ 1)iπ

2k
), (9.58)

where c(0) = 1/
√
2 and c(i) = 1, i ∈ {1, · · · , k − 1}.

Again, the derivation of equation 9.50 can be adapted to the transform at hand, and
again we have to make an additional modification. The basis vectors of the DCT-II
exhibit a 2k periodicity and a symmetry. The assumed extensions are

xn+2k = xn,

x2k−1−n = xn. (9.59)

This extension is also shown in figure 9.8. The resulting decorrelation can be written as

E[YmY
∗
n ] = δmnc(m)2

k−1
∑

i=0

Ri cos((2i+ 1)mπ). (9.60)

From the symmetries of the DCT-II, we can see two reasons why this DCT should
perform better than the DFT in the decorrelation of a block of samples for a stationary
signal: i) there is no jump at the extension ii) the correlations across the extension
are averaged over different left and right extensions. Thus, the autocorrelation matrix
corresponding to DCT-II extension is generally more similar to the true autocorrelation
of the stationary signal than that corresponding to a DFT extension.

9.3.3 Windowed Discrete Fourier and Cosine Transforms

As was seen in the previous section, the DFT and DCT can decorrelate a stationary
sequences only approximately, because of boundary effects. We noted in section 9.3.1
that smooth windows will aid the effective decorrelation. Furthermore, in practical cod-
ing it is often useful to resolve time-frequency events in signals, and the boxcar (square)
window often performs poorly in this respect 7. Thus, smoothly tapered windows are
commonly used in the context of filter banks and source coding.

Analysis-Only Windowing versus Windowed Frame Functions

A simple and commonly used method for introducing windowing to block transforms
uses windowing only during the analysis operation. That is, the first step of the trans-
form is to create a sequence of overlapping windowed signals segments. The windows
are selected such that they sum to one. The second step is to perform the DCT or
DFT on every windowed segment. The inverse transform does not contain a window-
ing operation and consists of performing the inverse DCT (or DFT) and summing the

7Rectangular windows correspond to a 1
ω2 decay of the signal power in the frequency domain; this

is slow compared to tapered windows and leads to an infinite product of time and frequency variance.
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resulting segments. Since the windows corresponding to the segments sum to one, the
summation of the reconstructed segments results in the original signal. The filter inter-
pretation of this method is shown in figure 9.9. Note that the synthesis is an expansion
in unwindowed basis functions.

While the analysis-only windowing method is straightforward and provides perfect re-
construction, it has a number of disadvantages:

1. The approach is inherently oversampled since the segments overlap.

2. Quantization (or other) operations in the transform domain result in discontinu-
ities in the time domain, since the synthesis functions are not tapered.

3. The transform does not preserve energy even when the basis used is orthonormal.
That is, the set of functions {w(n−mM)φj(n−mM)}m∈Z,j=1,··· ,M forms a frame
(which makes reconstruction possible) but not a tight frame.

To avoid these problems, we consider in the following sections only methods where the
window is built into the frame functions. The filtering interpretation of this method is
illustrated in figure 9.10, whereas the transform interpretations are used and discussed
in detail in sections 9.3.4 and 9.3.5. The frame functions are smoothly windowed cosines
or complex exponentials. As was mentioned before, the combination of both smooth
windowing and critical sampling exists for DCT based transforms but not for the Gabor
transform.

Aliasing in Windowed Fourier and Cosine Transforms

As is shown in figure 9.5, the analysis filter bank equivalent of the analysis-frame opera-
tor is a UFB that contains a down-sampling operation. It is well-known that if a signal
is not band-limited to half the sampling frequency, aliasing results.

In the case of the windowed Fourier and cosine transforms, the bandwidth of a particular
channel j is determined by the bandwidth of the window. Let us define the sampling
rate of the original signal f(n) to be 1. For a critically sampled filter bank, the sampling
rate of the coefficient signals gj(m) is then 1

M . The bandwidth of the square window
with support M is much wider than 1

2M , resulting in severe aliasing. As a result, the
critically sampled Gabor transform, which must use a square window (shown below),
suffers from severe aliasing.

Aliasing can be reduced by two methods: i) by reducing the down-sampling factor to
less than M ii) by increasing the support and smoothness of the window. Reduction
of the down-sampling can be applied to both windowed cosines and windowed complex
exponentials (Gabor transforms). The technique of increasing the support and smooth-
ness of the window is preferred, since it does not lead to an increase in the number of
coefficients per unit time. However, as was mentioned before and as will be shown in
section 9.3.5, this is not possible for a critically sampled Gabor filter bank.

The effects of aliasing are generally most severe if nonlinear operations (such as quan-
tization and adaptive filtering, where the filter depends on the input) are performed on
the individual coefficients channels gj(m) under the assumption that they represent the
signal within the corresponding frequency band. For linear operations, the processing of
the unaliased component is unaffected by the aliasing and the overall impact is generally
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f(n) f(n)
w(n)φ̆1(n)

w(n)φ̆2(n)

w(n)φ̆J (n)

φ∗
1(n)

φ∗
2(n)

φ∗
J (n)

↓ M

↓ M

↓ M

↑ M

↑ M

↑ M
g1(m)

g2(m)

gJ (m)

Figure 9.9: Analysis-synthesis filter bank using windowing for analysis only. The window
w(n) satisfies

∑

m∈Z w(n−Mm) = 1 and the functions {φj(n)}j=1,··· ,M form a (discrete
Fourier or discrete cosine) orthonormal basis over the support of the window.

f(n) f(n)
w(n)φ̆1(n)

w(n)φ̆2(n)

w(n)φ̆J (n)

↓ M

↓ M

↓ M

↑ M

↑ M

↑ M
g1(m)

g2(m)

gJ (m)

w(n)φ∗
1(n)

w(n)φ∗
2(n)

w(n)φ∗
J (n)

Figure 9.10: Analysis-synthesis filter bank with windowed functions {w(n−mM)φj(n−
mM)}m∈Z,j=1,··· ,M of n that form a tight frame in the Hilbert space ℓ2(Z). The figure
assumes w(n) is symmetric. The functions φj(n) are complex exponentials or cosines.
The MLT and Gabor transform are described by this figure.

less. This is the case, for example, for performing filtering of the original signal f(t) in
the frequency domain by means of Fourier transforms.

Finally, we note that usage of windows that are too smooth can also lead to problems.
Windows that are too smooth result in an effective total frequency-domain support
that is less than the bandwidth of the original signal, which makes it difficult to recover
the original signal with finite-precision computing machines. The range of smoothness
where neither aliasing or oversmoothing is a problem increases with the oversamping
rate.

9.3.4 The Modulated Lapped Transform

The combination of smooth windowing and critical sampling is difficult to achieve but
attractive for many applications. The modulated lapped transform (MLT) is based on
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the DCT and falls into the class of smoothly windowed, critically sampled filter banks.
In the following, we provide a derivation of a particular MLT. For a more in-depth
discussion of lapped transforms we refer to [63].

time

fr
eq
u
en
cy

Figure 9.11: A time-frequency tiling obtained with a lapped transform.

In lapped transforms, the discrete time signal is described by means of a basis of ℓ2(Z)
that is usually constructed from a set of cosines multiplied by a set of windows. Often,
these windows are uniformly spaced translates of a basic finite-support window, but the
windows may also have unequal time support. Such a situation is illustrated schemat-
ically in figure 9.11, which shows the regions where each basis function dominates the
signal energy, providing a so-called time-frequency tiling. The description of the MLT
by means of the simple matrix multiplication method of section 9.2.1 (albeit with a
square matrix of infinite dimensionality) provides good insight into its operation:

U =













. . .

· · · 0 Gleft Gmid Gright 0 0 0 · · ·
· · · 0 0 0 Gleft Gmid Gright 0 · · ·

. . .













. (9.61)

The J rows of the matrix G = [GleftGmidGright] define a set of basis functions, each
roughly corresponding to a frequency band, from which the complete set of basis func-
tions is obtained by time shifts of J samples. In the following, we will consider the case
where the tails on the left and the right have equal support T (T < J). The rows of the
J × T matrices Gleft and Gright form the “tails” of this set of basis functions, and the
J × (J − 2T ) matrix Gmid can be thought of as the “body” of the basis functions.

Our aims are to i) make U unitary and ii) make each row of G the multiplication of
a smooth window and a cosine function. The unitarity condition implies UHU = I.
Since the matrix U is square, we can write the unitarity condition also as UUH = I
(see the argument leading up to equation 9.11). This form of the unitarity condition is
more convenient since it allows an interpretation in terms of inner products of the basis
functions (the rows of U). The condition UUH = I implies the following conditions for
the submatrices:

GleftG
H
left +GmidG

H
mid +GrightG

H
right = I, (9.62)

GrightG
H
left = 0. (9.63)

Condition 9.63 is commonly referred to as the orthogonality of tails.
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Next, we make the windowing explicit by factoring. We describe the windowing with
a diagonal T × T matrix W containing only positive, real numbers along the diagonal.
We write the matrices G in terms of W and modulation matrices G = [Gleft Gmid Gright]:

Gleft = GleftW, (9.64)

Gmid = Gmid, (9.65)

Gright = GrightW̆ , (9.66)

where W̆ is the matrix W with its columns (or rows) reversed.

The orthogonality of the tails (equation 9.63) can be written as

GleftWW̆GH
right = 0. (9.67)

The diagonal windowing matrix W̆W has an even symmetry along its diagonal. Thus,
the orthogonality of the tails is satisfied if the rows of Gleft have even symmetry and
the rows of Gright have odd symmetry or vice versa.

We impose on W the power complementarity condition,

WW + W̆W̆ = I, (9.68)

which implies that

1

2
I −WW = W̆W̆ − 1

2
I (9.69)

must have odd symmetry along the diagonal. The odd and even symmetry of the tails
and the fact that 1

2I −WW = W̆W̆ − 1
2I has odd symmetry results in the following

useful properties:

Gleft(
1

2
I −WW )GH

left = 0, (9.70)

Gright(
1

2
I − W̆W̆ )GH

right = 0. (9.71)

Using equations 9.70 and 9.71, we see that equation 9.62 can be written as

I = GleftWWGH
left + GmidGH

mid + GrightW̆W̆GH
right

=
1

2
GleftGH

left + GmidGH
mid +

1

2
GrightGH

right. (9.72)

To summarize, to obtain unitarity of U we must have that

1. G satisfies 9.72;

2. the tails of Gright and Gleft must have opposite symmetry.

For the simple case where J = T , i.e., where we have only the tails Gleft and Gright

and no body Gmid, the first condition reduces to GGH = 2I, i.e., the rows of
√

1
2G are

orthonormal.
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It is easy to check that both conditions are satisfied by the so-called DCT-IV functions:

Gin =

√

2

J
cos(

(2i+ 1)

4J
(2n− J + 1)π). (9.73)

Over the interval [0, · · · , J−1], these functions display even symmetry around (J−1)/2.
Over the interval [J, 2J − 1] they are anti-symmetric around J + (J − 1)/2.

Before concluding this section, it is useful to reflect on the smoothness properties of the
MLT. The MLT was motivated by the need for having smoothly windowed functions.
However, the anti-symmetries used in our construction have in some circumstances a
similar effect as discontinuities. That is, if an original signal that does not have this
odd symmetry is modeled with an MLT, then quantization errors introduce some of this
odd symmetry and this may be perceptually undesirable.

00 128128 255255

Figure 9.12: Left: the first three rows of the matrix G of example 9.12 for J = 128.
The left tail is symmetric around 63 1

2 and the right tail is anti-symmetric around 191 1
2 .

Right: the first three MLT basis functions φ00, φ10, and φ20 for example 9.12, again
for J = 128.

Example 9.12: A practical MLT implementation

In the tails-only case, the relation between G and G can be written as

G = G
[

W 0

0 W̆

]

.

where the rows of G are

Gin =

√

2

J
cos(

(2i+ 1)

4J
(2n− J + 1)π), n ∈ {0, · · · , 2J − 1}.

A window satisfying the power complementarity condition 9.68 is

Wn = sin(
nπ

2(J − 1)
), n ∈ {0, · · · , J − 1}.

Note thatWn describes the diagonal elements of only the first half of the windowing
matrix for G.
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The rows of the matrix G form the basis functions of the MLT. Thus, we can now
write down a subset of basis functions for a practical (tails-only) MLT:

φi0(n) =















sin( n
2(J−1)

π)
√

2
J
cos( (2i+1)(2n−J+1)

4J
π), n ∈ {0, · · · , J − 1},

sin( 2J−1−n
2(J−1)

π)
√

2
J
cos( (2i+1)(2n−J+1)

4J
π), n ∈ {J, · · · , 2J − 1},

0, n ∈ Z − {0, · · · , 2J − 1},
where the frequency index satisfies i ∈ {0, · · · , J − 1}. The remaining basis func-
tions φil(n) are obtained by time-shifts over multiples of J :

φil(n) = φi0(n+ lJ), l ∈ Z.

The unwindowed matrix rows G0l, G1l, and G2l, as well as the MLT basis functions,
φ0l, φ1l, φ2l are illustrated in figure 9.12, for the case J = 128.

Performing the MLT is straightforward. In the forward transform, we multiply

the signal by the MLT basis functions to obtain the MLT coefficients 〈f, φil〉. The
inverse transform consists of summing the same basis functions scaled by the MLT

coefficients: f(n) =
∑

i,l〈f, φil〉φil(n).

9.3.5 The Gabor Transform

The main attraction of the Gabor transform is that it is based on the discrete Fourier
transform and describes a signal in terms of frequencies, amplitudes, and phases. How-
ever, in contrast to the MLT, it requires oversampling if smooth windows are to be
used.

For convenience, we use two Gabor frame definitions. In the first definition, we follow
the UFB approach to create the Gabor frame by M -sample translations of a set of J
windowed complex exponentials, w(n) exp(j 2πmn

J ), where m ∈ {0, · · · , J − 1} indexes
frequency. In the second definition we construct the frame by multiplying a set of
J complex exponentials exp(j 2πmn

J ), with n ∈ Z, with uniformly M -sample spaced
translates of the window w(n). We note that the difference is a simple phase factor in
the coefficients.

We start with a simple discussion of the Gabor transform for the case that the number
of frequency channels, J , is equal or more than the support of the window w(n). There-
after, we give a more formal treatment of the Gabor transform that does not require
this condition.

The Gabor Transform for “Short” Windows

When the support of the window is J samples or less, the Gabor transform has a
straightforward interpretation. In a first step, overlapping sequences of J samples are
extracted. Subsequently extracted sequences are offset by M samples. In a second
step, each data sequence is windowed by multiplying with a diagonal matrix W of
dimensionality J × J , which has as diagonal elements the window samples w(n) (with
centered support). Note that the support of the window can be less than J . In the
third and final step, each windowed data set WxJm is subjected to multiplication by an
J × J DFT matrix, UF . The coefficient vectors

yJm = UFWxJm (9.74)
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for block m form the Gabor transform coefficients corresponding to this block. The
rows of the matrix UFW form the conjugates of the frame functions. The Hermitian-
transpose transform consists of first multiplying each subvector by the inverse DFT
matrix and then by a diagonal windowing matrix W (we assume W is real):

zJm = WUH
F y

J
m

= WUH
F UFWxJm

= WWxJm. (9.75)

For final reconstruction, we add all vectors zJm, offset by mM . That is, each sequence
zJm = WWxJm contributes to the segment from which the corresponding xJm was ex-
tracted. The contributions are added together by means of an overlap-add mecha-
nism. This means that the Gabor frame is tight if the window satisfies the power-
complementarity condition

∑

m∈Z

w(n +mM)2 =
A

J
, n ∈ {0, · · · ,M − 1}. (9.76)

(Note that the factor 1/J is generally part of the inverse DFT transform.)

Doubly oversampled Gabor transforms are perhaps most common. The frame functions
of a tight Gabor frame with double over-sampling have a simple, appealing form:

ψlm(n) = w(n−mM) exp(j
2πml

J
), (9.77)

where w(n) satisfies the power complementarity condition 9.76 and is zero outside the
interval 0, · · · , 2M − 1.

Example 9.13: A practical Gabor frame with double over-sampling

Using a sinusoidal window of appropriate power complementarity, we can design
a doubly over-sampled Gabor frame:

ws(n) =

{ √

1
J
sin(πn

J
), n ∈ {0, · · · , J − 1},

0, elsewhere.

An over-sampled Gabor frame can thus be constructed using functions of the form

φlm(n) = ws(n−m
J

2
) exp(j

2πmn

J
), m ∈ {0, · · · , J − 1}, l ∈ Z,

where n represents time, m is the frequency index of the frame function, and l is
the time index of the frame.

Implementation of the forward and backward transforms of the doubly over-sampled

tight Gabor transform is straightforward. The operations are similar to those in

the MLT transform described in example 9.12. However, since the Gabor trans-

form is oversampled, the synthesis frame functions differ from the analysis frame

functions by an additional factor 1/2.

Basic Conditions for Tight Gabor Frames

We now derive the general conditions for constructing a tight Gabor frame with J
channels (J frequency samples per 2π radians) and a rational over-sampling rate8. That

8[64] provides an alternative derivation using polyphase matrices.
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is, for everyM time samples there are J frequency samples. In contrast to the preceding
simple derivation, the window support is now unconstrained.

To simplify our notation, we again use the twiddle factor

W ≡ exp(j
2π

J
). (9.78)

To gain insight in the derivation of a tight Gabor frame, we use matrix notation. Let
U be an infinite-dimensionality matrix of the form

Uin = Wρ(i,J)n w(n −M⌊ i
J
⌋), i, n ∈ Z, (9.79)

where ⌊·⌋ indicates rounding down to the nearest integer and where

ρ(i, J) = −i+ J⌊ i
J
⌋. (9.80)

The Gabor frame functions are defined as the complex conjugates of the rows of the
matrix U .

The structure of the matrix U is illustrated in figure 9.13.

M

J

Figure 9.13: The structure of the matrix U . Every J rows, the window shifts by M
samples. For critical sampling J =M and for over-sampling J > M .

For a tight frame we have UHU = AI, where A is the frame bound and the elements of
U satisfy

∑

m

UH
imUmn =

∑

m

U∗
miUmn = Aδin. (9.81)

Substituting equation 9.79 into equation 9.81, we obtain the conditions

∑

m

w(n −M⌊m
J
⌋)2 = A, ∀n∈Z (9.82)

∑

m

Wρ(m,J)(n−i)w(i −M⌊m
J
⌋)w(n−M⌊m

J
⌋) = 0, ∀n∈Z, i∈Z, i6=n. (9.83)
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In the summation of equation 9.83, the window functions change only after every J
terms. Furthermore, we have that

J−1
∑

m=0

Wρ(m,J)(n−i) =

{

J, n− i multiple of J,
0, otherwise.

(9.84)

Condition 9.83 can then be simplified to

∑

m

w(l −M⌊m
J
⌋)w(l + qJ −M⌊m

J
⌋) = 0, ∀l∈Z,q∈Z−{0}. (9.85)

The formulation of 9.85 is redundant since each term in the summation is repeated J
times. Eliminating this redundancy in the summation, we can write

∑

m

w(l −mM)w(l + qJ −mM) = 0, ∀l∈{0,··· ,M−1},q∈Z−{0}. (9.86)

Equations 9.82 and 9.86 form the necessary and sufficient conditions for a tight Gabor
frame.

The conditions for a tight Gabor frame are simpler to understand for the case that J/M
is an integer. Equation 9.86 shows that it is then convenient to define M independent
“phases” of the window function w(·). Each of these phases, wl(m) = w(l+mM) must be
orthogonal to its translates by multiples of the integer J/M . We can then designM such
windows wl(·), each representing one phase of the window w(·). Rewriting equations
9.82 and 9.86 in terms of the various window phases, we see that the conditions for a
tight Gabor frame with J/M an integer become

∑

m

wl(m)2 =
A

J
, l ∈ {0, · · · ,M − 1}, (9.87)

∑

m

wl(m)wl(q
J

M
+m) = 0, l ∈ {0, · · · ,M − 1}, q ∈ Z − {0}. (9.88)

Equation 9.88 is a shift-orthogonality condition.

The Constraints on Orthonormal Gabor Frames

The shift-orthogonality condition 9.88 has important implications for the properties of
critically-sampled (J = M) Gabor frames. It turns out that critically-sampled Gabor
frames must have a rectangular window, which means that critical sampling results in
low frequency resolution. This can be seen as follows. An orthonormal basis is a tight
frame with critical sampling (J = M). Shift-orthogonality condition 9.88 becomes for
this case

∑

m

wl(m)wl(q +m) = 0, q ∈ Z − {0}. (9.89)

For a window wl with a finite support larger than 1, we can always choose q such that
the sum in this equation has only one nonzero term, violating the condition. Thus,
for an orthonormal frame, the window wl must have a support of one sample and it
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then follows from equation 9.87 that w is a rectangular window of length M . Thus,
a critically-sampled Gabor frame with a smooth window does not exist. This is a
fundamental result, which was developed during the nineteen-eighties (e.g., [65, 66]).
Its continuous equivalent is commonly referred to as the Balian-Low theorem9.

Tight Gabor Frames with Integer Oversampling and Limited Time Support

When J/M is an integer, then each of the M polyphase windows wl(n) must be or-
thogonal to itself shifted by J/M . This is trivial for a window wl with a support of
only J/M samples (or less), corresponding to an overall window w with support J (or
less). In this case, shift-orthogonality condition 9.88 is always satisfied and the only
remaining condition is the power complementarity condition

J/M
∑

m=0

wl(m)2 =
A

J
. (9.90)

Realizing that w(l+nM) = wl(n), it is seen that condition 9.90 corresponds to equation
9.76, which we earlier derived in a more direct and simple manner.

9.4 Transforms with A-Priori Adaptation

In this section, we optimize the transform assuming that the statistics of the data
vector are known. We consider two scenarios that have in common the mean squared-
error criterion. In the first scenario, we determine the transform that minimizes the
overall distortion, assuming independent coding of the resulting vector components and
a certain distortion-rate behavior. In the second scenario, we determine the optimal
transform for encoding only a subset of the vector components of the transformed data
vectors. That is, in the second scenario, we encode a best linear approximation of the
data vector. In both scenarios, we find the Karhunen-Loève transform.

9.4.1 Definition of the Karhunen-Loève Transform

The Karhunen-Loève transform for a random vector Xk is a unitary transform that
diagonalizes its covariance matrix. For the case that the vector components of Xk are
zero mean, the Karhunen-Loève transform, U , diagonalizes the autocorrelation matrix
E[XkXkH ]:

UE[XkXkH ]UH =













λ0 0 · · 0
0 λ1 · · ·
· · · · ·
· · · λk−2 0
0 · · 0 λk−1













. (9.91)

Thus, the Karhunen-Loève transform is computed with a simple eigenvalue decompo-
sition of the autocorrelation matrix. It transforms a random vector into a vector with
uncorrelated components, and, thus, independent components if the vector is Gaussian.

9The Balian-Low theorem states [66]: if gmn(t) = e2πjmtg(t − n) forms a frame for the continuous
Hilbert space L(R), then either

∫
ω2|Fg(ω)|2dω = ∞ or

∫
t2|g(t)|2dt = ∞.
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9.4.2 Transform for Independent Coding of Components

In section 7.5, we saw that a scalar quantizer or a low-dimensionality vector quantizer
performs best when the vector components are independent. For Gaussian data, this
is equivalent to the vector components being uncorrelated. In section 9.3, we set out
to decorrelate a large class of data vectors with fixed transforms and ended up with
transforms such as the DCT and MLT. They were only asymptotically optimal, however.
Naturally, we can perform better decorrelation of a finite-dimensionality vector if we
know its statistics and optimize the transform for the statistics. As we will see, under
certain conditions, this type of decorrelation results in the Karhunen-Loève transform.

In the following, we will prove that the Karhunen-Loève transform minimizes the dis-
tortion associated with scalar quantization of vector components under the following
conditions:

1. The distortion criterion is the squared error criterion.

2. The sum of the average rates of the vector components is given.

3. The distortion-rate function for the components of a random vector Xk is of the
form E[di] = C σ2

Xi
e−2RXi , where σ2

Xi
is the variance of a random component Xi

and C is a constant.

4. The transform is optimized a-priori for the vector statistics.

The condition that the distortion-rate function for each of the components of the random
vector Xk is of the form

E[di] = C σ2
Xi

e−2RXi , (9.92)

is correct if Xk has a Gaussian multi-variate density, if the rate is more than zero for
each component (this corresponds to the high-rate requirement10), and if the squared
error criterion applies11. Fortunately, the form of the rate-distortion function is not
affected by a unitary transformation.

We now start the derivation. The objective is to find the unitary transform U that
minimizes the total distortion

D =

k−1
∑

i=0

E[di] =

k−1
∑

i=0

C σ2
Yi
e
−2R

Yi , (9.93)

where Y k = UXk, under the constraint

kR̄ =

k−1
∑

i=0

RYi
, (9.94)

where R̄ is the (constrained) average of the entropy of the vector components.

10Note that the meaning of “high rate” varies: for the Gaussian multi-variate density case it means
that no component has zero rate; for the scalar quantizer it means that the density varies slowly
compared to the quantizer cell size.

11Since the entropy of the indices of a high-rate scalar quantizer for Gaussian data is also of this
form, the results apply directly to practical entropy-constrained scalar quantization and lossless coding.



248 9. TRANSFORMS AND FILTER BANKS

To optimize the rate distribution, we use the familiar Lagrange multiplier method, with
λ as Lagrange multiplier. The extended criterion then becomes:

η =

k−1
∑

i=0

(

C σ2
Yi
e−2RYi + λRYi

)

. (9.95)

Differentiating equation 9.95 with respect to RYi
and setting the result equal to zero

gives

RYi
=

1

2
log(

2σ2
Yi
C

λ
). (9.96)

Combining this with the constraint 9.94 results in

RYi
= R̄ + log(σYi

)− 1

k

k−1
∑

j=0

log(σYj
). (9.97)

Inserting this result into equation 9.93 gives an expression for the distortion that can
be used to find the optimal unitary transform:

D = kC e−2R̄
k−1
∏

i=0

σ
2
k

Yi
. (9.98)

The unitary transform that minimizes equation 9.98 is straightforward to obtain. First
we note that the determinant inequality

∏

iAii ≥ det(A) holds for symmetric positive-
definite matrices (see Appendix D) and thus also for the covariance matrix. We then
see that

D = kC e−2R̄
k−1
∏

i=0

σ
2
k

Yi
(9.99)

≥ kC e−2R̄
(

det(E[Y kY kH ])
)

1
k . (9.100)

The determinant det(E[Y kY kH ]) is the same for all unitary transforms U . However,
inequality 9.100 becomes an equality only for the case that E[Y kY kH ] is diagonal, i.e.,
if the transform is the Karhunen-Loève transform. Thus, the distortion is minimized
for the Karhunen-Loève transform.

Example 9.14: Karhunen-Loève transform for a uniform density with

finite support

In practice, the Karhunen-Loeve transform is often useful for coding even when the
conditions required for optimality are not valid. Let us consider an example where
we want to encode independent two-dimensional vectors, each with the density
shown in figure 9.14 (density uniform within the “bar”), with two bits per vector.
Only scalar quantizers are to be used and the squared-error criterion applies.

We first design optimal 1-bit scalar quantizers for X1 and X2. It is easily seen that
the optimal scalar quantizers must be symmetric. The positive centroid locations
are easily computed as

ci =argmin
y

∫

√
1
8

0

(x− y)2dx =

√
2

8
.
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−1

−1

1

1

x1

x2

d

Figure 9.14: Joint density function for example 9.14. The bar is of unity length and
d << 1.

Thus, the centroids for X1 and X2 are ±
√
2
8
. Neglecting bar thickness, the mean

squared error is

D =
1

12
∆2 =

2

12 · 64 = 0.0026

per dimension; for the vector it is 2 · 0.026 = 0.0052. Let [I1, I2] denote the index
vector. The entropy of the index vector can be computed as follows. The probabil-
ity of the first and third quadrant is ≈ 0.5, and the probability of the second and
fourth quadrants is negligible. Furthermore, the vectors are independent. Thus,
the entropy rate of the vectors is H∞([I1, I2]) = H1([I1, I2]) ≈ 1. This indicates
that our encoding at two bits per vector is very inefficient.

A simple method to improve on this code would be to design a Huffman code for
the vectors [I1, I2]. The four possible vectors label that the data are in first, second,
third or fourth quadrant. First and third quandrant probabity are 0.5, second and
fourth quadrant probability are very small, ǫ. The design of a Huffman code is
trivial. A particular Huffman code is {1, 00, 010, 011} for first, third, second, and
fourth quadrants. The rate is 1 · 0.5 + 2 · 0.5 + 3 · ǫ + 3 · ǫ = 1.5 bit per vector,
which is 0.5 bit above the entropy rate of the vectors, despite the lossless coding.

Next, we use a Karhunen-Loève transform, U , which transforms the two-dimensional
vector x2 (remember that the superscript 2 indicates the vector dimensionality)
into y2 = Ux2. The covariance matrix is of the form

C =

[

1 1− ǫ
1− ǫ 1

]

,

where ǫ is small. The eigenvalues are ǫ and 2−ǫ and the eigenvectors are 1√
2
[1, 1]T

and 1√
2
[1,−1]T . The unitary transform U is thus

U =
1√
2

[

1 1
1 −1

]

.

We can now design appropriate scalar quantizers for the components of y2. U

results in a y2 such that y1 is parallel to the bar and y2 is orthogonal to the bar.

We spend all bits on y1 and none on y2. The quantizer for y1 simply divides the

bar in five equal parts. The error is then 1
12
∆2 = 1

12
0.22 = 0.0033. This is one

quarter of the error we obtained when quantizing the components of x2 directly,

thus illustrating the power of the Karhunen-Loeve transform. Since all four indices

now have equal probability, we have an entropy rate of 2 bits and Huffman coding

is unnecessary.
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Example 9.15: Constrained-resolution coding using the Karhunen-Loève

transform

In this example, we consider constrained-resolution quantization of a two-dimensional
distribution exemplified by a data set. We know from equation 7.51 that, at least
for high rate, the relation between rate and distortion is of the form required for
the Karhunen-Loève transform.

We are given the 1000 training data shown in the left subfigure of figure 9.15. The
data are drawn from a Gaussian distribution with covariance matrix

C =

[

3/2 1/2
1/2 3/2

]

.

When we use the discrete generalized Lloyd algorithm of section 8.2.2 to obtain

a 6-bit quantizer, we obtain the second subfigure. The average squared error

is 0.172 for the training data. If, instead, we use two 3-bit scalar quantizers

(optimized separately), then we obtain the quantizer in the third figure. While

scalar quantization simplifies the complexity, the performance of this quantizer

is significantly worse than the vector quantizer and corresponds to an average

squared error of 0.551. If, however, we first apply the Karhunen-Loève transform,

and then distribute the rate according to equation 9.96, which corresponds to 4

bits and 2 bits in this case, then we obtain a more reasonable average squared

error of 0.241. The corresponding quantizer is shown in the right subfigure. We

note that the precise results vary from experiment to experiment with this small

number of training data.

Figure 9.15: Data distribution, vector quantizer, scalar quantizer, and scalar quantizer
applied after the Karhunen-Loève transform.

9.4.3 Decorrelation, Energy Concentration, and Coding Gain

The Karhunen-Loève transform leads to a diagonal covariance matrix: assuming that the
vector components are zero mean, the Karhunen-Loève transform decorrelates the vector
components. We can also interpret the Karhunen-Loève transform as the transform
that maximizes a certain energy concentration measure. By taking the logarithm of the
multiplication to be optimized in equation 9.98 we obtain the summation

log(

k−1
∏

i=0

σ2
Yi
) =

k−1
∑

i=0

log(σ2
Yi
). (9.101)



9.4. TRANSFORMS WITH A-PRIORI ADAPTATION 251

This expression forms a measure of the flatness of the distribution of the variances, since
the logarithm is a concave function. Thus, given a sum of variances, equation 9.101 is
maximized when all σ2

Yi
are equal, i.e., when the distribution is flat. Conversely, mini-

mization of equation 9.101 (or, equivalently, 9.98) can be interpreted as the optimization
of a particular energy concentration measure12.

It is common to evaluate the energy concentration obtained with a unitary transform for
a stationary signal with the so-called coding gain performance measure. The coding
gain is defined as (e.g., [62, 24])

G =
1
k

∑k−1
i=0 σ

2
Yi

(

∏k−1
i=0 σ

2
Yi

)
1
k

. (9.102)

The arithmetic mean (the numerator), is invariant with a unitary transform U for
Y k = UXk. Thus, it is identical to the sample variance of the original stationary
signal. In other words, for a random vector Xk taken from a stationary signal, we

have a unity coding gain: 1
k

∑k−1
i=0 σ

2
Xi

=
(

∏k−1
i=0 σ

2
Xi

)
1
k

since all σXi
are equal. If the

unitary transform y = Ux results in energy concentration, then the geometric mean
(

∏k−1
i=0 σ

2
Yi

)
1
k

(the denominator) is smaller and the coding gain takes a value greater

than unity.

For the case of high-rate quantization, a stationary Gaussian process, and a squared-
error distortion measure, the coding gain has a very concrete meaning. From equation
9.99 and the fact that the numerator of the coding gain is unaffected by the unitary
transform Y k = UXk, it follows that, at a given overall rate kR̄, the reduction in
distortion due to U is inversely proportional to the coding gain. Indeed, if we rewrite
equation 9.99 to read

R̄ =
1

2
log(

kC
∏k−1

i=0 σ
2
k

Yi

D
), (9.103)

then we see that, at a given distortion, the reduction in overall rate is proportional to
the logarithm of the inverse of the coding gain.

9.4.4 Best Linear Approximation; Coding in a Subspace

In this section, we discuss a coding system where we first transform the k-dimensional
vector into a p-dimensional vector with p < k, then encode that p-dimensional vector,
and then reconstruct an approximation to the original vector. The transform to the
p-dimensional subspace is based only on the statistics of the data vectors. We will show
that also for this scenario, the Karhunen-Loève is optimal. This means that it is optimal
for linear approximation of the vector. To be precise, in this subsection we study the
transform coding of a vector where:

1. Only a p-dimensional vector is encoded.

2. The transform to the p-dimensional vector is determined a-priori from the data
vector statistics.

12Other energy concentration measures are easily defined with different concave functions.
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3. The distortion criterion is the squared error criterion.

4. The quantization error is white Gaussian noise.

The latter condition is practical since it allows us to optimize the subspace selection
independently of the quantizer properties. The transform to a vector of lower dimen-
sionality prior to encoding results in a reduction of the computational burden of the
quantization process. We also note that in section 6.6, which described the rate alloca-
tion for Gaussian independent variables, we showed that, at low overall rates, it is often
advantageous to allocate a zero rate for some of the individual variables. That result
was discussed in the section on reverse water filling, section 6.6.2, which was based on
the rate-distortion function for stationary Gaussian processes.

We make only very basic assumptions for our derivation. To simplify our notation, we
define Ii:j , j ≥ i to be a k × k matrix with zeros everywhere except for j − i + 1 ones
along the diagonal in the rows i through j. For example, for k=3 we have

I1:2 =





1 0 0
0 1 0
0 0 0



 . (9.104)

We want to find the unitary matrix U that minimizes the mean squared error between
the random vector UXk and p of its rows. Without loss of generality, we assume these
to be the first p rows. We define Zk = I1:pUX

k to be this approximation. The fact
that the last k − p rows of zk are zero implies that Ip+1:kZ

k = 0. The objective is now
to minimize E[‖UXk − Zk‖2]:

E[‖UXk − Zk‖2] = E[‖Ip+1:kUX
k‖2]

= tr(Ip+1:kUE[XkXkH ]UHIp+1:k), (9.105)

where tr is the trace. Let the eigenvalues and eigenvectors of the symmetric autocor-
relation matrix E[XkXkH ] be λi and q

k
i , respectively. We note that, since E[XkXkH ]

is symmetric and nonnegative definite, all eigenvalues are nonnegative and that the
eigenvectors are orthonormal (assuming normalization). For convenience, we order the
eigenvalues: λ1 ≥ λ2 ≥ λ3 · · · . We then see that

E[‖UXk − Zk‖2] = tr(Ip+1:kUE[XkXkH ]UHIp+1:k)

= tr(Ip+1:kU(

k
∑

i=1

λiq
k
i q

kH
i )UHIp+1:k)

=

k
∑

i=1

λi‖Ip+1:kUq
k
i ‖2. (9.106)

We note that ‖Ip+1:kUq
k
i ‖2 is the norm of the projection of qki onto a particular k − p

dimensional subspace. Since the eigenvectors qki form an orthonormal set, the sum of
the norms of their projections onto this subspace must be k−p. In equation 9.106 these
norms are weighted by the eigenvalues. It is then clear that the expression of equation
9.106 is minimized by selecting U so that the norms ‖Ip+1:kUq

k
i ‖2 of the largest p
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eigenvalues are zero:

E[‖UXk − Zk‖2] =
k
∑

i=1

λi‖Ip+1:kUq
k
i ‖2

≥
k
∑

i=p+1

λi. (9.107)

Equation 9.107 forms a lower bound on the dimensionality-p fit, Zk, to UXk over all
possible unitary transforms U . By itself, this bound is not useful. However, it is clear
that the Karhunen-Loève transform reaches this bound and is, therefore, the optimal
transform we are looking for.

Let U (p×k) denote the transform that provides the coefficients of the components cor-
responding to the p largest eigenvalues of the Karhunen-Loéve transform. Because the
rows of U (p×k) are orthonormal, the inverse transform is U (p×k)H and our results imply
that the expansion

x̂k =

p
∑

i=1

〈xk, U (p×k)H
i 〉U (p×k)H

i (9.108)

forms the best p-dimensional linear approximation to xk in the squared-error sense. x̂k

is the projection of xk onto the rows of U (p×k). We have thus shown that, for all k and
0 < p < k, the optimal p-dimensional subspace for quantization based on the squared
error distortion criterion is spanned by the eigenvectors corresponding to the p largest
eigenvalues of the covariance matrix. Note that, in this derivation, we did not require
the data to be Gaussian.

9.4.5 The Karhunen-Loève Transform in Practical Applications

The Karhunen-Loève transform is the optimal a-priori transform given the statistics
and some additional conditions. However, the Karhunen-Loève transform does have a
number of practical drawbacks, which differ in importance with the application. Some
of the more commonly mentioned drawbacks are:

1. The statistics of the vectors are assumed to be known. In many cases this is not
the case.

2. The Karhunen-Loève transform changes with changing statistics. In such cases
the transform must be transmitted as side information.

3. The Karhunen-Loève transform is optimal for scalar quantizers only at high rates
and for normal-distributed vectors.

4. While the Karhunen-Loève transform adapts to the a-priori statistics, it does not
adapt to the input vector, a situation that will be discussed in section 9.5.

5. The Karhunen-Loève transform requires a high computational effort, compared
to nonadaptive transforms with a convenient structure such as the fast Fourier
transform or wavelet transform.
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For the above reasons, the Karhunen-Loève transform is not commonly used in practical
applications. However, we can use the Karhunen-Loève transform as another way to
motivate the DFT and DCT transforms. (This argument is, of course, not independent
from our earlier arguments.) The Szegö theorem (theorem 13) shows that, with increas-
ing dimensionality, the eigenvalue density of the autocorrelation matrix approaches the
power spectrum of the signal under certain, reasonable conditions. This means that for
stationary signals both the DFT and the DCT transform are equivalent to the Karhunen-
Loève transform for infinite vector dimensionality. It is then reasonable to assume that
for large vector dimensionality the DFT and the DCT form a good approximation to
the Karhunen-Loève transform and that they perform a reasonable decorrelation. It can
be argued that for common signals the DCT converges (with increasing dimensionality)
quicker to the Karhunen-Loève transform than the DFT [62, 61]. Naturally, the present
rate-of-convergence arguments are related to those discussed in section 9.3.2.

9.5 Transforms with A-Posteriori Adaptation

Instead of using a fixed transform, or a transform dependent on the a-priori statistics
of the data, a common strategy in recent source coding algorithms is to modify the
transform based on the actual input data. A reasonable high-level interpretation is
that the adaptation is part of a particular codebook structure. All these methods are
inherently nonlinear, since the transform properties depend on the input data. Various
flavors of this a-posteriori adaptation exist and we describe a few of them qualitatively
below.

9.5.1 A-Posteriori Energy Concentration

Experimental results have shown that methods based on the a-posteriori selection of
a subset of the transform coefficients are often efficient at low rates. These methods
split the transform coefficients a-posteriori into two classes: those that are insignificant
and can be set to zero and those that are to be quantized with a scalar quantizer (e.g.,
[67, 68]). This two-way classification itself is described with a so-called significance
map, which must be encoded.

A-posteriori energy concentration is equivalent to an approximation of the data vector
by means of a projection onto a subspace. However, in contrast to Karhunen-Loève
based linear approximations, the present operation is a nonlinear approximation.
The nonlinearity is a direct result of the subspace being selected for the specific outcome
of the random data vector.

The binary significance value for each coefficient is a Bernoulli process. The rate required
to describe this Bernoulli process is very low when the probability of nonzero coefficients
is very low (in problem 2 of chapter 6, the rate is given for a Hamming distortion
measure). Encoding of the significance map can be performed with a low-complexity
vector quantizer or using lossless coding.

Since the energy-concentrating methods involve nonlinear operations, and vector quan-
tization or lossless coding, and since these methods do not rely on Gaussianity, they can
perform better in practical applications than various Karhunen-Loève based methods
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or than fixed transforms such as the DCT-based approaches. A theoretical relation
between rate and distortion can be found [68] for the energy-concentrating procedure
under the assumption of optimal encoding of the significance map and the assumption
of scalar encoding of the significant coefficients with validity of the high-rate entropy-
constrained quantization results. The theory predicts the experimental findings for
image data very well. It also shows that the assumptions imply that transforms that
lead to more insignificant coefficients provide a better rate versus distortion trade-off.

The transforms used for the energy-concentrating approaches are usually selected by
trial and error. It is currently not possible to select these transforms on a theoretical
basis. For many signals, experimental evidence suggests that wavelet and wavelet-packet
transforms [65, 69] lead to a large fraction of insignificant coefficients and are, thus, good
for energy-concentrating approaches.

9.5.2 Matching Pursuit

Matching pursuit can be interpreted as a particular method for a-posteriori concentra-
tion of energy in relatively few coefficients. It is based on the expansion of an input
vector or signal that we have seen many times within this chapter. In these methods,
the expansion coefficients are quantized. In matching pursuit, the expansion vectors or
functions are selected from a codebook with nonorthogonal vectors using a greedy ap-
proach (that is, one-at-a-time), thus concentrating the energy. In the matching-pursuit
context, the codebook is often referred to as a dictionary. The matching pursuit method
can also be interpreted as a multi-stage gain-shape quantization procedure.

Let us define the dictionary as {si}i∈I , where the si are unit norm vectors, i.e., 〈si, si〉 =
1, and I is the set of indices labeling the dictionary vectors. The (closed) span of the
dictionary vectors forms a Hilbert space, which we denote as H. The first step in the
matching pursuit algorithm is to project a vector x ∈ H onto the dictionary element
si that best matches the vector and then subtract this projection to form a residual
vector. The operation is then repeated for the residual vector, and so on. Naturally,
the iterative nature of the method is reasonable only if the dictionary consists of vectors
that are nonorthonormal.

The projection onto si is equivalent to selecting the optimal gain, λ, for si. Let em−1

denote the residual vector after m− 1 iterations and e0 = x. Recalling that C is the set
of complex numbers, the optimal gain is found as

λ = inf
λ∈C

〈em−1 − λsi, em−1 − λsi〉

= inf
λ∈C

〈em−1, em−1〉 − λ∗〈em−1, si〉 − λ〈si, em−1〉+ |λ|2〈si, si〉

= inf
λ∈C

|λ|2 − λ∗〈em−1, si〉 − λ〈si, em−1〉

= inf
λ∈C

|λ− 〈em−1, si〉|2

= 〈em−1, si〉. (9.109)

Thus, at iteration m, the algorithm decomposes em−1 as

em−1 = 〈em−1, sim〉sim + em, (9.110)
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where sim is selected such that

|〈em−1, sim〉| = sup
i∈I

|〈em−1, si〉|, (9.111)

and where 〈em−1, sim〉 is the gain. We note that, in the case of real numbers, this
gain is identical to that of the gain-shape quantizer of section 8.4.3 for W = I and
unit norm shape vectors (cf. equation 8.29). After M iterations, the matching-pursuit
approximation to the vector x is

x̂ =

M
∑

m=1

〈em−1, sim〉sim . (9.112)

The matching pursuit algorithm generally provides a relatively accurate fit for a low
value of M (short expansion). This advantage is lost for high M . For example, for a
Hilbert space of dimensionality k, the matching-pursuit expansion generally has finite
error after k iterations (except for a fortunate choice of the dictionary).

It is easily seen that the convergence of the matching-pursuit algorithm is exponential
with the iteration number. That is, there exists a µ > 0 such that

‖em‖ ≤ 2−µm‖x‖. (9.113)

To prove this, we note that the dictionary {si}i∈I is complete in the Hilbert space H,
and that, therefore, there exists, at each iteration, an α > 0 such that for any x ∈ H

|〈em−1, sim〉| ≥ α‖em−1‖. (9.114)

Using equation 9.114 and the fact that em−1 and sim are orthogonal, we conclude that

‖em‖ ≤ (1 − α2)
1
2 ‖em−1‖. (9.115)

Thus, if we select 2−µ = (1− α2)
1
2 < 1 we have proved inequality 9.113.

9.5.3 Adaptive Basis Selection

In adaptive basis selection, a basis is selected a-posteriori. In a typical procedure, one
has a dictionary of bases and selects one of these bases based on an energy concentration
measure [70]. A subset of the coefficients is then coded using scalar quantizers.

A commonly mentioned energy concentration measure is [71]

k
∑

i=1

E[‖yi‖2 log(|yi|2)], (9.116)

which is called an entropy measure, but other measures are used as well. Note that
the entropy measure is only a measure of energy concentration, and is not meant to
represent the entropy in an information-theory sense.

Particularly in tree-structured basis dictionaries such as wavelet packets, it is possible
to concentrate the energy by using more formal criteria [70]. The algorithms resemble
those used for entropy-constrained vector quantizers.
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9.6 Problems

1. Prove that by combining N orthonormal bases into a frame, we always get a tight
frame.

2. Prove that, if the rows of U form a tight frame, then the corresponding transform
maps two vectors that are orthogonal in Ck onto two vectors that are orthogonal
in Cm.

3. We have a sequence of two-dimensional Gaussian random vectors, [X1, X2]. The
components of the vectors are unit variance, zero mean, and uncorrelated (both
inter- and intra-vector). One kind of scalar quantizer is used for both X1 and X2.
This scalar quantizer has a step size of 0.01.

For the second part of the problem, consider the frame of the vectors x1, x2, y1,
y2 displayed in figure 9.16. The vectors are of unit length.

Show your calculations for the plots.

(a) Plot the mean distortion (in dB) as a function of the percentage of packets
lost (the loss is random, and from 0 to 100 %) when we transmit one packet
for each vector [x1, x2].

(b) Plot the mean distortion (in dB) as a function of the percentage of packets
lost if we repeat the transmission of each packet two times and three times.

(c) Prove that the four vectors x1, x2, y1, y2 form a tight frame.

(d) For each two-dimensional original vector we transmit two packets: one with
[X1, X2], and one with [Y1, Y2]. Plot the mean distortion (in dB) as a function
of the percentage of packets lost. (Hint: first compute the distortion if you
receive zero, one, and both packets).

x1

x2
y1y2

Figure 9.16: The frame of problem 3.

4. Show that, for a tight frame and for frame vectors of unit length, the frame bound
A indicates the dimensionality redundancy factor.

5. Let yk = Uxk, where U is a unitary transform. Show that:

argmin
U

h(fY k(.)‖
k
∏

i=1

fYi
(.)) = argmin

U

k
∑

i=1

h1(Yi).

6. Generally energy concentration increases the performance of scalar quantizers,
but this is not always the case. Show a two-dimensional example where energy-
concentration by means of a unitary transform reduces the performance of the
scalar quantizers.
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7. Consider the random vector X = [X1, X2] with the probability mass function
shown in figure 9.17:

f(x1, x2) =
1

2
δ(x2 + 1)(u(x1 + 1)− u(x1)) +

1

2
δ(x2 − 1)(u(x1)− u(x1 − 1)),

where u(t) is the unit step function.

1

1

2

2

−1

−1

−2

−2

Figure 9.17: Probability-mass function.

The distortion used is the mean squared error. Your goal is to encode the vector
with a scalar quantizer using only one bit (i.e., you select one vector component
and have two levels for that component). The decoder sets the other component
to its mean value.

(a) Compute the covariance matrix associated with the probability-mass func-
tion.

(b) You do the coding on X . Select the best component of X for the scalar
quantizer. Plot in the figure where the corresponding centroids are. Compute
the mean distortion.

(c) Find the Karhunen-Loève transform, U . Plot the probability mass function
in the new coordinates.

(d) You do the coding after transformation. Select the best component of Y =
UX for the scalar quantizer. Plot in the figure where the corresponding
centroids are. Compute the mean distortion.

8. W1 and W2 are independent random variables with uniform distributions:

fw1 =

{

1
2 , w1 ∈ [−1, 1]
0, elsewhere

and

fw2 =

{

1
4 , w2 ∈ [−2, 2]
0, elsewhere

.

Let X1 =W1 +W2, X2 =W1 −W2, and X = [X1X2].

(a) Using 1000 random data points, make a scatter plot (X1 along the horizontal
axis, X2 along the vertical axis) for X .

(b) Find the index entropy for uniform scalar quantizers as a function of the step
size ∆ for both X1 and X2, when ∆ is small.

(c) Evaluate the covariance matrix of the random vector X .
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(d) Determine the Karhunen-Loève transform, U , for the random vector X .

(e) Using 1000 random data points, make a scatter plot of Y = UX .

(f) Find the index entropy for uniform scalar quantizers as a function of the step
size ∆ for both Y1 and Y2, when ∆ is small.

(g) Compare the rate-distortion relations for Y and X for scalar quantizers.
Explain.

9. Consider a zero-mean Gaussian-distributed random vector with covariance matrix

E[XkXkT ] =

[

4
√
2√

2 2

]

.

The distortion is mean squared error, summed over the vector components. Your
goal is to encode only one vector component, using scalar quantization. You want
to see if a transform is beneficial. (Hint: equation 7.33 is helpful.)

(a) You attempt the coding prior to transformation. Select the component for
coding that results in the lowest distortion, and give the high-resolution re-
lation between overall distortion and overall rate in this case.

(b) Find the Karhunen-Loève transform.

(c) You do the coding after transformation. Select the component for coding
that results in the lowest distortion, and give the high-resolution relation
between overall distortion and overall rate in this case.

(d) Provide qualitative reasoning what strategy is best.

10. Consider a zero-mean Gaussian variable X1 with variance σ2
X1

= 1. A second
variable X2 is defined as X2 = X1 +W where W is also a zero-mean Gaussian
variable with variance σ2

W = 1
100 . X and W are independent. The distortion

measure is the mean squared error.

(a) Determine the covariance matrix of the vector [X1, X2].

(b) Determine the rate-distortion function for as far as you can do this analyti-
cally.

(c) You want to employ high-rate scalar entropy-constrained quantization. Ob-
tain the relation between rate and distortion for high rate when scalar quan-
tization is applied to X1 and X2 separately.

(d) Find the transformations that maximize the coding efficiency of the high-rate
entropy-constrained quantizers. Then obtain the resulting relation between
rate and distortion (again for high rate).

(e) Compare all three rate-distortion relations. Explicitly list all reasons for the
differences.

(f) In a packet-network, you sometimes loose the index of either one of the
two variables because the corresponding data packets of the network do not
arrive in time. Both for the case without the transform and the case with
the transform, propose good decoding strategies. Discuss which method of
encoding/decoding you would use for which loss-rate ranges.

11. Derive the equivalent of equation 9.50 for the continuous-time Fourier transform.
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12. The four bands of a subband coder form a stationary vector process. The vector
components are to be quantized with scalar quantizers. We describe a vector sam-
ple of the process with the random vector X = [X1, X2, X3, X4]. Its components
are independent and have the probability densities given in figure 9.18. We use as
distortion criterion the mean squared error and assume that the high-resolution
approximation is valid.

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1 2

22

2 −1

−1−1

−1 −2

−2−2

−2

x1 x2

x3 x4

Figure 9.18: Densities of the four vector components.

(a) Compute the differential entropies of the four components.

(b) Set a given value for the sum of the four index entropies, HT =
∑4

m=1H(Im).
Using the method of Lagrange multipliers, derive an algorithm to determine
the optimal index entropy distribution for the four components.

(c) Express the optimal entropy distribution for very high HT as a function of
the overall entropy HT and the differential entropies of the components.

(d) Give an expression for overall distortion at very high HT .

(e) Explain if you expect to obtain further improvement of coding performance
by performing the Karhunen-Loève transform on the vector X .

13. Prove that tr(UAUH) = tr(A) (tr is the trace) for unitary U .

14. Prove that the DCT-II transform is unitary.

15. Consider a first-order Gauss-Markov process (pass white Gaussian noise through
a single-pole filter) with E[XiXi+1] = 0.9 and [X2

i ] = 1.

(a) Determine the autocorrelation function.

(b) Make a plot of the correlation matrix for X6, plotting the 36 squares with
color or grey scale indicating the value.

(c) Determine the Karhunen-Loève transform.

(d) Plot the correlation matrix that the FFT diagonalizes.

(e) Plot the correlation matrix that the DCT-II diagonalizes.

(f) Redo all your plots for dimensionality 16.

(g) Discuss whether DCT-II or DFT is a better approximation for this signal.
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16. Using the DCT-IV as a starting point, find different MLT bases that have increas-
ingly large bodies. That is for a given l find a series of MLT basis functions with
increasing k.

17. (a) Prove directly that the MLT given in example 9.12 satisfies the unitarity
criterion 9.72.

(b) Plot the frequency responses of an 8-channel filter bank using a blockwise
DCT-II, with k = 16.

(c) Plot the frequency responses of an 8-channel DCT-IV based MLT filter bank
with k = 16 and l = 8 and a sine window.

18. Consider a signal-processing system, where we first multiply the signal by window
functions of length M and overlap M/2. The window functions are complemen-
tary in that they sum to unity, as shown in an example in figure 9.19. Each
windowed signal segment is then transformed with a DFT of dimensionality M .
The sequence of DFT coefficient sets is often referred to as the short-time Fourier
transform (STFT). We consider the effect of modification of the STFT coefficients
on the reconstructed signal. (The modification can be a quantization, or another
modification, such as the modification used in speech enhancement.) In the fol-
lowing, we confirm with a practical example that the Gabor transform is a better
choice.

(a) For an arbitrary window shape, find an inverse transform that gives perfect
reconstruction.

(b) Assume that the coding step adds Gaussian white noise to the transform
coefficients. For each transformed segment the signal-to-noise ratio of this
noise is 10 dB, what is the signal-to-noise ratio of the reconstructed signal?
Show that this result does not depend on the window shape.

(c) Now assume that we use the Gabor transform instead (recall the windows
are then power complementary). If the signal-to-noise ratio of this noise is
10 dB, what is the signal-to-noise ratio of the reconstructed signal? Show
that this result does not depend on the window shape.

(d) Argue that, for quantization in the transform domain of an audio signal, the
reconstruction of a steady-state sinusoid (a tone) would be more accurate
with the Gabor transform than with the STFT. Explain why this is consistent
with your above results (hint: this is not trivial).

Figure 9.19: The windows of problem 18.

19. We consider a signal segment of 64 samples, labeled 0 through 63. The signal is
of the form

x(i) =

{

i− 10, i = 10, · · · 40,
0, elsewhere.
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The DFT basis vectors (dimensionality 64) form a dictionary consisting of 64
complex exponentials. We denote this dictionary as Γa. We create an additional
dictionary, Γb, with 400 complex exponentials, also evenly spaced in frequency.
Note that the vectors in Γa are orthonormal, whereas those of Γb are not.

(a) Exploiting the fast Fourier transform, approximate the signal with the 10
basis vectors of Γa with the largest coefficient norm. Plot the original signal
segment and your approximation.

(b) Exploiting the fast Fourier transform, plot the logarithmic distortion as a
function of the number of basis vectors from Γa, assuming you use the subset
of basis vectors that have the largest coefficient norm.

(c) Using matching pursuit, approximate the signal with an expansion into 10
functions from the dictionary Γb. Plot the original signal segment and your
approximation.

(d) Using matching pursuit, plot the logarithmic distortion as a function of the
number of iterations. Compare to the DFT results.

20. Decorrelating transforms generally make squared-error scalar quantizers more ef-
ficient. In this problem we study an, admittedly somewhat artificial, example that
shows that this is not necessarily so. Consider the density of figure 9.20, which is
uniform over the black area. The black area has probability 0.5, and so has the
single point in the third quadrant. This means that the random vector with this
density is zero mean. Consider constrained-resolution quantization based on the
squared error criterion.

(a) If possible without making any calculations at all, write down a unitary
transform that decorrelates the density. Provide both a plot of the density
after your transform and a reasoning for how you found the transform. Is
your transform unique?

(b) Consider the case without a decorrelating transform. You encode the sig-
nal with two scalar, resolution-constrained 4-bit quantizers. Select the op-
timal constrained resolution quantizers (you may guess) and provide a solid
reasoning that these quantizers are indeed (locally) optimal (hint: think of
training).

(c) Provide the mean distortion for the resulting 4-bit quantization scheme with-
out the transform.

(d) Consider the case with a decorrelating transform. Again, you encode the sig-
nal with two scalar, resolution-constrained 4-bit quantizers. Describe how to
design reasonably optimal quantizer (no need to calculate explicit quantizers
and you can ignore the singular point in the design of the cells; don’t waste
time on refinement).

(e) Provide a reasonably accurate estimate of the mean distortion for the re-
sulting 2× 4-bit quantization scheme with the transform. To simplify your
computations, ignore the effect of the single point (except for its effect on the
overall probability).

21. Consider an N -sample stationary and ergodic sequence with alphabet {−1, 1}. N
is very large. The dependencies between samples in the sequence decrease rapidly
with increasing separation. (However, except where explicitly stated, the sequence
is not assumed to be iid.)
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Figure 9.20: The density function of problem 20. The square has uniform density with
total probability 0.5. At [-3/2,-3/2] is a singular point that also has probability 0.5.
The random vector corresponding to the density has mean [0,0].

(a) Find a transform (motivate or give a derivation!) that approximates the
Karhunen-Loeve transform for any stationary sequence for N approaching
infinity. (Note: the alphabet is of no significance for this part of the problem.)

(b) Assuming that the sequence is iid, provide the distribution of the sequence
after this generic Karhunen-Loeve transform is applied. Motivate or give a
derivation and provide all parameters for the distribution.

(c) Assuming that the sequence is iid, you are to design a minimum squared
error constrained-entropy scalar quantizer for the generic Karhunen-Loeve
transformed sequence. Assuming that high-rate theory holds, what rate do
you require for a mean error of 0.1? How does this compare to the maximum
entropy rate of the signal?

(d) Assuming that all possible realizations of a sequence of N samples with the
alphabet {−1, 1} are equally likely, derive how many −1 and how many 1 are
most likely to occur. Relate the result to the entropy.

22. Consider a zero-mean Gaussian random vector X2 = [X1, X2]
T and the squared-
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error criterion. The vector has a covariance matrix

RX =

[

1 0
0 100

]

.

You want to transmit the data X2 at low distortion over a network that occasion-
ally loses the encoded quantization indices. Instead of losing an index describing
either X1 or X2 you decide that is better to combine them and reduce the chance
to lose all information about X1 orX2. Thus, you compute Y 2 = BX2 and encode
Y 2, where

B =
1√
2

[

1 −1
1 1

]

.

(a) Find the mutual information between X1 and X2.

(b) Find the mutual information between Y1 and Y2.

(c) Determine the rate-distortion relation for encoding the vectorX2 with constrained-
entropy scalar quantizers operating on its two components. Use the assump-
tion of low distortion for the rate distribution between the components.

(d) Making the same low distortion assumptions, determine the rate-distortion
relation for encoding the vector Y 2 with constrained-entropy scalar quantiz-
ers operating on its components. (The scalar quantizers do not exploit in
any way the correlations between the components.)

(e) Explain why you expect the rate results above.

(f) Consider the case that the mean distortion is 0.1 if both indices are received.
What is the mean distortion if only the index for X1 or the index for X2

arrives, but not both?

(g) Consider the case that the mean distortion is 0.1 if both indices are received.
Design a good decoder that provides an estimate of X2 and give the mean
distortion if you know that only the index Y1 is received.

(h) In light of your results conclude when dependency between components is
beneficial.

23. Consider a random process Xi and the squared error criterion. The samples of Xi

are iid. The marginal distribution of each sample is boxcar shaped (rectangular):

fX(x) =

{

1, x ∈ [0, 1)
0, elsewhere

(a) Find the Shannon lower bound for Xi.

(b) Is the Shannon lower bound tight? Explain!

Consider a k-point DFT of a block of k sequential data of the process. We write
this as Y k = UFX

k, where UF is the DFT matrix. We consider a DFT transform
that conserves the variance of vectors.

(c) Provide a formula or definition of the density that approximates the marginal
densities of the real and imaginary parts of the components of Y k for suf-
ficiently large k. Hint: note that the energy was spread over only k real
components.
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(d) Using the fore-mentioned density, find the Shannon lower bound for the real
and imaginary parts of Yi. (This represents the case of separate quantizers
for the real and imaginary components.)

(e) Is the Shannon lower bound on the real and imaginary parts of Yi tight?

(f) You want to compare the performance of scalar quantizers operating on the
components Xk (a real vector) versus scalar quantizers operating on the
components of Y k (a complex vector). You assume the mean distortion over
all components of the vectors is uniform. Compute the sum of the Shannon
lower bound rates (SLBs) over the components Xk and Y k (this is trivial).
First find the sum of the SLBs for the k real components of Xk and then for
the 2k real and imaginary components of Y k. Then you take into account the
symmetry of the components of Y k and sum the SLBs for only k appropriate
quantizers of components of Y k. You now get a paradox.

i. What assumption is made when you assume the distortion is constant
over the components?

ii. Do the sums over k and 2k components form the SLB for vectors Xk

and Y k? How about the sum over k components of Y k?

iii. Explain what the paradox is and resolve it (this is not simple!).
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10

Linear Prediction

10.1 Introduction

Prediction is commonly used in source coding. Particularly in speech coding, linear
prediction is ubiquitous: the large majority of speech coding standards defined between
1980 and 2000 are based on linear prediction. The performance obtained by these coders
clearly shows the practical advantages of the method. In this chapter, we describe linear
prediction methods and analyze their performance.

In chapter 7, we saw that scalar quantizers and low-dimensional vector quantizers are
(given certain conditions) most efficient for processes with zero redundancy (redundancy
is defined in 3.10). This suggests that it is advantageous to reduce the redundancy of
the process by some operation prior to quantization with such quantizers and this was
confirmed in chapter 9 where we used unitary transforms for this purpose. In this
chapter, we see that linear prediction (or prediction in general) can also be used to
remove redundancy from a signal prior to quantization.

In signal processing the term “prediction” refers to the operation of predicting each
sample of a process from previous samples. The difference between the predicted value
and the actual value of a sample forms the prediction error or residual. In practice,
the computation of the prediction residual signal is a simple filtering operation with the
prediction-error or analysis filter. The predictor (and, thus, the prediction error
filter) is usually optimized by minimizing the variance of the residual signal. For a
Gaussian signal, this minimization corresponds to minimizing the first-order differential
entropy of the residual signal (see equation 3.22) and this, in turn, ensures a minimiza-
tion of the quantization-index entropy of the entropy-constrained scalar quantizer (see
equation 7.34). Thus, assuming entropy-constrained scalar quantization (with an en-
tropy coder of sufficient quality) and a Gaussian signal, the linear prediction operation
results in a reduction of bit rate. In the more general case, a direct association between
bit rate reduction and linear prediction is more difficult to make. However, in practice
we usually get significant redundancy removal and, thus, a reduction in rate.

Before the motivation for the usage of linear prediction in source coding is complete,
we have to pass another obstacle: the fact that the distortion measure is not invariant

267
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with the filter operation needed to obtain the prediction residual. In motivating the
use of unitary transforms for coding in chapter 9, we only considered the squared-
error criterion and then exploited the fact that this distortion criterion is invariant
with such transforms. Unfortunately, the squared-error criterion is not invariant with
filtering with the analysis filter. Let us consider the method most obvious at first sight
(illustrated in figure 10.1): filtering with the analysis filter, scalar quantization with the
straight squared-error criterion, and then filtering with the synthesis filter, which is a
simple inverse of the analysis filter1. This method, generally referred to as open-loop
prediction does, in general, not increase coding efficiency significantly. This is easily
seen for the Gaussian case and high-rate entropy-constrained scalar quantization. In
this case the rate depends on the signal-to-noise ratio (SNR) only (as shown by equation
7.34). For white quantization noise, the synthesis filter does not change the SNR, and
so quantization in the original domain would have been just as effective.

Xi Ei Q(Ei) Q(Xi)

z−1 z−1

PP

Q
−

Figure 10.1: Open-loop prediction. P is the prediction operator and Q the quantizer
operator. The structure left of the quantizer forms the analysis filter and the structure
to the right the synthesis filter.

The simplest method to make prediction an effective method for source coding is to
ensure that the distortion criterion used by the quantizer operating on the residual signal
is identical to the distortion criterion used by a quantizer operating on the original signal.
At first sight this might seem to result in a complicated distortion criterion involving
weighting, but it can in fact be attained with only a small change in the architecture of
the coding structure. Instead of predicting from the original signal samples, we predict
the next original signal sample from the previous reconstructed signal samples. In this
case, the distortion of the reconstructed residual signal is identical to the distortion of
the reconstructed original signal. This method is generally referred to as closed-loop
prediction and is illustrated in figure 10.2. Closed-loop prediction is a very effective
tool for source coding and is commonly used.

Xi Ei Q(Ei) Q(Xi)

z−1

P

Q
−

Figure 10.2: A closed-loop predictor. The prediction structures in encoder and decoder
are identical and plotted only once.

A more thorough motivation for closed-loop prediction is given in section 10.4. It is

1We thus ignore the results of section 6.6.2 which show that, at least in the Gaussian case, this is
not correct. However, the fact that the filters are each others inverse is of no significant consequence
in the present discussion.
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also be shown that a more complicated coding structure, where the distortion crite-
rion includes weighting, is often beneficial. In this manner, it is possible to gener-
alize the closed-loop prediction procedure and obtain advantages in coding efficiency
from both vector quantization and the prediction operation. The resulting procedure is
called linear-prediction based analysis-by-synthesis. In the terminology of section 7.5,
a prediction-based analysis-by-synthesis source coders exploits the correlation-related
(linear) part of the memory advantage through the predictor and the remainder (non-
linear) part of the memory advantage, the space filling, and shape advantages through
vector quantization.

In the remainder of this chapter, we first discuss the fundamentals of linear prediction
assuming known data statistics. We then discuss linear prediction for given data (this
could be called a-posteriori prediction) and thereafter how to exploit prediction in prac-
tical coder architectures. We end the chapter with sections on the quantization and
computation of the predictor coefficients.

10.2 Fundamentals of Linear Prediction

10.2.1 Mean Squared-Error Optimal Linear Prediction

Consider a wide-sense stationary process Xi. We make a linear estimate of Xi based
on the p previous samples of the process, Xi−p, · · · , Xi−1. The estimate X̂i can thus be
expressed as

X̂
(p)
i = −

p
∑

j=1

a
(p)
j Xi−j , (10.1)

where p is the order of linear prediction analysis and the a
(p)
j are the linear prediction

coefficients. (For speech sampled at 8 kHz, the value of p is typically 10). We let E
(p)
i

denote the mean squared error of the p’th order predictor:

E
(p)
i = Xi − X̂

(p)
i

= Xi +

p
∑

j=1

a
(p)
j Xi−j

= a(p)TXi:i−p (10.2)

where a(p)T = [1, a
(p)
1 , · · · , a(p)p ] and XT

i:i−p = [Xi, · · · , Xi−p].

The linear prediction operation is equivalent to an all-zero filter, which is illustrated in
figure 10.3. The inverse of this filter, where we recreate the signal from the prediction-
error signal is called an autoregressive or AR process. Thus, estimation of the linear
prediction coefficients can be interpreted as identification of the AR system.

Equation 10.2 is commonly written in the z-transform domain notation2:

E(z) = A(p)(z)X(z), (10.3)

2The z-transform of a discrete process Xi is denoted as X(z). Our discrete-time Fourier transform
notation for a process exploits this notation by replacing z with ejω , resulting in X(ejω).
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Xi

−X̂(4)
i E

(4)
i

a
(4)
1 a

(4)
2 a

(4)
3 a

(4)
4

z−1 z−1 z−1 z−1

Figure 10.3: A fourth-order linear predictor (in box) and the associated relation between

the input sequence Xi, the prediction estimate X̂i and the prediction error E
(4)
i .

where X(z) and E(z) are the z transforms of the original process, Xi, and prediction-
error process, Ei, respectively, and where

A(p)(z) = 1 +

p
∑

j=1

a
(p)
j z−j. (10.4)

defines the prediction-error filter.

We define the optimal linear predictor as the linear predictor which minimizes the
variance of the prediction error. We can find a set of equations determining this predictor
using the Lagrange multiplier method. The variance of the prediction error is

σ2
p ≡ E[E

(p)2
i ] = E[(a(p)TXi:i−p)

2]

= a(p)TE[Xi:i−pX
T
i:i−p]a

(p)

= a(p)TR(p)a(p), (10.5)

where R(p) is the p’th order autocorrelation (auto-covariance for zero-mean processes)
matrix of the process Xi. The (p + 1)× (p+ 1) matrix R(p) is Toeplitz, that is, they
are constant along the diagonals.

Equation 10.5 must be optimized under the constraint that a0 = 1, i.e., under the
constraint that A(z) is amonic polynomial. Let b = [1, 0, · · · , 0]T , then the constraint
can be written as

bTa(p) = 1 (10.6)

With λ as the Lagrange multiplier, we write the augmented criterion as

η = a(p)TR(p)a(p) − λbT a(p). (10.7)

Differentiating and setting the result to zero leads to

0 = R(p)a(p) − λb. (10.8)

or

R(p)a(p) =

[

λ
0p

]

. (10.9)
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Much can be learned from equation 10.9. First, we analyze the bottom p rows of equation
10.9 and then the top row. The bottom p rows imply an important orthogonality
property of optimal linear predictors:

0 = E[XmX
T
i:i−p]a

(p)

= E[XmE
(p)
i ], i− p ≤ m < i, (10.10)

which states that the original-process samples Xi−p, · · · , Xi−1 (on which the prediction
is based) each are uncorrelated with the prediction-residual sample Ei.

Furthermore, by multiplying both sides of equation 10.9 on the left with a(p)T and
comparing to equation 10.5, we see that λ = σ2

p. Thus, we can write p + 1 equations

specifying the optimal linear predictor, a(p) and the prediction error variance σ2
p:

R(p)a(p) =

[

σ2
p

0p

]

. (10.11)

The lower p rows of equation 10.11 are known asYule-Walker equations. These equa-
tions also fall into classes called normal equations and Wiener-Hopf equations.
The Wiener-Hopf equations are obtained when estimating variables in a more general
situation, and cover the cases of both system identification and prediction. The normal
equations are also used for other sets of equations specifying predictors; an example of
this situation occurs in section 10.3. All p+ 1 equations 10.11 together are sometimes
called the extended Wiener-Hopf equations.

The p+ 1 extended Wiener-Hopf equations can be solved for the predictor coefficients

a
(p)
1 , · · · , a(p)p and the prediction error variance σ2

p. By means of inequalities it can be
seen that the extremum defined by the Wiener-Hopf equation minimizes the prediction
error variance σ2

p (see problem 2).

10.2.2 Maximum Likelihood Spectral Estimation

The Yule-Walker equations were derived by minimizing the mean squared prediction
error. These equations can also be obtained using the maximum-likelihood method
[72, 73]. This approach starts with the assumption that a process Xi is the output of an
all-pole filter 1/A(p)(z) that has as input an iid Gaussian process, Ei. Let us consider
a finite random sub-sequence with k samples, Xk. The Gaussian multi-variate density
of Xk is

fXk(xk) =
1

√

(2π)k det(R)
e−

1
2x

kTR−1xk

, (10.12)

where the covariance matrix R is determined by the autoregressive signal model (i.e.,
by the predictor coefficients). (In example 4.2 the case without the model assumption is
treated.) Our objective is to find the model (the predictor coefficients) that maximizes
the likelihood of a given data vector xk. It is convenient to maximize the logarithm of
the likelihood,

log(fXk(xk)) = −k
2
log(2π)− 1

2
log(det(R))− 1

2
xkTR−1xk. (10.13)

If we assume that k is large so that it is reasonable to ignore the zero-input response of
the filter, we note that the random linear-prediction residual vector Ek is related to a



272 10. LINEAR PREDICTION

random data vector by
Xk = BEk, (10.14)

where B is a k × k lower triangular Toeplitz matrix with as first column the impulse
response of the autoregressive model 1/A(p)(z). We note that the diagonal of the matrix
B consists of ones. Exploiting that Ei is an iid process with an as-yet unknown variance
σ2
p, we have that

det(R) = det(E[XkXkT ])

= det(E[BEkEkTBT ])

= det(B) det(E[EkEkT ]) det(B)

= σ2k
p det(B)2

= σ2k
p . (10.15)

Equation 10.14 approximates a filtering operation with the infinite-impulse response fil-
ter 1/A(p)(z). The inverse of the filter isA(p)(z) with impulse response [1, a(p)1, · · ·a(p)p]T .
Thus, it is seen that the matrix B can be inverted, at least approximately, by a matrix
H which has as first column the impulse response of the all-zero filter A(z):

R−1 = E[BEkEkTBT ]−1

= σ−2
p B−TB−1

= σ−2
p HTH. (10.16)

Let X denote a k × k lower-triangular Toeplitz data matrix with as first column the
data vector xk. Using the results 10.15 and 10.16, we can then rewrite equation 10.13
as follows:

log(fXk(x)) ≈ −k
2
log(2π)− k

2
log(σ2

p)−
1

2σ2
p

xkTHTHxk

= −k
2
log(2π)− k

2
log(σ2

p)−
1

2σ2
p

a(p)TX TXa(p)T

= −k
2
log(2π)− k

2
log(σ2

p)−
k

2σ2
p

a(p)TCxa
(p)T , (10.17)

where Cx = 1
kX TX is a data-covariance matrix. The criterion of equation 10.17 can be

made to look nice by multiplying by 2
k , removing the first term, by changing the sign,

and by subtracting log(σ2
∞) and unity. We then obtain the Itakura-Saito distortion

criterion:

DIS = log(
σ2
p

σ2
∞

) +
a(p)TCxa

(p)

σ2
p

− 1. (10.18)

It is easy to see that the Itakura-Saito criterion is zero when the model description is
entirely accurate.

The autoregressive model is identified by minimizing the Itakura-Saito criterion for

the predictor coefficients a
(p)
1 , · · · , a(p)p and the variance σ2

p. It is clear from equation
10.18 that for the predictor coefficients, the criterion is similar to that of equation 10.5.
We thus conclude that the maximum-likelihood method for optimizing the predictor
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parameters under the assumption of Gaussianity leads to the Yule-Walker equations,
just like minimizing the prediction-error signal variance.

If the data-covariance matrix is forced to be Toeplitz and written as R̂X then, using the
discrete-time Fourier transform, the Itakura-Saito criterion can also be written as

DIS = log(
σ2
p

σ2
∞

) +
1

2π

∫ π

−π

R̂X(ejω)
|A(p)(ejω)|2

σ2
p

dω − 1. (10.19)

We note that if the power-spectral estimate R̂X(ejω) and the model spectrum |A(p)(ejω)|2

σ2
p

are identical, then the Itakura-Saito distortion vanishes. This, together with the non-
negativeness of the criterion (problem 4) illustrates the spectral estimation properties
of the criterion.

10.2.3 Spectral Domain Interpretation

Let us consider the autocorrelation E[E
(p)
i E

(p)
i+n] of the prediction-error process, for a p’th

order predictor. This correlation sequence is the inverse discrete-time Fourier transform

of the power spectrum RE(p)(ejω) of the linear prediction error E
(p)
i :

E[E
(p)
i E

(p)
i+n] =

1

2π

∫ π

−π

RE(p)(ejω)ejωdω. (10.20)

Furthermore, we denote the power spectrum of the process Xi by RX(ejω). Then we
have

E[E
(p)
i E

(p)
i+n] =

1

2π

∫ π

−π

RX(ejω)|A(p)(ejω)|2ejωdω, (10.21)

where A(p)(ejω) is the transfer function of the prediction filter. For n = 0, we can write

σ2
p = E[E

(p)2
i ] =

1

2π

∫ π

−π

RX(ejω)

1/|A(p)(ejω)|2 dω. (10.22)

Equation 10.22 indicates that minimization of the prediction error variance is equivalent
to minimizing the integral of the ratio of the original signal power spectrum and the
power spectrum 1/|A(p)(ejω)|2 corresponding to the synthesis transfer function. In both

cases, the minimization happens under the constraint that a
(p)
0 = 1.

It is useful to consider the meaning of equation 10.22 in some more detail. The criterion
turns out to share two important properties with the human auditory system that make
it very suitable for spectral estimation of speech. First, it is largely the envelope of
the speech power spectrum RX(ejω) that determines the linguistic meaning of speech.
Thus, it is important that linear-prediction can separate the spectral envelope from
other spectral structure. Second, the spectral envelope of the speech signal has a large
dynamic range. Often, the high-frequency regions (> 3 KHz) have peak magnitudes 20
or even 30 dB below those of the lower frequency regions (< 1.5 KHz). Despite this
large dynamic range, the human auditory system is capable of distinguishing features
across all frequency regions.

We start with explaining the suitability of linear prediction for spectral envelope esti-
mation. Let us consider the case where the order p is relatively small (e.g., p = 10).
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The transfer function |1/A(p)(ejω)|2 is then mostly relatively smooth, i.e., it can de-
scribe some “macro-structure” of RX(ejω), but not its “micro-structure” (often called
fine-structure). Thus, the transfer function |1/A(ejω)|2 can be approximated as lo-
cally constant when evaluating the relative importance of local peaks and valleys in the
spectrum. The criterion of equation 10.22 emphasizes the local peaks, and, as a re-
sult, |1/A(ejω)|2 locally approximates the shape of the envelope of the power spectrum
RX(ejω). This is sometimes referred to as the local property of the linear-prediction
based spectral estimate. The local valleys between spectral peaks (such as those be-
tween harmonics in voiced speech) are often governed by extraneous noise, making this
a very desirable property in spectral estimation.

Example 10.1: The local property

Figure 10.4 provides a simple demonstration of the local property. Let G
(c)
i be a

random signal with power spectrum RG(c) (ejω). This power spectrum consists of
segments of two all-pole spectra with 6 poles each (the poles come in conjugate
pairs). Let RG(u)(ejω), RG(l) (ejω), RG(c)(ejω) be the upper, lower and composite
power spectra respectively. Which of the two spectra dominates when we optimize
the linear predictor for this composite signal? This is easily seen. The distortion
criterion is

η =

∫ π

−π

RG(c)(e
jω)

1/|A(p)(ejω)|2 dω

≈ 1

2

∫ π

−π

RG(u) (ejω)

1/|A(p)(ejω)|2 dω +
1

2

∫ π

−π

RG(l) (ejω)

1/|A(p)(ejω)|2 dω

≈ 1

2

∫ π

−π

RG(u) (ejω)

1/|A(p)(ejω)|2 dω.

Let G
(u)
i and G

(l)
i be independent signals with power spectrum RG(u) (ejω) and

RG(l)(ejω) respectively. Furthermore, Finding the predictor is then equivalent to

finding the best predictor for the signal 1
2
G

(u)
i + 1

2
G

(l)
i . Since G

(u)
i has much higher

variance than G
(l)
i , the linear predictor essentially ignores the signal G

(l)
i . In the

spectral domain, this implies that we fit the shape of the spectral envelope, i.e.

RG(u) (ejω). Note, that the linear predictor matches a signal with half the power

in this case. Thus, the spectral match is about 3 dB below the envelope.

 0 π/2  π 
ω

d
B 0

20

−20

Figure 10.4: The artificial power spectrum of example 10.1.
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Next, we consider the suitability of linear-prediction for the estimation of spectra with a
large dynamic range. This follows immediately from the criterion equation 10.22, which
is not sensitive to the magnitude of the envelope of RX(ejω). Thus, even if this envelope
has a large dynamic range, it is described with essentially identical relative accuracy
everywhere. This is sometimes referred to as the global property of linear-prediction
based spectral estimation. This is a first property that is essential for matching the per-
formance of the human auditory system for acoustic spectra that have a large dynamic
range.

It is interesting to compare these results with some simple alternative criteria. A
straightforward least-squares error criterion on the difference of |1/A(ejω)|2 and RX(ejω)
would perform significantly worse in two respects: i) it would not accurately represent
a large dynamic range and ii) it would not match the spectral envelope, but be heav-
ily influenced by the noise in local spectral valleys. A least-squares error criterion on
log |1/A(ejω)| and log |RX(ejω) would perform somewhat better in that it would fit ac-
curately over a large dynamic range. However, it would be sensitive to noise between
the local spectral peaks.

10.2.4 Optimal Linear Predictors are Minimum Phase

The filters A(p)(z) and 1/A(p)(z) are commonly used in source coding algorithms, par-
ticularly in speech coders, and it is important to know if they are stable (if all bounded
inputs produce a bounded output). Of course, the filter A(p)(z) is stable because it is
an FIR filter. However, 1/A(p)(z) is stable only if all roots of the polynomial A(p)(z)
are within the unit circle. When both poles and zeros are within the unit circle, the
filter is called minimum phase, and since we deal both with A(p)(z) and 1/A(p)(z), it
is convenient to adopt this terminology. In this chapter, we prove, with two different
methods, that the optimal linear predictor is stable. In this section, we show that the
prediction error is not minimal for nonminimum phase predictors. The second proce-
dure is based on the reflection coefficient representation, which is obtained from the
Levinson algorithm and is given in section 10.6.3.

The argument of this section consists of the following steps:

1. Consider an arbitrary filter A(p)(z) with one or more zeros outside the unit circle.

2. Multiply the filter by an all-pass filter that effectively moves a zero from outside
to inside the unit circle.

3. Evaluate the variance of the prediction error and note that it was reduced by this
operation. Thus, moving all zeros that were outside the unit circle inside the unit
circle results in lower prediction error.

For simplicity, we only consider an even-order predictor polynomialA(p)(z) with no roots
on the real axis. Since the polynomial coefficients are real, this means that complex

roots come in pairs which are each others complex conjugates. If α
(p)
i are the roots in

the top half plane, the polynomial can be written as follows:

A(p)(z) =

p
2
∏

i=1

(1− α
(p)
i z−1)(1 − α

(p)∗
i z−1). (10.23)
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Let us assume that |α(p)
m | > 1. Furthermore, let us define an all-pass filter H(z) =

H(ejω) of the following form:

H(z) =
(1 − α

(p)−1
m z−1)(1− (α

(p)−1
m )∗z−1)

(1 − α
(p)
m z−1)(1− (α

(p)
m )∗z−1)

, (10.24)

where 1 ≤ m ≤ p/2. On the unit circle (|z| = 1), we can write:

|H(z)|2

=
(1− α

(p)−1
m z−1)(1 − (α

(p)−1
m )∗z−1)

(1− α
(p)
m z−1)(1 − (α

(p)
m )∗z−1)

(1− (α
(p)−1
m )∗z)(1− (α

(p)−1
m )z)

(1− (α
(p)
m )∗z)(1− (α

(p)
m )z)

=
(1− α

(p)−1
m z−1)(1 − (α

(p)−1
m )∗z−1)

(1− α
(p)
m z−1)(1 − (α

(p)
m )∗z−1)

((α
(p)
m )∗z−1 − 1)((α

(p)
m )z−1 − 1)

((α
(p)−1
m )∗z−1 − 1)((α

(p)−1
m )z−1 − 1)

|α(p)
m |−4

= |α(p)
m |−4. (10.25)

Thus, the all-pass filter has a gain of 1/|α(p)
m |−4. This all-pass filter can be used to move

a pair of complex conjugate roots of A(p)(z) from outside the unit circle to inside the
unit circle. If we replace A(p)(ejω) by H(ejω)A(p)(ejω) in equation 10.22, we get:

1

2π

∫ π

−π

RX(ejω)|H(ejω)|2|A(p)(ejω)|2dω

= |α(p)
m |−4 1

2π

∫ π

−π

RX(ejω)|A(p)(ejω)|2dω

= |α(p)
m |−4σ2

p. (10.26)

Since we started from the assumption that |α(p)
m | > 1, the prediction error for the

minimum phase solution is smaller than σ2
p, the error obtained for the nonminimum

phase solution. The same logic can also be used for roots on the real axis. We conclude
that minimization of the criterion in equation 10.22 always results in an A(p)(z) with
its roots inside the unit circle. We summarize our results in the following theorem:

Theorem 23 The linear predictor that minimizes the prediction error variance for
given autocorrelation matrix is minimum phase.

10.2.5 Infinite-Memory Prediction

For the finite-order linear predictor, the orthogonality relation E[E
(p)
i Xn] = 0 holds for

i − p ≤ n < i. Then, for an infinite-order predictor E[E
(∞)
i Xn] = 0 holds for n < i.

Now note that all E
(∞)
n with n < i can be written as linear combinations of Xn with

n < i. We have that

E[E(∞)
n E(∞)

m ] = δnmσ
2
∞, (10.27)

where, as usual, δnm is the Kronecker delta, which is unity only if n = m and zero
otherwise. Thus, for a Gaussian process, infinite-memory prediction should result in a
process for which an entropy-constrained scalar quantizer performs at its best.
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Since the samples of the prediction error signal of an optimal infinite-order linear predic-
tor are uncorrelated, this signal must have a constant power spectrum. In other words,
the optimal infinite-order linear predictor whitens the signal power spectrum. Taking
the discrete-time Fourier transform of equation 10.27 results in

RE(∞)(ejω) = σ2
∞. (10.28)

We conclude that the power spectrum of the infinite-order-predictor prediction error is
constant, and that it equals the prediction error variance.

Equation 10.28 implies that, except for a scaling, the transfer function of the synthesis
filter, |1/A(∞)(ejω)|2, equals the power spectrum of the original signal:

|1/A(∞)(ejω)|2 =
1

σ2
∞

RX(ejω). (10.29)

10.2.6 Prediction Filters and Differential Entropy

The main goal of this subsection is to show that filtering with a prediction filter does not
affect the differential entropy rate of a process. To explain this, we start with a finite
random vector Xk = [X0, · · · , Xk−1] that we assume to be a segment of a wide-sense
stationary process. As earlier, let B be a k×k lower-triangular, Toeplitz matrix, with as
first column the impulse response of the filter 1/A(p)(z). We consider the transformation

Y k = BXk, (10.30)

that is, Y k is the zero-state response of the filter 1/A(p)(z) to Xk. Note that the
elements of Xk do not have to be iid.

The linear relationship of equation 10.30 can be used to relate the differential entropy
of Xk with the differential entropy of Y k. First, we recall some elementary relations
(e.g., [9]):

fY k(yk) =
fXk(xk)

| det(B)| (10.31)

dyk = | det(B)|dxk (10.32)

Thus, we can write

h(Y k) = −
∫

fY k(yk) log(fY k(yk))dyk

= −
∫

fXk(xk) log(
fXk(xk)

| det(B)| )dx
k

= h(Xk) + log(| det(B)|)
= h(Xk). (10.33)

where we used that det(B) = 1. This follows from the facts that B is lower-triangular
and that the first sample of the impulse response is unity, implying that the diagonal of
B consists of ones. In other words, we used that A(p)(z) is a monic polynomial. Thus,
we have shown that filtering with the inverse prediction-error filter and, therefore, the
forward prediction-error filter, do not affect the entropy rate of the process.
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We can also obtain this result directly for infinite sequences, by using the Szegö theorem
(theorem 13, equation 3.31). We first note that det(B)2 = det(BTB) and that BTB
falls in the class of Hermitian matrices. We start from the same point as equation 10.33,
divide by k and take the limit k → ∞. We can then write, under certain conditions

h∞(Yi) = h∞(Xi) +
1

2
lim
k→∞

log(| det(BTB)|)

= h∞(Xi) +
1

4π

∫ π

−π

log(|B(ejω)|2)dω, (10.34)

where |B(ejω)|2 is the power spectrum of a wide-sense stationary process with covariance
matrix BTB.

We now proceed with evaluating the second term on the right-hand side of equation
10.34. We note that the conditions we have used so-far imply that B(z) is a minimum
phase, monic (first coefficient is unity) polynomial, conditions that are both satisfied by
the optimal prediction filter obtained from the Yule-Walker equations. We have

1

2π

∫ π

−π

log(|B(ejω)|2)dω =

∮

log(|B(z)|2) 1

2πjz
dz

=

∮

log(B(z))
1

2πjz
dz +

∮

log(B(z−1))
1

2πjz
dz

=

∮

2Re(log(B(z−1)))
1

2πjz
dz

= 2Re(

∮

log(B(z−1))
1

2πjz
dz)

= 2Re

∮

log(

p
∑

i=0

a
(p)
i zi)

1

2πjz
dz)

= 2Re(log(a
(p)
0 )) = 2 log(1) = 0. (10.35)

In equation 10.35 we used that, since B(z) is minimum phase (and, therefore, has its
roots inside the unit circle), B(z−1) has no roots inside the unit circle, which in turn
means that log(B(z−1)) is analytic inside the unit circle. Equation 10.35 shows that the
mean value of the log of the power of the transfer function is zero for a minimum-phase
prediction filter.

Our results lead to the following theorem:

Theorem 24 For an operation Y (z) = B(z)X(z) with a minimum-phase linear filter
B(z), where B(z) is a real, monic polynomial in z−1, the differential entropy rate of the
output process, Yi equals that of the input process Xi:

h∞(Yi) = h∞(Xi). (10.36)

This theorem has an interesting corollary. When optimal prediction is performed, the
variance of the prediction error is a nonincreasing function of the prediction order.
However, the differential entropy rate is the same for the prediction error and the original
process, independent of the prediction order. We know from section 3.4 that an iid
Gaussian process has the maximum entropy rate for a given variance. This suggests
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that the optimal prediction error process converges to an iid Gaussian process with
increasing prediction order [74]. In problem 3, we show that an appropriate similarity
measure to illustrate this effect is the relative entropy rate.

10.2.7 A Bound on Redundancy

Since a Gaussian process has the maximum differential entropy, given the variance, over
all random processes (see section 3.4) the following inequality holds for redundancy

ρ(Xi) ≡ h1(Xi)− h∞(Xi)

= h1(Xi)− h∞(E
(p)
i )

≥ h1(Xi)− h1(E
(p)
i )

≥ h1(Xi)−
1

2
log(2πeσ2

p), (10.37)

The bound is tightest for p→ ∞. The value of σ2
∞ can be evaluated using Kolmogorov’s

formula, which is given in the next subsection, 10.2.8. The inequalities in equation 10.37
become equalities if the prediction residual is Gaussian. Similar inequalities for nonlinear
predictors and their relation to prediction gain have been presented in [75].

10.2.8 Kolmogorov’s Formula

Equation 10.35 implies that the mean of the log of the power spectrum of any signal does
not change upon filtering with any minimum-phase prediction filter (also a nonoptimal
filter):

1

2π

∫ π

−π

log(RE(p)(ejω))dω =
1

2π

∫ π

−π

log(RX(ejω))dω. (10.38)

We now extend this result to the limit where p→ ∞. From section 10.2.5, we know that

R
(∞)
E (ejω) = σ2

∞ is constant, allowing us to remove the integral. Thus, we see that we
have obtained a relation between the ultimate prediction error and the power spectrum
of the original signal:

σ2
∞ = exp(

1

2π

∫ π

−π

log(RX(ejω))dω). (10.39)

This equation is known as Kolmogorov’s formula.

10.2.9 The Spectral-Flatness Measure

The prediction gain is the variance of the original signal divided by the variance in
the prediction error. From Parseval’s theorem, the variance of the speech signal is
σ2
0 = 1

2π

∫ π

−π RX(ejω)dω. The maximum prediction gain (the gain in the limit of infinite-
order prediction) is then:

σ2
0

σ2
∞

=
1
2π

∫ π

−π
RX(ejω)dω

exp( 1
2π

∫ π

−π
log(RX(ejω))dω)

. (10.40)
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For obvious reasons, the inverse of equation 10.40 is called the spectral-flatness mea-
sure:

Ξ0 =
σ2
∞

σ2
0

=
exp( 1

2π

∫ π

−π log(RX(ejω))dω)
1
2π

∫ π

−π RX(ejω)dω
. (10.41)

Finally, we note that the spectral flatness for the prediction residual of an p’th order
linear predictor is

Ξp =
σ2
∞

σ2
p

=
exp( 1

2π

∫ π

−π
log(RE(p)(ejω))dω)

1
2π

∫ π

−π
RE(p)(ejω)dω

=
exp( 1

2π

∫ π

−π log(RX(ejω))dω)
1
2π

∫ π

−π RE(p)(ejω)dω
, (10.42)

where we used equation 10.35. Since for optimal linear prediction we must have σ2
p ≤

σ2
p−1 (for all p > 0), it is seen that the spectral flatness of the prediction error cannot

decrease with increasing predictor order and that minimization of the prediction error
variance is equivalent to maximization of the spectral flatness measure. Furthermore, it
is observed from the definition of the flatness measure (equation 10.42) that the spectral
flatness measure is in the range (0, 1] with Ξp = 1 corresponding to optimal prediction.

10.2.10 Linear Prediction and Gaussian Processes

As we have seen in earlier chapters, Gaussian processes are special: they are often good
approximations of reality and they often make solutions analytically tractable. This is
also the case for linear predictors. Generally, there is strong synergy between Gaussian
densities and linear operators (in the case of Gaussian additive noise, optimal estimators
are linear for example [76]), and this is no different for linear prediction and Gaussian
processes.

Filtering with the optimal infinite-order predictor results in a prediction error which has
a white power spectrum. Thus, if Xi is a stationary Gaussian process, the prediction
error process is iid. That is, in this special case the first-order differential entropy of
the prediction error equals the differential entropy rate of both the process Xi and the

prediction error E
(∞)
i :

h∞(Xi) = h∞(E
(∞)
i )

= h1(E
(∞)
i )

=
1

2
log(2πeσ2

∞), (10.43)

where we used equation 3.22, which specifies the differential entropy of a Gaussian
variable.

The redundancy of a Gaussian process can then be related to the gain of the infinite-
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order predictor

ρ(Xi) ≡ h1(Xi)− h∞(Xi)

=
1

2
log(2πeσ2

0)−
1

2
log(2πeσ2

∞)

=
1

2
log(

σ2
0

σ2
∞

) (10.44)

i.e., for a Gaussian process, half the log prediction gain of the optimal infinite-order
linear predictor equals the redundancy. Equation 10.44 specifies the redundancy relation
of equation 3.33 in terms of prediction gain.

Since for optimal predictors we have that σ2
p ≤ σ2

p−1 for p ∈ {1, 2, · · · }, the following
bound holds for stationary Gaussian processes:

σ2
0

σ2
p

≤ e2ρ(Xi), (10.45)

where the redundancy is stated in nats.

Before we continue our discussion, a few words of caution are in order. Since the
redundancy of the original Gaussian process is higher than that of the prediction error
process, it may seem natural to conclude that, for the case of scalar quantization, it is

advantageous simply to code the prediction error process E
(p)
i rather than the original

process Xi. However, as was seen in the introduction of this chapter, and as is discussed
in more detail in section 10.4, this conclusion is not straightforward since the distortion
criterion is not invariant with open-loop prediction. By using closed-loop prediction or,
equivalently, noise shaping it is possible to exploit the decorrelating properties of linear
predictors.

Since the infinite-order linear predictor error process has no redundancy for stationary
Gaussian processes, it follows from equation 7.34 that, at a given high rate, the spectral
flatness measure,

Ξ0 =
σ2
∞

σ2
0

=
exp( 1

2π

∫ π

−π
log(RX(ejω))dω)

1
2π

∫ π

−π
RX(ejω)dω

, (10.46)

is the reduction in distortion obtained by applying ideal entropy-constrained scalar
quantization of the infinite-memory prediction error process instead of applying such
scalar quantization to the original process. Alternatively, at fixed distortion, the log-
arithm of the spectral-flatness measure is equal to the log rate reduction (assuming
the same conditions). Naturally, this rate reduction is precisely the redundancy rate
of equation 3.33 (in fact, both equation 3.33 and equation 10.44, show that ρ(Xi) =
− 1

2 log(Ξ0)). For Gaussian processes and for k approaching infinity, the Karhunen-Loeve
transform removes all redundancy, and so does the linear predictor.

We can combine the spectral flatness measure with the rate-distortion function for
Gaussian processes at low distortion (equation 6.84), to obtain a simple expression for
the distortion rate function of Gaussian processes at low distortion:

Dldg = σ2
0 Ξ0 2

−2Rldg , (10.47)

where the subscripts “ldg” are a reminder that the equation only holds for low distortion,
and Gaussian statistics; the rate is given in bits.
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10.3 Linear Prediction for Given Data

So-far in this chapter, all discussion has been based on the assumption that we have
knowledge of the statistics of the process. In practice, one usually receives data without
prior knowledge of the statistics of the signal. The descriptions and derivations for this
case mirror that of the case of given statistics provided in section 10.2.1. The main
difference is that the variables are not random variables (and thus written in lower-
case), and that the expectation operators are replaced by a summation. Thus, we only
provide some important starting points and results. The prediction is described by

e
(p)
i = xi − x̂i = a(p)xi:i−p. (10.48)

The prediction error to be minimized is

ε =

i2
∑

i=i1

e2i , (10.49)

where [n1, n2] is the summation range used.

Using the Lagrange multiplier method, we minimize ε under the constraint that a
(p)
0 = 1,

i.e., that bTa(p) = 1, as in equation 10.6. The resulting normal equations are

C(p)a(p) =

[

ε
0p

]

. (10.50)

where

C(p) =
1

i2 − i1 + 1

i2
∑

i=i1

xi:i−px
T
i:i−p (10.51)

Two methods, the autocorrelation method and the covariance method, are commonly
used for the determination of linear predictors for the given data case. Both of these
methods are based on equation 10.50, the only difference being the summation ranges
selected. This seemingly small difference results in a significant difference in the prop-
erties of the estimated predictors. In the following two subsections, we describe the two
methods.

10.3.1 Autocorrelation method

In the autocorrelation method, the summation range in equation 10.49 is set to [−∞,∞].
For a practical situation, this can be done by first windowing the original signal and
assuming the samples outside the window to be zero. Tapered cosine window functions
(such as the Hamming and Hann window functions) generally result in better perfor-
mance of the predictor than a rectangular window function, because of reduced edge
effects. In speech coders, the tapered windows are often selected to be asymmetric so
as to minimize coder delay [77].

A major advantage of the autocorrelation method is that the matrix C(p) becomes
Toeplitz. For a window, wi, with a support of length N (ranging from 1 to N), we
obtain

R̃(p)a(p) =

[

ε/N
0p

]

. (10.52)
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where

R̃
(p)
i,j =

1

N

∞
∑

n=−∞

wn−ixn−iwn−jxn−j , wi = 0, ∀i∈{···−2,−1,N,N+1,··· } (10.53)

The normal equations specifying the linear predictor with the autocorrelation method
are of the same form as those obtained for the case where the statistics are known in
section 10.2.1. The difference is that R(p) is replaced with R̃(p), which can be seen as
an estimate of the autocorrelation matrix. Implicit is the assumption that the process
is stationary and ergodic.

The autocorrelation method has two major advantages over the covariance method
described below. First, the prediction filter is guaranteed to be minimum phase, since
the stability properties discussed in section 10.2.4 carry over to the autocorrelation
method. Second, fast computational procedures can be derived because of the Toeplitz
structure of the matrix R. These procedures, which lower the complexity from O(p3)
to O(p2) are the subject of section 10.6.

10.3.2 Covariance method

In the covariance method, the summation range is simply curtailed to [p+1, N ] and no
windowing is used. The covariance method consists of equation 10.50, in combination
with the coefficients

C
(p)
i,j =

1

N − p

N
∑

n=p+1

xn−ixn−j , i, j ∈ {0, 1, · · · , p}. (10.54)

The main advantage of the covariance method over the autocorrelation method is that
it does not require a windowing procedure. Thus, the prediction gain is generally
somewhat higher than that obtained with the autocorrelation method.

The covariance method has some significant disadvantages. The matrix C, while sym-
metric, does not have a Toeplitz in structure. The symmetric structure of C can be
exploited with the Choleski algorithm (e.g., [78]), but the computational effort remains
O(p3). Furthermore, the linear predictor a(p) estimated by the covariance method is
not guaranteed to be minimum phase, implying that the filter 1/A(p)(z) is sometimes
unstable. Procedures to “stabilize” the covariance method have been reported in the
literature [79] but such methods generally result in a decrease of the prediction gain.

10.3.3 Robust Linear Prediction

Like in almost any application of theory, practical problems occur when linear prediction
is applied to the processing of real-world signals. These problems relate to nonrobust
estimation of the prediction coefficients and the mismatch between the prediction model
and certain input signals. We discuss a few of these problems and their heuristic solu-
tions in this subsection.
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The Noise Correction Method

Many signals on which linear prediction is used have a large dynamic range. For example
the (voiced) speech spectrum typically has a tilt of -6 dB per octave (per doubling of
the frequency). This large spectral dynamic range is often further increased due to the
low-pass filtering used prior to the analog-to-digital conversion process. As a result, the
estimation of the linear prediction coefficients requires high computational precision to
capture the description of features at the high end of the spectrum. In certain cases, the
autocorrelation or covariance matrices become effectively singular given the numerical
precision used. Rather than to increase the numerical precision, or find numerically
more stable algorithms, it is common practice to modify the input data to prevent these
numerical problems.

By adding to the original signal a low-level high-frequency noise, the dynamic range
of the power spectrum is reduced [80, 79]. It is convenient to add such a contribu-
tion directly to the autocorrelation matrix for the autocorrelation method (or the cor-
responding covariance matrix for the covariance method) and to the signal variance.
This so-called high-frequency correction substantially reduces numerical problems
in computational devices of limited precision. The procedure is often simplified to be
a white-noise correction. This entails simply adding a small value to the diagonal
samples of the autocorrelation matrix and to the signal variance. If ǫ is the white-noise
correction and I(p+1) is the identity matrix, then equation 10.52, modified to include
the white-noise correction, becomes

(R̃(p) + ǫI(p+1))a(p) =

[

ǫ+ ε/N
0p

]

. (10.55)

Lag Windows

Another method to improve numerical stability, which is somewhat less common, is the
lag window method [81]. Application of the lag window minimizes the dynamic range
of the spectrum. Since this is done prior to the determination of the linear prediction
coefficients, it results in better numerical properties.

In the lag window procedure the autocorrelations are multiplied by a so-called lag win-
dow. Usually, this lag window is chosen to have a Gaussian shape. This corresponds
to convolving the power spectrum with a Gaussian shape, widening the peaks of the
spectrum.

In voiced speech, the spectral envelope contains fine structure generated by the vocal
cords. If one is interested in the effect of the vocal tract only (as is commonly the case),
a spectral smoothing prior to the computation of the predictor coefficients is reasonable
and this forms a second motivation for the usage of lag windows.

Bandwidth Widening

In the application of linear prediction, it is often found that the method has the tendency
to underestimate the resonance bandwidth. This effect is particularly noticeable in the
estimation of the vocal-tract transfer function in speech, where it is emphasized by the
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fine structure generated by the vocal cords. A commonly used remedy is bandwidth

widening [82]. In this procedure, each linear prediction coefficient a
(p)
n is multiplied by

a factor γn (i.e., all a
(p)
n are replaced by γna

(p)
n ). Such a multiplication moves all the

poles of H(z) inward by a factor γ and causes bandwidth expansion for all the poles.

The bandwidth expansion is often reported in Hz and it is thus relevant to understand
the relation between pole radius and bandwidth in Hz. For simplicity, let us consider
a single pole. Let a pole be represented by the factor 1− αiz

−1 in the denominator of
the transfer function. Let αi = |αi|ejωi . On the unit circle, we can write

|1 − |αi|e−j(ω−ωi)| = |1− e−j(ω−ωi)+log(|αi|)|
≈ |1− (1 − j(ω − ωi) + log(|αi|))|
= |j(ω − ωi)− log(|αi|))|. (10.56)

The resonance peak of the magnitude transfer function (the inverse of equation 10.56)
is log(|α|))| at ω = ωi. We are down to half the resonance peak when

|ω − ωi| = | log(|αi|))|. (10.57)

Defining the bandwidth as twice this width and noting that |αi| < 1, we obtain a
bandwidth for pole i, in Hz,

Bi = − 1

πT
log(|αi|)) Hz, (10.58)

where T is the sampling interval in seconds.

From equation 10.58, we see immediately that multiplication of the radius by γ expands
the bandwidth to Bi +∆B, where

∆B = − 1

πT
log(γ) Hz. (10.59)

Multiplication of z−1 in the all-pole transfer function by γ expands all poles by the
same bandwidth. Bandwidth widening is commonly used in speech coders. For 8 kHz
sampled speech, typical values for γ are between 0.988 and 0.996 [81], corresponding to
between 10 and 30 Hz widening.

10.4 Source Coding Based on Linear Prediction

Thus-far we have discussed the basic principles of linear prediction, some of its proper-
ties, and the estimation of linear predictors from data. To allow the creation of practical
coders, we must decide on the coder architecture and, for nonstationary signals, how to
provide both encoder and decoder with the same predictor coefficient information.

In the first subsection of this section, we discuss in more detail how to exploit linear
prediction in a source coder. We start with a discussion from the viewpoint of noise
shaping and show that this leads to closed-loop prediction. We then introduce analysis-
by-synthesis coding. The adaptation of the prediction filters in nonstationary signals is
described in subsection 10.4.3.
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10.4.1 Optimal Noise Shaping

Before embarking on a discussion of noise shaping of the prediction error process, some
words on the characterization of quantization noise are in order. Rather than assuming,
as we have done in the past (for example, in the introduction of this chapter), particular
source signal characteristics and ideal high-rate quantization, we now make assumptions
on the quantization noise. Quantization noise is often modeled as having a white power
spectrum. This is guaranteed to be correct when the high-rate conditions hold and when
unbounded cells can be neglected. The high-rate conditions imply that the probability
density of the data is smooth compared to the quantizer cell size. In the following,
we assume that quantization noise is white. We also assume that the appropriate
distortion criterion is the minimum mean squared error between Xi and QA(Xi), where
Q(·) denotes the quantization operator.

The white quantization noise assumption means that for direct quantization of a process
Xi we have that QA(Xi) −Xi has a white power spectrum. If we quantize the (open-
loop) prediction error process, Ei, thenQ(Ei)−Ei has a white power spectrum and upon
filtering with the synthesis filter3 1/A(z), the quantization noise (Q(Ei)− Ei)/A(z) =
QA(Xi) − Xi has a colored spectrum with the same signal-to-noise ratio (SNR) as
Q(Ei)−Ei. Thus, we obtained no performance benefit in terms of SNR from the predic-
tion process. However, for certain applications, the resulting coloring of the quantization
noise is advantageous.

To allow us to benefit from prediction, we introduce noise shaping, to color the power
spectrum of the quantization noise on Q(Ei) − Ei. If we can make sure that the SNR
of Q(Ei)− Ei is high in the spectral regions which are amplified the most by the filter
1/A(z) and low in the other regions, the average SNR of the signal QA(Xi) is increased
by the synthesis filtering operation, the more so the sharper the resonances of the filter
1/A(z).

We optimize the noise shaping so as to minimize the distortion QA(Xi)−Xi. However,
we note that noise shaping can also be used to minimize other, possibly perceptually
based, criteria.

z−1

Q(·)

Q(V (z))

E(z)
A(z)

V (z)
A−1(z)

−

QA(X(z))X(z)

G(z)

Figure 10.5: Noise shaping for the quantizer Q(·) in a predictive coder structure. P is
the predictor operator

In noise shaping, the quantization error is fed back to the input through a causal noise
shaping filter, G(z). To ensure proper functioning of the setup, a delay is required prior
to the noise shaping filter (otherwise the quantizer would operate on its own output). Let

3In this analysis, we assume analysis and synthesis filters are identical, thus ignoring the results of
section 6.6.2
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Vi denote the signal that is quantized (it differs from Ei by the feedback), as illustrated
in figure 10.5. Thus, the noise shaping system is described by

V (z) = E(z) + z−1G(z)(Q(V (z))− V (z)), (10.60)

The quantized output signal is now

QA(X(z)) = A−1(z)Q(V (z))

= A−1(z)(V (z) +Q(V (z))− V (z))

= A−1(z)(E(z) + (z−1G(z) + 1)(Q(V (z))− V (z)))

= X(z) + A−1(z)(z−1G(z) + 1)(Q(V (z))− V (z)). (10.61)

The quantization error is thus

Q(X(z))−X(z) = A−1(z)(z−1G(z) + 1)(Q(V (z))− V (z))). (10.62)

Using the white quantization noise assumption, the signal distortion can be written as

E[|Q(Xi)−Xi|2] =
1

2π

∫ π

−π

|e−jωG(ejω) + 1|2
|A(ejω)|2 σ2

Q dω, (10.63)

where σ2
Q = |Q(V (ejω))−V (ejω)|2 is the variance of the white quantization noise of the

quantizer.

We note from the structure of the noise shaping that G(z) must be a causal filter. Then,
it is convenient to define G′(z) ≡ z−1G(z) + 1, and the distortion can be written as

E[|Q(Xi)−Xi|2] = σ2
Q

1

2π

∫ π

−π

|G′(ejω)|2
|A(ejω)|2 dω. (10.64)

We now want to find the monic polynomial G′(z) that minimizes the expression in
equation 10.64. We see that the optimal noise shaping problem is equivalent to finding
the optimal predictor for a signal with power spectrum 1/|A(ejω)|2 (cf. section 10.2.3).
We know that the optimal infinite-order linear predictor has a spectral flatness measure
of unity, and that spectral flatness cannot decrease with increasing predictor order. We
then conclude that

G′(ejω) = A(ejω) (10.65)

gives optimal noise shaping, since it ensures a spectral flatness measure of unity.

Our optimal noise-shaping filter result is equivalent to closed-loop prediction. This can
be shown by a simple rearrangement. For z−1G(z) = A(z)− 1 we have

V (z) = E(z)− (A(z)− 1)V (z) + (A(z)− 1)A(z)Q(X(z)) (10.66)

or
A(z)V (z) = A(z)X(z) + (A(z)− 1)A(z)Q(X(z)) (10.67)

and thus
V (z) = X(z) + (A(z)− 1)Q(X(z)), (10.68)

which describes a closed-loop predictor.
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10.4.2 Analysis-by-Synthesis

In the previous subsection, we found that, under the assumption of white quantiza-
tion noise, closed-loop prediction allows us to exploit the decorrelating properties of
prediction. It is natural to combine the closed-loop predictor with a scalar quantizer,
resulting in the so-called DPCM (differential pulse-code modulation) coder. If the pre-
dictor and/or the quantizer is adaptive, then the coder is known as ADPCM (adaptive
DPCM). The DPCM principle was earlier illustrated in figure 10.2. When we make
the quantization explicit (as a codebook search), we obtain figure 10.6. We note that
the feedback within the quantizer structure (“encode” within the figure) is performed
within each time step of the remainder of the figure.

− −

encode decode

select

codebook codebook

minimize

1−A(z)1−A(z)

X(z) V (z)

X̂(z)

QA(X(z))

QA(X(z))

Figure 10.6: The principle of closed-loop prediction. The loop within the encode box
indicates the quantizer selection process for each sample.

Since the DPCM structure removes correlations from the structure prior to quantization,
there would, at first sight, seem to be relatively little motivation to use vector rather
than scalar quantization. Some advantage is to be expected from the space filling
and shape advantages discussed in section 7.5, but this effect may be affected by any
filtering performed on codebook vectors. A more important motivation for the the
vector quantizer is that it can account for dependencies that cannot be removed by the
prediction-error filter (and that are, thus, not modeled by the synthesis filter). In other
words, the vector quantizer tries to account for the nonGaussian nature of the signal.
An important class of such dependencies results in a time-varying envelope of the signal
variance. In the case of speech, the linear-prediction residual signal generally contains
so-called pitch pulses, where signal energy is localized.

Thus, there is significant motivation for the combination of vector quantization and pre-
diction. However, the DPCM structure of figure figure 10.6 does not lead to an effective
structure exploiting vector quantization. The most straightforward generalization of
the scalar quantizer in figure 10.6 is to look at the signal as a sequence of vectors and
predict vectors. This procedure is ineffective, since the prediction now has to predict
over longer time intervals.

A more effective incorporation of vector quantization in the DPCM structure is obtained
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if we modify the coding structure prior to introducing vector quantization. Let ǫi be
the quantizer error. Then it follows from figure 10.6 that

ǫi = Vi −Q(Vi) = Xi − X̂i −Q(Vi) (10.69)

QA(Xi) = X̂i +Q(Vi) (10.70)

and that, thus
ǫi = Vi −Q(Vi) = Xi −QA(Xi). (10.71)

Equation 10.71 is important for several reasons:

1. It shows explicitly that, for single-letter distortion criteria, the distortion is in-
variant with the closed-loop prediction operation.

2. It explains why the predictor is advantageous for scalar quantization. Consider
a quantizer that can obtain a certain signal-to-noise ratio (SNR) for a given rate
(e.g., an ideal entropy-constrained high-rate scalar quantizer operating on a Gaus-
sian signal). At a given rate, the quantizer operates at the same SNR for residual
and original signal. Equation 10.71 says that the quantization error does not
change with filtering by the synthesis filter, and this means that the SNR for the
reconstructed signal increased by the prediction gain of the filter. For speech this
is typically 10 dB or so.

3. We can modify the structure of the DPCM coder to that shown in figure 10.7.
This structure facilitates vector quantization. The coding structure of figure 10.7
is called analysis-by-synthesis coding.

The analysis-by-synthesis principle is not unique to linear prediction and goes back at
least to 1961 [83]. Linear prediction based analysis-by-synthesis coding forms the basis
for almost all speech coding standards developed in the last two decades of the 20’th
century. The well-known CELP coder [84, 85] falls into this class of coders. Some
pioneering works are [80, 86, 87].

10.4.3 Forward and Backward Adaptation of the Predictor

For proper operation of a linear-prediction based coder, the receiver must have access to
the same prediction coefficients as the transmitter. This can be done in three ways: i)
by keeping the predictor fixed, ii) by estimating the predictor coefficients from earlier re-
constructed speech, or iii) by transmitting the predictor coefficients as side-information.

The case where the predictor is estimated from the original signal and transmitted as
side information is known as forward adaptation of the predictor whereas the case
where the predictor is estimated from the reconstructed speech is known as backward
adaptation of the predictor. In speech coding, backward adaptation is mainly used for
higher bit rates (i.e., rates over 10 kb/s, such as the 32 kb/s ITU G.726 ADPCM coder
and the 16 kb/s ITU G.728 coder). Because backward adaptation of the predictor is
based on the earlier reconstructed speech signal, it tends to become less effective at low
bit rates. As a result, forward adaptation of the predictor, which requires quantization
of the prediction coefficients, is generally used for coders with lower bit rates (e.g., the
8 kb/s ITU G.729 coder, and the 12 kb/s GSM EFR coder). How to quantize the
prediction parameters is discussed in section 10.5.
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-
select

decodeencode

codebook codebook

minimize

1−A(z)1−A(z)

X(z)

QA(X(z))QA(X(z))

Figure 10.7: The principle of analysis-by-synthesis. The loop within the encode box
indicates the quantizer selection process for each sample or vector.

10.5 Quantizing Linear Prediction Coefficients

In source coders using forward adaptation, the predictor coefficients must be quantized
to allow transmission as side information. Furthermore, it has empirically been found
to be advantageous to transmit the predictor coefficients at regular time intervals and
interpolate the coefficients between the updates. Both tasks can be performed more
efficiently if the predictor coefficients are subjected to a nonlinear transform prior to
quantization and interpolation. The inverse transform is applied prior to usage of the
coefficients.

The desirability of a particular representation depends on several factors. It is desirable
that the coefficients of the representation are independent, so that scalar quantization is
efficient. However, in practice, vector quantization has been found to be a viable option
for predictor coefficient quantization. More importantly, it is desirable that a weighted
squared-error is a proper criterion, so that computationally efficient quantization can
be performed. Finally, it is desirable that quantization and interpolation cannot lead
to unstable filter representations. In this section, we first discuss how to evaluate per-
formance of quantizers and then discuss several representations and their quantization
and interpolation performance.

10.5.1 Evaluating Quantizer Performance

Since the estimation of the predictor coefficients (the identification of the AR model)
uses a particular criterion, perhaps best understood in the form of the Itakura-Saito
criterion (equations 10.18 and 10.19), it is surprising to note that that current practical
quantizer-evaluation methods in prediction generally employ criteria different from that
used for the estimation of the predictor coefficients. This situation can be motivated
from the fact that, in any case, it is natural to use perceptually based criteria to evaluate
performance. For the estimation of the predictor coefficients, the criterion also must
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lead to practical computations. For the evaluation of the quantizer performance, this is
not the case, and this has led to a discrepancy between the criteria used for estimation
of the predictor coefficients and the criteria used for evaluating quantizer performance.

The best criterion for evaluating quantizer performance of speech coders is a subjective
listening test where people evaluate the quality of the resulting coded speech. However,
such subjective tests are time-consuming and expensive. Therefore, the evaluation of
an predictor-coefficient quantization procedure is usually performed using an objective
measure (a measure that can be evaluated by means of a computer) operating directly
on the predictor coefficients, and not involving the entire coding structure. Usually, the
criteria are rather simple. More sophisticated objective measures for spectral fidelity
based on understanding of the human auditory systems [88, 89, 90, 91] are not used in the
evaluation of the precision of the predictor coefficient quantizers. This can be motivated
by the complicated interplay between quantizer performance and the performance of
the entire coder, particularly since the quantization of the excitation signal is generally
based on a weighted squared-error criterion.

A simple spectral distortion measure that is most commonly used in the literature to
evaluate the goodness of a quantizer (e.g., [92, 93, 94, 95, 96, 97, 98, 99]) is defined as

D =

√

1

π

∫ π

0

[10 log10(|A(ejω)|2)− 10 log10(|Q(A)(ejω)|2)]2dω, (10.72)

where D is the distortion in dB and Q(A)(ejω) is the power spectrum associated with
the filter transfer function corresponding to the quantized predictor coefficients. The
criterion accounts for the large dynamic range of hearing by means of the logarithm.

To evaluate the performance of a quantizer, the spectral distortion of equation 10.72
is averaged over all blocks (typically 100.000 to 1.000.000) in a set of test data. The
resulting average value represents the distortion associated with a particular quantizer.
Most studies [100, 93, 101, 102] have used an average spectral distortion of 1 dB as
difference limen for spectral transparency. However, it has been observed [94] that too
many outlier frames in the speech utterance having large spectral distortion can cause
audible distortion, even when the average spectral distortion is 1 dB. Therefore, more
recent studies [94, 103, 95] have tried to reduce the number of outlier frames, in addition
to the average spectral distortion.

10.5.2 Alternative Prediction Coefficient Representations

In source coders with forward adapting predictors, the information contained in the
predictor coefficients is usually quantized at regularly spaced time intervals and then
interpolated between the updates. To obtain the best performance, it is important to
perform this quantization and interpolation using an appropriate representation.

The predictor parameters are commonly interpolated over intervals of 20 to 30 ms. For
good interpolation performance it is essential that i) the transfer function spectrum
evolves smoothly when the parameters of the particular representation are interpolated
linearly and ii) the filters associated with interpolated coefficients remain minimum
phase.

To facilitate quantization, the representation should at least satisfy the following crite-
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ria: i) a computationally simple error criterion can be employed and ii) the filter remains
minimum phase after the quantization operation. The first condition results from im-
plementation constraints. It is estimated (e.g., [104]) that about 20 bits are required
for quantization of the predictor coefficients in speech. Such large codebooks lead both
to the usage of structured codebooks and to the usage of the weighted squared-error
criterion.

Since we generally intend to keep quantization errors small, expansions can be used to
relate more sophisticated criteria, such as the (admittedly flawed) criterion of equation
10.72 to the squared error criterion for a particular representation. Let sk denote a
k-dimensional vector representing the log power spectrum of the signal in a practical
implementation. Quantization introduces an error ∆s. Assuming certain conditions
on the smoothness of sk, we have that, for a sufficiently small change in a parameter
representation bm, say ∆bm,

∆sk = J∆bm, (10.73)

where J is a k ×m Jacobian matrix. This then implies that the spectral distortion is

∆skT∆sk = ∆bmTJTJ∆bm. (10.74)

We call the m×m matrix JTJ the spectral sensitivity matrix.

If JTJ is the identity matrix (possibly multiplied by a scalar), then a simple minimum

squared-error distortion criterion for ~b would be accurate for small bm. For predictor
coefficient representations, this situation does not occur. If JTJ is diagonal, then a
simple weighting would suffice. As we see, this occurs for the line-spectral frequency
representation (the weighting varies with the input). If the sensitivity matrix is not
diagonal, then independent quantization (based on the squared-error criterion) of the
components of bm leads to degraded performance compared to joint optimization even
when ignoring the space-filling and shape advantages discussed in section 7.5.

The Predictor-Coefficient Representation

The predictor coefficients themselves, a
(p)
i , are not well behaved with respect to either

quantization or interpolation. In both cases, stability of the synthesis filter is not
guaranteed. Moreover, the sensitivity matrix is nondiagonal and changes rapidly as
a function of the coefficients. In general, small changes in any one predictor coefficient
can lead to large changes in the transfer function spectrum and the spectrum. It is for
these reasons that we discuss alternative representations for the predictor coefficients.
We note that, for speech, the predictor coefficients are statistically highly dependent.

The Reflection-Coefficient Representations

As is shown in section 10.6, the reflection coefficients {ki} form a representation of the
linear predictor associated with a lattice filter realization of the predictor filter. Since
this representation is implicit in common fast computational procedures (see section
10.6)), the reflection coefficients are often available without additional computation.

A major advantage of the reflection coefficients over the predictor coefficients is that
the minimum-phase property is easily conserved by keeping the the magnitude of the
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reflection coefficients at less than unity. This is proven in section 10.6.3. Furthermore,
generally no additional computational effort is required to obtain these coefficients.

The main disadvantage of the reflection-coefficient representation is that the spectral
sensitivity matrix JTJ is not diagonal. Moreover, the matrix changes significantly over
the parameter range. The diagonals of the sensitivity matrix are U-shaped as a function
of value of the reflection coefficients. This drawback is important only at lower rates,
and can easily be overcome by the use of an appropriate nonlinear transformation which
expands the region near |ki| = 1. Two such transformations are the log-area ratio
transformation [82] and the inverse-sine transformation [105]. The arcsine reflection
coefficients are defined as

ASRCi = sin−1(ki). (10.75)

The log-area ratios are defined as

LARi = log(
1 + ki
1− ki

), (10.76)

The log-area ratios obtained their name because the reflection coefficients are associated
with computing the transfer function obtained for pressure waves moving through a
concatenation of tube sections of various width (a commonly used model of the human
vocal tract). The log-area ratios are the logarithm of the ratio of the areas of two
successive tube sections.

The reflection coefficient are generally highly dependent for speech signals.

The Line Spectral Frequency Representation

Experiments have shown that the line-spectral frequency (LSF) representation (intro-
duced by Itakura [106]) provide good performance with respect to both quantization and
interpolation (e.g, [107, 108, 104]). The spectral sensitivity matrix JT J of the LSF is
diagonal with respect to the criterion of equation 10.72 [109, 110]. As a result, the LSF
representation has become the most common representation for quantization and inter-
polation of the predictor coefficients. The main disadvantage of the LSF representation
is the complexity required for its computation.

To define the LSFs, the filter polynomial is used to construct two polynomials,

Pp(z) = A(p)(z) + z−1A(p)#(z), (10.77)

and

Qp(z) = A(p)(z)− z−1A(p)#(z), (10.78)

where A(p)#(z) = z−pA(p)(z−1). The polynomials Pp(z) and Qp(z) have the following
two properties: i) all roots of Pp(z) and Qp(z) lie on the unit circle, ii) the roots of
Pp(z) and Qp(z) are interlaced with each other; i.e., the LSFs are ordered. The former
property allows the roots to be specified as frequencies and the latter property facilitates
interpolation. The frequencies (angles) corresponding to the roots are the LSFs. An
example of the LSF representation is shown in figure 10.8.
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Figure 10.8: The line-spectral frequencies for a typical speech power spectrum and a
typical model order used in speech coding. The left figure shows the ten poles (+) and
the odd (o) and even (*) LSF in the z-plane; the right figure shows the corresponding
power spectrum and the line-spectral frequencies. (The low-frequency poles and LSF
are too close to resolve in the left figure.)

We now prove that the roots of Pp(z) are located on the unit circle; the same procedure
is valid for Q(z). For this purpose, we use the properties of all-pass functions given in
Appendix E to show that the poles of P (z) and Q(z) are on the unit circle. We write

P (z) = A(p)(z)(1 + z−1A
(p)#(z)

A(p)(z)
). (10.79)

The term A(p)#(z)

A(p)(z)
is an all-pass filter with unity gain on the unit circle. Thus, it is seen

that
> 1, |z| < 1

|z−1A(p)#(z)
A(p)(z)

| = 1, |z| = 1

< 1, |z| > 1

(10.80)

For the roots of P (z) we must have that z−1A(p)#(z)
A(p)(z)

= −1. From equation 10.80 it is

seen that this is possible only if |z| = 1. Thus, all roots of P (z) (and Q(z)) must fall on
the unit circle.

It can also be shown [100] that A(z) is minimum-phase only if its LSFs satisfy the roots-
on-the-unit-circle and interlacing properties. Thus, the stability of the synthesis filter
(which is an important pre-requirement for speech coding applications) can be ensured
by quantizing the predictor-coefficient parameters in LSF domain.

Because of the ordering property, all LSF are easily displayed as a function of time in a
single graph. Typically, major spectral peaks are surrounded by an LSF on each side,
as is shown in figure 10.8. In general, each LSF determines most strongly the power
spectrum near to its frequency.

LSF with an index differing by more than two have a relatively independent effect
on the power spectrum even for large-scale changes in their values. This leads to an
approximate statistical independence and suggests splitting the LSF in groups prior
to quantization. Such systems have indeed been shown to perform well for speech
coding [52]. Although the line spectral frequencies are not statistically independent,
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it has been shown that, for a given AR model, the covariance matrix for the line-
spectral frequencies computed from the empirical predictor coefficients is diagonal [109,
110]. This is associated with class-conditional independence, which is useful for speech
recognition4.

10.6 Lattice Filters and Fast Predictor Computations

The cost of source coders is often related to the computational effort they require. In this
section, we describe procedures to lower the computational effort of the estimation of
the linear-prediction coefficients. However, the described methods are also useful since
they an alternative representation of the prediction coefficients and provide insight into
filter stability.

In practice, the linear predictor coefficients are often computed from equations 10.11
and 10.53. Here, we write these equations as

R(p)a(p) =

[

σ2
p

0p

]

, (10.81)

where R(p) is Toeplitz and symmetric. Because of the structure of R(p), the equations
can be solved with a computational complexity of O(p2). Two procedures are used for
this purpose: the Levinson algorithm (the particular flavor of this algorithm used here
is sometimes called the Levinson-Durbin algorithm) and the Schur algorithm. Both
these procedures lead to an alternative representation of the predictor coefficients, the
so-called reflection coefficients, and an alternative filter structure: the lattice filter.

This section is organized as follows: we start our discussion with the Levinson algorithm,
then discuss some properties of the reflection coefficients, introduce the lattice filter, and
conclude with the Schur algorithm. Appendices provide matlab code for the various
algorithms.

10.6.1 The Levinson Algorithm

The problem of solving R(p)a(p) = [σ2
p0

pT ]T for the predictor a(p) appears to be very

similar to solving R(p1)a(p−1) = [σ2
p−10

p−1,T ]T for the order p − 1. The matrix R(p) is

almost identical to the matrix R(p−1) except for an additional row and column. Indeed,
if we substitute a(p−1), augmented with a 0, for a(p) in the left-hand side of equation
10.81, we have only one undesired, scalar entry (denoted as δp−1) on the right-hand-side:

R(p)

[

a(p−1)

0

]

=





σ2
p−1

0p−1

δp−1



 . (10.82)

The Levinson algorithm modifies the trial vector [a(p−1)T 0]T so as to force the scalar
δp−1 to zero. Let the superscript # denote reversal of the vector indices (i.e., a(p)# =

[a
(p)
p , · · · , a(p)1 , 1]T ). Then it is easily seen that, because of the symmetric Toeplitz nature

4This leads one to consider the notion of classification followed by scalar quantization for LSF.
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of R(p), we have

R(p)

[

0
a(p−1)#

]

=





δp−1

0p−1

σ2
p−1



 . (10.83)

To simplify our solution we combine equations 10.82 and 10.83 as follows:

R(p)

[

a(p−1) 0

0 a(p−1)#

]

=





σ2
p−1 δp−1

0p−1 0p−1

δp−1 σ2
p−1



 . (10.84)

To remove the δp−1 we multiply on the right by a matrix of the form

[

1 kp
kp 1

]

:

R(p)

[

a(p−1) 0

0 a(p−1)#

] [

1 kp
kp 1

]

=





σ2
p−1 δp−1

0p−1 0p−1

δp−1 σ2
p−1





[

1 kp
kp 1

]

. (10.85)

The sign chosen for the reflection coefficients, kp, is obviously arbitrary and it is not
consistent in the literature. With the choice kp = −δp−1/σ

2
p−1 we can write

R(p)
[

a(p) a(p)#
]

=





σ2
p 0

0p−1 0p−1

0 σ2
p



 , (10.86)

where we used

[

a(p) a(p)#
]

=

[

a(p−1) 0
0 a(p−1)#

] [

1 kp
kp 1

]

(10.87)

and where σ2
p = σ2

p−1 + δp−1kp. Note that equation 10.86 is what we originally set out
to achieve. The manipulations to get there form the Levinson algorithm.

Let us denote the first row (and column) of the Toeplitz matrix R(p) as [R0, R1, · · · ].
Then, to obtain a q’th order predictor, the Levinson algorithm requires the following
operations:

1. Set p=1. Set a(0) = 1 and σ2
0 = R0.

2. Compute δp−1 =
∑i=p−1

i=0 ap−1,i Rp−i.

3. Compute kp = − δp−1

σ2
p−1

.

4. Compute a(p) with equation 10.87.

5. Compute σ2
p = σ2

p−1 + δp−1kp.

6. If p < q, set p→ p+ 1 and go back to 2.

Appendix F provides the algorithm in Matlab.

From equation 10.87 we can also see that it is easy to compute the predictor coefficients

a
(n)
i , 1 ≤ i ≤ n, given the reflection coefficients k1, ..., kp, with 1 ≤ n ≤ p. This

procedure is called the step-up procedure. A Matlab step-up routine is provided in
Appendix F.
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10.6.2 Basic Reflection Coefficient Properties

Step 5 of the Levinson algorithm can also be written as σ2
p = (1− k2p)σ

2
p−1. Thus, since

σ2
p ≥ 0 we have that

k2p ≤ 1. (10.88)

In other words, for a stationary process the magnitude of the reflection coefficients
corresponding to the prediction filter must be less than or equal to unity.

From σ2
p = (1 − k2p)σ

2
p−1 it follows that the prediction gain of the p’th order predictor

is related to the predictor coefficients by

σ2
0

σ2
p

=

i=p
∏

i=1

(1− k2i ). (10.89)

Note that this prediction gain is defined as the ratio of the variance of the original
process and the prediction-error process, for the optimal p’th order predictor operating
on a stationary signal. In practical situations, where the predictor is estimated from a
finite data sequence rather than from accurate signal statistics, the prediction gain as
estimated from the average signal power over the data sequence can be quite different.

In subsection 10.6.3, we show that the filter A(p)(z) = a
(p)
0 + a

(p)
1 z−1 + · · · a(p)p z−p is

stable if all reflection coefficients are less than unity in magnitude.

From equation 10.87 it can also be seen that kp = a
(p)
p . Using this property, one readily

devise the so-called step-down algorithm, which provides the reflection coefficients
given the vector a(p).

10.6.3 The Reflection Coefficients and Stability

The minimum-phase property of the optimal linear prediction obtained from the Yule-
Walker equations was discussed earlier in section 10.2.4. In this subsection, we show
another proof, based on the properties of the reflection coefficients. In section 10.6.2, we
showed that the reflection coefficients are of magnitude less than unity for a stationary
signal, i.e., if A(p)(z) is stable. In this subsection, we show that, conversely, A(p)(z) is
minimum phase if |ki| < 1, i = 1, · · · , p. We know from equation 10.87 that A(p)(z) =
A(p−1)(z) + z−1kpA

(p−1)#(z). Now let α be a root of A(p)(z). Then

kp = −α A(p−1)(α)

A(p−1)#(α)
. (10.90)

It is noted that the right-hand side of 10.90 corresponds to the description of an all-pass
filter. From the properties of the all-pass filter shown in Appendix E, it is seen that

> 1 ⇔ |α| > 1,
|kp| = 1 ⇔ |α| = 1,

< 1 ⇔ |α| < 1.
(10.91)

Applying this result recursively to all optimal prediction filters of order less than p, we
see that A(p)(z) is minimum phase if all reflection coefficients k1, · · · , kp have magnitude
less than unity.
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Note also that if k1, · · · , kp−1 have magnitude less than unity, and |kp| = 1, then all roots
of A(p)(z) fall on the unit circle. As was shown in subsection 10.5.2, this is exploited
in the definition of the LSF representation. Furthermore, if |kp| > 1, then all roots of
A(p)(z) are outside the unit circle.

10.6.4 The Lattice Filter

The Levinson algorithm provides us with both the reflection coefficients, kp, and the

predictor coefficients a
(p)
k . It is useful to write the recursion of the predictors in polyno-

mial form. Each row of a(p) corresponds to the coefficient of a power of z−1. Equation
10.87 can then be written as

[

A(p)(z) A(p)#(z)
]

=
[

A(p−1)(z) z−1A(p−1)#(z)
]

[

1 kp
kp 1

]

. (10.92)

We can make this a little more elegant:

[

A(p)(z) A(p)#(z)
]

=
[

A(p−1)(z) A(p−1)#(z)
]

[

1 0
0 z−1

] [

1 kp
kp 1

]

. (10.93)

From this it is seen that

[

A(p)(z) A(p)#(z)
]

=
[

1 1
]

i=p
∏

i=1

[

1 0
0 z−1

] [

1 ki
ki 1

]

, (10.94)

which corresponds to a lattice filter description. Let s(z) be an input signal. Then
multiplying by s(z) gives as output the desired A(p)(z)s(z) in the left column on the
left-hand side. This can be implemented using the right-hand side. The input signal is
first split into two channels and these form the input to p sections which perform the
operations

[

1 ki
z−1ki z−1

]

. (10.95)

As an aside, we note that the lattice filter inherent in the Levinson (and Schur) algo-
rithm(s) is similar in form to the transfer function obtained for pressure waves moving
through a concatenation of tube sections of various width. The latter representation is a
common model for the human vocal tract [111]. However, only for specific terminations
of the tube sections is the tube model equivalent to the lattice filter obtained from the
Levinson algorithm. It is not possible to obtain a tube model corresponding to the
physical vocal tract by performing an analysis of the signal based on the Levinson (or
Schur) algorithm(s).

10.6.5 The Schur Algorithm

We introduce the Schur algorithm as an alternative method to compute the reflection
coefficients kp. For consistency, we provide a derivation which is along the same lines
as our derivation of the Levinson algorithm. Describing the Schur algorithm after the
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Levinson algorithm may not do proper justice to the significance of the Schur procedure,
whose historical roots [112, 113] go back further than the Levinson algorithm. However,
it is consistent with the later adoption of the Schur algorithm in many applications,
where it is also sometimes referred to as the LeRoux or LeRoux-Gueguen algorithm,
after researchers who reinvented it [114].

Let our ultimate aim be to solve for a q’th order predictor and let us say that we are at
the p’th step of the Schur recursion. We write

R(q)

[

a(p) a(p)#

0q−p 0q−p

]

=











g
(p)
0,0 g

(p)
0,1

g
(p)
1,0 g

(p)
1,1

· ·
g
(p)
q,0 g

(p)
q,1











. (10.96)

We call the matrix on the right-hand side the generator matrix G(p):

G(p) ≡











g
(p)
0,0 g

(p)
0,1

g
(p)
1,0 g

(p)
1,1

· ·
g
(p)
q,0 g

(p)
q,1











. (10.97)

We already know that R(p)[a(p)]T = [σp0
pT ]T , and we therefore also know that there

are p zeros in both columns of the G matrix. If we show this explicitly we get

R(q)

[

a(p) a(p)#

0q−p 0q−p

]

=



















g
(p)
0,0 0

0p−1 0p−1

0 g
(p)
p,1

g
(p)
p+1,0 g

(p)
p+1,1

· ·
g
(p)
q,0 g

(p)
q,1



















, (10.98)

where g
(p)
0,0 = g

(p)
p,1 = σ2

p. We now shift a(p)# down by one row. That is, we make the
following substitution

[

a(p) a(p)#

0q−p 0q−p

]

→





a(p) 0
0 a(p)#

0q−p−1 0q−p−1



 . (10.99)

It is easily seen that we then obtain

R(q)





a(p) 0
0 a(p)#

0q−p−1 0q−p−1



 =















g
(p)
0,0 g

(p)
p+1,0

0p 0p

g
(p)
p+1,0 g

(p)
p,1

· ·
g
(p)
q,0 g

(p)
q,1















, (10.100)

where we noted that it follows from the symmetry of the R(q) matrix that the entry

g
(p)
p+1,0 was appropriate for the first entry in the second column.
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We now follow the procedure introduced for the Levinson algorithm and multiply on

the right by

[

1 kp+1

kp+1 1

]

with kp+1 = − g
(p)
p+1,0

g
(p)
p,1

. Again showing the zeros explicitly,

we then have an equation of the form

R(q)

[

a(p+1) a(p+1)#

0q−p−1 0q−p−1b

]

=



















g
(p+1)
0,0 0
0p 0p

0 g
(p+1)
p+1,1

g
(p+1)
p+2,0 g

(p+1)
p+2,1

· ·
g
(p+1)
q,0 g

(p+1)
q,1



















. (10.101)

In other words, we have have obtained the equivalent of equation 10.96 for predictor
order p+1 and completed the Schur recursion step. We can initialize the Schur algorithm
with

G(0) =











g
(0)
0,0 g

(0)
0,1

g
(0)
1,0 g

(0)
1,1

· ·
g
(0)
q,0 g

(0)
q,1











= R(q)

[

a(0) a(0)#

0q−1 0q−1

]

=









R0 R0

R1 R1

· ·
Rq Rq









. (10.102)

The main difference between the Schur and Levinson algorithms is that for the Schur al-

gorithm both the numerator and denominator of the reflection coefficients, kp = − g
(p−1)
p,0

g
(p−1)
p−1,1

,

are obtained through a recursion. That is, both numerator and denominator are ele-
ments of the generator matrix, which itself is updated by shifting a column and multiply-

ing on the right by

[

1 kp
kp 1

]

. In contrast, in the Levinson algorithm the numerator,

δp−1, is obtained by means of an inner product. Such an inner product limits the
parallelism allowed in hardware implementations.

We only used R(q) in the derivation of the Schur algorithm to show its validity. However,
R(q) is not part of the computational method. The Schur recursion of the reflection
coefficients kp depends solely on the evolving q × 2 generator matrix. Furthermore, we
note that the first p− 1 rows of the generator matrix G(p) do not need to be computed.
We know that the first row is just the p’th row with reversed indices and that the
next p − 2 rows are zeros. Thus, to minimize the computational effort, we modify
the generator matrix by chopping off the top row in each recursion step. The Schur
algorithm can then be implemented with the following steps:

1. Set p=1. Form a q × 2 generator matrix G(0) =









R0 R0

R1 R1

· ·
Rq Rq









2. Shift the second column of G(p) down by one row (discarding its last element) and
eliminate the first row of the resulting matrix to obtain G̃(p+1).

3. Compute kp+1 = − g
(p)
1,0

g
(p)
0,1

(i.e., minus the ratio of the first row entries of G̃(p+1))
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4. Obtain G(p+1) = G̃(p+1)

[

1 kp+1

kp+1 1

]

5. if p < q, set p→ p+ 1 and go back to 2.

This version of the Schur algorithm calculates only the reflection coefficients. We could
compute the predictor coefficients simultaneously. However, we have already seen how
to compute the predictor coefficients from the reflection coefficients using the step-
up algorithm, and so the computation of the predictor coefficients, if needed can also
be done afterward. Appendix F provides the Schur algorithm both with and without
removal of the first row for each iteration. It also provides the step-up routine to obtain
the predictor coefficients.

10.7 Problems

1. Let Xi be an iid Gaussian process with unit variance. In the following, consider
the signal Vi = Xi + 0.7Xi−1.

(a) Compute optimal second-order and fourth-order linear predictors.

(b) Compute the prediction gain of the two predictors.

(c) Compute the prediction gain of the infinite-order predictor.

(d) Find the first-order entropy, the entropy rate, and the redundancy of the
process.

(e) Find a lower bound on the rate-distortion function for the process.

2. Show by means of inequalities that the solution of the Wiener-Hopf equations
minimizes the prediction error variance σ2

p.

3. (a) Define the relative entropy rate, a measure similar to the relative entropy
measure to compare random processes rather than random variables.

(b) Show that the relative entropy rate of a linear-prediction error process con-
verges to that of an iid Gaussian process as the prediction order increases.

(c) Under what conditions on the original process does the relative entropy rate
vanish for a linear-prediction error process?

4. Prove that the Itakura-Saito criterion cannot be negative.

5. Consider a zero-mean signal with autocorrelation function R(i) with optimal
order-p predictor A(p)(z). Define RA(p)(n) =

∫

1
|A(p)(ejω |2

ejωndω, i.e., the auto-

correlation of the AR process obtained by filtering a white sequence with the filter
1/A(p)(z). The speech sound “a” can be modeled as a real autoregressive process
with eight poles. The four poles located in the top half plane are 0.9631 ej0.4571

0.9643 ej0.7383, 0.9580 ej1.9478, and 0.9219ej2.5840.

(a) Prove that, upon normalization so that RA(p)(0) = R(0), the first p autocor-
relations of the AR model and signal are equal: RA(p)(n) = R(n), 0 ≤ n ≤ p.
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(b) Consider a periodic sequence. Each period consists of the same random,
white sequence of length P . Let sP (n) be the outcome of filtering this signal
with 1/A(z). Relate the autocorrelation of sP (n) to the autocorrelation of
the process obtained by filtering a white noise sequence by 1/A(p)(z), i.e.,
the autocorrelation of s∞(n).

(c) For the sound “a”, compute the predictor coefficients, and the associated
pole locations for a pitch period of 20, 80, and infinity (samples). Plot the
associated spectra on a dB scale.

6. In this problem we consider the ideal scalar encoding of an original signal and
two prediction residual signals, computed with optimal linear predictors of both
infinite and finite dimension. The original signal, Xi, is a Gaussian process and
we use the mean squared-error distortion measure, and we assume high resolution
quantization. The power spectrum of the process is shown in figure 10.9.

0

0

1

2

π/2 π
ω

Figure 10.9: Power spectrum of the real process Xi.

(a) Explain if the following cases are reasonable, and if they are more favorable
for scalar quantization: i) the differential entropy rate is larger than, ii)
equal to, or iii) less than the first-order differential entropy?

(b) Assuming an entropy-constrained scalar quantizer operating directly on Xi,
find and plot the lowest possible bit rate as a function of distortion.

(c) Assuming an ideal entropy-constrained scalar quantizer and an ideal (infinite-
memory) predictor, find the lowest possible bit rate as a function of the
distortion for the prediction residual. Add this relation to your plot.

(d) Find the optimal first-order predictor for the spectrum shown in figure 10.9.

(e) We filter Xi with the optimal first-order predictor you just derived. Find the
lowest possible bit rate as a function of the distortion for the prediction resid-
ual. Add the result to your plot, making sure that the relative positions of
the curves are correct. Provide a brief explanation for the relative positions.

(f) When we want to exploit linear prediction in the encoding of the original
signal, we cannot simply quantize the linear-prediction residual and run this
through the inverse of the prediction filter. Draw an effective architecture for
predictive coding with a scalar quantizer and explain why it works. Comment
on the performance of this system.

7. Show that equation 10.46 also holds for the Karhunen-Loève transform when the
dimension approaches infinity.
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8. The first reflection coefficient, k1, is often used for classification of speech segments.
Provide a qualitative argument based on the relation of this coefficient to spectral
properties to justify this usage.

9. Consider a first order autoregressive process with coefficient ρ.

(a) Determine the autocorrelation function for this process.

(b) Determine the optimal predictors for orders 1, 2, and 3.

(c) Determine the prediction gain for these predictors.

10. Consider a sequence of samples −1,−1, 0, 0, 1, 1, 2, 2.

(a) Determine the first-order linear predictor with the covariance method.

(b) Determine the first-order linear predictor with the autocorrelation method.

(c) Evaluate the predictor errors and the stability of the predictors.

11. Consider a stationary Gaussian process that can be modeled as a zero-mean
iid Gaussian process of unit variance driving a filter with poles at 0.95ejπ/4,
0.95e−jπ/4, 0.9ejπ/3, 0.9e−jπ/3.

(a) Compute the variance of the process.

(b) Compute the spectral flatness measure.

(c) Given that you use scalar quantizers, up to how many bits per sample can
be saved by using linear prediction?

(d) Find a lower bound on the rate distortion function for the process.

(e) Assuming that all you knew a-priori about the signal was the filter order and
the fact that the filter is stable, propose a coder design using a predictor.

12. Consider a Gaussian signal with a power spectrum 2
|1−0.8e−jω|2 . The squared-error

criterion holds.

(a) What is the first-order differential entropy of the signal?

(b) Assuming you can use any model order, what is the optimal predictor for
this signal?

(c) What is the differential entropy rate of the signal?

(d) Based on high-rate theory, design (provide the centroid locations and cell
boundaries) a scalar, entropy-constrained quantizer that operates directly on
the samples of the original signal, and has distortion 0.1. Estimate the rate
of this quantizer.

(e) To obtain better performance, you decide to employ prediction and scalar
quantization for your coder. Provide a diagram showing the structure of
your encoder and decoder.

(f) What is the advantage (state your answer in bits) of using the predictor
compared to not using the predictor? Motivate your answer.

13. Consider a zero-mean Markov process with two system states, A and B. In state
A the observed samples are uncorrelated and have variance 100. The transitions
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between the states have probability 0.001. In state B the observed samples are
correlated and have covariance matrix

R =

[

100 99
99 100

]

;

and you have no knowledge about longer-term correlations.

(a) Is the Markov process stationary? Explain!

(b) Find the optimal predictor for the case that the system is in state A. Provide
the prediction-error filter.

(c) Find the optimal predictor for the case that the system is in state B. Provide
the prediction-error filter.

(d) (3) Find the optimal predictor for the overall Markov process (no knowledge
about which state the system is in). You can neglect transition regions.

(e) Evaluate the prediction gains (ratio prediction-error variance and signal vari-
ance) for the three cases discussed before.

(f) You perform scalar quantization. Derive how many bits you can save for the
three situations if the signal is Gaussian.

(g) Consider the case where you do not know the system state. Provide a
straightforward coding strategy where you perform significantly better than
13d.



11

An Application: Speech
Coding

11.1 Introduction

Speech is central in human communication. Thus, it is natural that the representation
of the speech signal is a major application of source coding. A large literature on the
topic exists; for tutorial overviews we refer to [115, 116, 117].

Speech coding provides good examples for the practical implementation of some of the
procedures described in the previous chapters. We will use two guiding principles for
our exploration of speech coding:

1. Minimize the redundancy in the transmitted representation of the signal.

2. Minimize the transmission of irrelevant information, i.e., minimize the the entropy
rate of the transmitted signal given a certain threshold on the allowed distortion.

The removal of irrelevant information is most intuitive for coding of speech and audio
at high rates. In this case, the irrelevant information is information about signal com-
ponents that are below the hearing threshold or that are masked by other components
of the signal. At lower rates, the audible distortion must be set to a certain level and
information about signal components below this level is deemed irrelevant. It should be
noted that the proper quantitative definition of perceptually accurate distortion criteria
is the subject of ongoing research.

Before discussing how to remove redundancy and irrelevancy, we recall several concepts
and define the conditions under which we operate. We consider segments of a digitized
speech process to be a stationary discrete-time and discrete-amplitude process (vector
or scalar) Xi. We recall that the entropy rate of a stationary process Xi is defined as

H∞(Xi) = lim
k→∞

1

k
Hk(Xi) (11.1)

and that this is a lower bound on the average bit rate per sample at which we can
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represent the discrete process while ensuring exact reconstruction. Let L be the average
bit allocation per sample of the digital signal. We define the total redundancy rate
as

ρT (Xi) = L−H∞(Xi). (11.2)

Thus, it is, at least in principle, possible to reduce the average rate of the signal, L, by
the redundancy rate ρ(Xi), and still be able to reconstruct the signal Xi exactly.

In our present analysis, which is a preamble for constructing speech coders, we assume
that the speech signal will be coded in blocks. This assumption is valid for most practical
speech coders. It is then convenient to decompose the total redundancy rate into two
components, one related to the size of the coding blocks, and one related to the actual
coding of these blocks. We define (inter-symbol) redundancy rate as

ρ(Xi) = Hm(Xi)−H∞(Xi). (11.3)

This is the entity that is conventionally referred to as simply redundancy, as we have
in earlier chapters. Inter-block redundancy results from not exploiting the statisti-
cal dependencies between the coding blocks. For simple sample-by-sample encodings,
m = 1. In addition to the inter-symbol redundancy rate, we define the intra-symbol
redundancy rate as

ρc(Xi) = L−Hm(Xi). (11.4)

This represents the average redundancy within each coded block. Clearly, we have that
ρT (Xi) = ρ(Xi) + ρc(Xi).

Next, we define the irrelevancy rate. We consider a distortion thresholdD. Furthermore,
let R(D) be the rate-distortion function, i.e., the lower bound on the rates that are
achievable at a distortion D. We refer to R(D) as the rate-distortion bound. The
irrelevancy rate can then be defined as

ζ(Xi) = H∞(Xi)−R(D). (11.5)

Note that irrelevancy and total redundancy rates sum together to form the difference
between the actual average bit rate, L, of a digital signal and the rate-distortion bound
R(D). Thus, the bit rate used by a blockwise digital representation of the signal can
be divided into three components: the total redundancy rate, the irrelevancy rate, and
the rate-distortion bound,

L = ρ(Xi) + ρc(Xi) + ζ(Xi) +R(D). (11.6)

To obtain the lowest possible rate (the rate-distortion bound), both the redundancy
rate and irrelevancy rate must be removed from the overall rate.

In this book, we have discussed a variety of tools that are available to remove redundancy
and irrelevancy. In the next section, we briefly discuss these tools from a speech-coding
perspective. There-after, we motivate the most common architecture of speech coders,
before discussing some particular techniques in some more detail.

11.2 A Source-Coding Toolbox

Table 11.1 provides an overview of a set of commonly used source-coding tools. In the
development of speech coders, we will restrict our source-coding horizon to these tools.
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In this section, we will briefly review the properties of these tools from the perspective
of sampled speech signals. We will consider stationary speech segments only and will
assume that a mean squared-error criterion applies. The discussion will sometimes
implicitly assume that entropy-constrained quantization is used.

In our description of the tools we begin with discussing the removal of irrelevancy. Ir-
relevancy is removed by means of quantization and it is thus logical to introduce first
simple scalar quantization of the random speech process. Scalar quantization has
as main advantage its low complexity. However, the results of section 7.3.3 show that
(at least for the high-rate Gaussian case) we cannot quite remove all the irrelevancy
from the signal with a scalar quantizer. Consider a sampled signal with no inter-sample
dependencies, i.e., with no inter-symbol redundancy. For such a signal we have that
H1(Xi) = H∞(Xi), and thus that ζ(Xi) = H1(Xi)−R(D). The entropy of the quanti-
zation indices of the scalar quantizer satisfies inequality 7.38, which becomes an equality
for Gaussian processes. This shows that, in general, it is not not possible to remove all
irrelevancy from the signal using a scalar quantizer.

Table 11.1: Tools for source coding

method irrelevancy redundancy
removal removal

scalar quantization X
vector quantization X X
significance map X X
lossless coding X
prediction X
orthonormal transforms X
modeling X

In the case of speech, the signal samples are dependent, making it useful to consider
the effect of scalar quantization on redundancy. In section 11.3, it will be shown (for
the Gaussian case only) that the redundancy of the signal samples is decreased by
scalar quantization. Thus, if Ii are the indices resulting from the scalar quantizer, then
ζ(Ii) ≤ ζ(Xi). Importantly, in contrast to desirable redundancy removal, the decrease in
redundancy rate due to scalar quantization corresponds to a decrease in reconstruction
accuracy.

The fore-mentioned disadvantages of scalar quantization decrease with increasing di-
mension in vector quantization. Vector quantization is asymptotically optimal; with
increasing vector dimension, the performance of an optimal vector quantizer approaches
the rate-distortion bound. This implies that a vector quantizer can remove both redun-
dancy and irrelevancy. Redundancy is removed since the dependencies between the
vector components are reflected in the codebook vectors. Irrelevancy is removed be-
cause the precision of the description is reduced. Unfortunately, the computational
complexity of unstructured vector quantization grows exponentially with the dimension
of the vectors, for a given rate. This means that unstructured vector quantizers can be
used in practice only if they have relatively low dimensionality .

While it is, at least in principle, possible to remove all (inter-sample) redundancy with
methods other than vector quantization, this is not possible with the removal of ir-
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Figure 11.1: Rate penalty as a function of vector quantizer dimension for the case of a
high-rate Gaussian source and the squared error criterion. As the dimension approaches
infinity, this type of irrelevancy approaches zero.

relevancy. To improve the removal of irrelevancy over that of scalar quantization, no
alternatives to increasing the dimension in vector quantization exist. Assuming no sam-
ple dependencies, figure 11.1 (see problem 3 of chapter 7) shows the difference between
the entropy rate of the indices of the vector quantizer and the rate-distortion bound for
the high-rate, Gaussian case. This cost is associated with the nonoptimal shape of the
quantizer cells for low-dimensional quantizers. Compared to a scalar quantizer, a vector
quantizer of dimension 10 halves the rate penalty for a given distortion.

Many signal representations can be thought of as expansions. That is, the signal is
represented by coefficients that multiply functions (whether sinc functions, wavelets or
other functions). Often, these representations are sparse in nature, i.e., only a small
fraction of the expansion terms form a significant contribution to the signal energy. In
such cases, it can be beneficial to use a significance map [69]. A significance map
indicates which of the coefficients of the representation must be nonzero to obtain a
good approximation of a particular signal. These nonzero coefficients are then coded
with scalar or vector quantizers. The selection of the significance map is a-posteriori,
i.e., based on a particular realization of the signal. The significance map removes both
irrelevancy and redundancy and must be encoded.

Although better than scalar quantizers, which are useless in this respect, low-dimensional
vector quantizers are generally not very effective for removing redundancy. This is def-
initely the case for voiced speech, which is nearly periodic and where dependencies can
range over hundreds of samples. Thus, it is useful to explore other techniques than
vector quantization to remove redundancy in speech coding.

As was discussed in more detail in chapter 5, lossless coding removes redundant in-
formation from a finite-alphabet signal. It is convenient to divide the lossless coders
into coders that remove coding redundancy and coders that remove both coding and
inter-symbol redundancy. The Huffman code removes only intra-symbol coding redun-
dancy (note that by selecting larger blocks, this can be made to be a larger share of the
overall redundancy). Universal codes such as the Ziv-Lempel algorithm, which make
no assumptions about the statistics, remove both coding redundancy and inter-symbol
redundancy. Lossless coding of the first class is commonly applied to the stream of
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quantization indices in audio coding. However, lossless coding is not common in speech
coding. The main reason for this is probably that it results in either a variable-rate bit
stream, or a longer coding delay. In principle, lossless coding can also be applied directly
to a digital speech signal (for example, a 16-bit per-sample representation). However,
this leaves the speech signal in a representation from which irrelevancy cannot be re-
moved in a convenient manner.

Prediction is commonly used in speech coding for the removal of inter-symbol re-
dundancy (e.g., [72, 118]). For a stationary signal, sample-by-sample infinite-memory
prediction can remove all redundancy from the signal. In practice, linear finite-memory
prediction is used, with the linearity and memory constraints limiting the efficiency of
redundancy removal. Prediction corresponds to a transform that modifies the distortion
criterion, but the usage of closed-loop predictive coding and analysis-by-synthesis pre-
dictive coding results in the distortion criterion becoming invariant with the prediction
operation.

Orthonormal transforms are particularly convenient when the mean squared-error
criterion is used, since this criterion is not affected by the transform. Orthonormal
transforms include block transforms, lapped transforms, and wavelet transforms. There
are two different motivations for using orthonormal transforms in source coding: i) re-
moval of inter-symbol redundancy by means of linear decorrelation and ii) minimization
of the number of significant coefficients either a-priori (i.e., given the signal statistics)
or a-posteriori (given a signal realization). The first motivation is most prevalent in
speech coding.

For stationary Gaussian processes, linear predictors and filter-bank based coders (often
referred to as subband coders) can asymptotically remove all inter-symbol redundancy
(which is a function of the linear correlations between the signal samples) under idealized
conditions. For the linear predictor, all inter-symbol redundancy is removed when the
prediction memory approaches infinity, and for the subband coder this is the case when
the subbands are ideal and their number approaches infinity. There are some differences
in the methods, even under ideal conditions. The subband structure is independent
of the signal statistics, whereas the predictor depends on the signal statistics. The
(differential) entropy rate distribution over the subbands varies with the signal statistics,
whereas the (differential) entropy of all prediction-error samples is identical.

11.3 Designing a Coder Architecture

In the previous section, we saw that some source-coding tools are most useful for
redundancy removal, whereas others are most useful for irrelevancy removal. Large-
dimensional vector quantization, which can perform both is computationally prohibitively
expensive when used as the sole technique for speech coding. In this section, we assume
that we use a scalar quantizer to remove the irrelevancy. Under this constraint, forced
upon us by computational constraints, we then search for the best coder architecture,
i.e., for the best configuration of the scalar quantizer and redundancy removal methods.
While our arguments are based on the usage of scalar quantizers, the same arguments
can be made for low-dimensional vector quantizers.

To remove redundancy from the signal, we can distinguish between two classes: on
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Figure 11.2: Basic quantizer structure.

the one hand signal processing of orthonormal transforms and (linear) prediction, and
on the other hand lossless coding techniques exemplified by Huffman and Ziv-Lempel
codes. It is interesting to evaluate which techniques are more useful to code a speech
signal.

To start the discussion on coder architecture, we note that, in general, an index stream
that is the output of a quantizer, in general, contains intra-symbol redundancy. This
means that, in general, it is beneficial to have a lossless coder at the output of the
quantizer. Furthermore, as was already mentioned in section 11.2, it is clear that the
output from a lossless coder is a representation that is not amenable to quantization,
so it is not useful to use any kind of lossless coder prior to quantization. Similarly, it
is generally not sensible to apply signal processing techniques to the stream of indices.
Thus, only one question remains: is it beneficial to use signal processing techniques
to remove inter-symbol redundancy from the quantizer input or is it equally good, or
better to remove inter-symbol redundancy from the quantizer output?

We answer this question for the simple case of a high-rate coding system operating on a
Gaussian process Xi and a mean squared-error criterion. Application of the quantizer
directly to the process results in a stream of indices, Ki, with first-order entropyH1(Ki),
as shown in figure 11.2. The inter-symbol redundancy H1(Ki)−H∞(Ki) for the process
Ki is, in general, not zero. A lossless coder can be used to remove this redundancy, as
well as the coding redundancy and the lower bound on the resulting average bit rate
is thus H∞(Ki). For our case (high-rate scalar quantization, Gaussian process, mean
squared-error criterion), the relation between the distortion D and the rate H∞(Ki)
can be written as

H∞(Ki) = H1(Ki)− (H1(Ki)−H∞(Ki))

= H1(Ki)− (H1(Ki)−H(Ki|[Ki−1,Ki−2, · · · ]))
= H1(Ki)− lim

m→∞
I(Ki; [Ki−1, · · · ,Ki−m])

= h1(Xi)−
1

2
log(12D)− lim

m→∞
I(Ki; [Ki−1, · · · ,Ki−m]), (11.7)

where we used equation 7.33 and theorem 5.

Next, we look at the case where the inter-symbol redundancy is removed prior to the
quantizer, as shown in figure 11.3. This removal would be performed by a signal pro-
cessing procedure such as an orthonormal filter bank or (closed-loop) prediction. To
make the argument, we assume that the inter-symbol redundancy removal is perfect
and that the associated transform does not affect the distortion criterion. The relation
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Figure 11.3: Quantizer with front-end removal of redundancy.

between distortion and the entropy rate of the indices is now:

H∞(Ki) = h1(Yi)−
1

2
log(12D)

= h∞(Xi)−
1

2
log(12D)

= h1(Xi)−
1

2
log(12D)− lim

m→∞
I(Xi; [Xi−1, · · · , Xi−m]), (11.8)

where we used equation 7.33 and the continuous-alphabet equivalent of theorem 5.

The only difference between equations 11.8 and 11.7 is in the mutual information term.
In the case of signal processing prior to quantization, equation 11.8, this term describes
the mutual information of a continuous random variable Xi and its past, whereas in
equation 11.7, it refers to the mutual information between the quantized equivalents of
the variables Xi. To show that it is beneficial to remove the inter-symbol redundancy
first, it suffices to show that I(Xi; [Xi−1, · · · , Xi−m]) ≥ I(Ki; [Ki−1, · · · ,Ki−m]). We
use Jensen’s inequality, which states that if g(x) is convex (i.e., its second derivative is
positive), then

E[g(x)] ≥ g(E[x]), (11.9)

to prove this inequality. (Jensen’s inequality itself is the subject of problem 3.) In our
proof, we consider a sequence of length m+1. We label with Vki

the Voronoi region for
xi, given a particular past [xi−1, · · · , xi−m]. Using Jensen’s inequality and the fact that
a function t log t of t is convex, it is simple to show that scalar quantization of the samples
of the process Xi decreases the mutual information between Xi and the past signal. For
notational simplicity we write X̃ = [Xi−1, · · · , Xi−m] and x̃ = [xi−1, · · · , xi−m]. We
furthermore omit the usual subscripts from the densities and probability mass functions
(fXi

(xi) becomes f(xi) and pKi
(ki) becomes p(ki)). We quantizeXi first with the scalar

quantizer. We can write

I(Xi; X̃) =

∫

Rm

∫

R

f(xi, x̃) log

(

f(x̃, xi)

f(x̃)f(xi)

)

dxidx̃

=

∫

Rm

∑

ki∈A

p(ki)

∫

Vki

f(x̃|xi)
f(xi)

p(ki)
log

(

f(x̃|xi)
f(x̃)

)

dxidx̃. (11.10)

From Jensen’s inequality we have that
∫

Vki

f(x̃|xi)
f(xi)

p(ki)
log (f(x̃|xi)) dxi

= E[f(x̃|xi) log (f(x̃|xi)) |xi ∈ Vki
]

≥ E[f(x̃|xi ∈ Vki
] log (E[f(x̃|xi)|xi ∈ Vki

])

=

∫

Vki

f(x̃, xi)

p(ki)
dxi log

(

∫

Vki

f(x̃, xi)

p(ki)
dxi

)

. (11.11)
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Using inequality 11.11 in equation 11.10, we obtain

I(Xi; X̃) ≥
∫

Rm

∑

ki∈A

(

∫

Vki

f(x̃, xi)dxi

)

log

(
∫

Vki

f(x̃, xi)dxi

f(x̃)p(ki)

)

dx̃

=

∫

Rm

∑

ki∈A

f(x̃|ki)p(ki) log
(

f(x̃|ki)p(ki)
f(x̃)p(ki)

)

dx̃

= I(Ki; X̃). (11.12)

Next, we can use the same reasoning for the quantization of the components of the
vector X̃ to obtain

I(Xi; [Xi−1, · · · , Xi−m]) ≥ I(Ki; [Xi−1, · · · , Xi−m])

≥ I(Ki; [Ki−1 · · ·Ki−m]), (11.13)

which completes our derivation.

Thus, we have seen that, at least under particular conditions, the removal of redundancy
by means of signal processing prior to quantization can indeed reduce the coded bit rate.
This result is quite intuitive: if we destroy part of the signal structure by quantization,
then this destroyed structure cannot be used to obtain a coding gain through redundancy
removal. It should furthermore be mentioned that the signal processing procedures for
removing inter-symbol redundancy tend to be of relatively low complexity. This is
particularly so since the algorithms are usually optimized for the signal at hand.

To summarize, a good architecture for scalar quantization consists of the following
operator steps: i) inter-symbol-redundancy removal by means of signal processing, ii)
irrelevancy removal by means of scalar quantization, and finally iii) coding-redundancy
removal by means of lossless coding. In practice, the first step is approximated by
orthonormal transforms or by prediction, and this is described in the next section.

11.4 Practical Speech Coding Approaches

In this section, we discuss practical speech coding procedures for real-world speech
signals. In the application of these methods, the speech signal is usually interpreted as
a signal that is stationary over short time intervals (these intervals are usually considered
to be 20 ms or so.)

Speech coders are generally classified by the method used for the signal-processing-
based inter-symbol-redundancy removal: prediction or orthonormal filter banks. It was
mentioned in section 11.2 that these methods provide similar asymptotic performance
for stationary signals. However, in practice, where we have to deal with finite filter
lengths, filter banks with finite filter bandwidths, and nonstationary signals, the relative
performance of the inter-symbol-redundancy removal methods depends on the signal
properties. We will discuss the advantages and disadvantages of linear prediction and
filter banks in the context of speech coding in the next two subsections.
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Figure 11.4: A power spectrum of voiced speech for a male speaker (27.5 ms Hann
window) and a tenth order linear-prediction fit resulting from minimizing the prediction
error.

11.4.1 Linear Prediction-Based Speech Coders

Predictors are generally computed using the optimized using the methods described in
section 10.3. This computation is performed on a block-wise basis and, for the case of
forward prediction (section 10.4.3), the predictor description must be included in the
coded signal description. A pre-condition for making the adaptation practical is that the
inter-symbol redundancy removed must be more than the bit rate required to describe
the side-information for the predictor in a practically adequate manner.

Short-Term Predictors

A practical low-order linear predictor can remove the empirical inter-symbol redundancy
quite effectively and at a reasonable cost in bit rate. Simple models of the vocal tract,
which account only for dominant aspects, result in all-pole transfer-functions [119],
which explains why adaptive linear prediction can perform efficient decorrelation. In
practice, for an 8 kHz sampled speech signal, a tenth order linear predictor performs
well. This is consistent with the notion that the power spectrum of speech displays up
to four formants (spectral resonances), each with a center frequency and a bandwidth,
and a tilt, for a total of 9 variables. The real filter has ten complex poles, which come
in five complex conjugate pairs. This allows ten degrees of freedom, which is consistent
with the nine degrees of freedom we estimated from a simple vocal-tract model. Since
the predictor describing redundancy introduced by the vocal tract describes correlations
on a relatively short time-scale, it is usually referred to as the short-term predictor,
in contrast to a second type of predictor, which will be discussed later.

Since the speech signal is considered as nonstationary, the optimal predictor for a par-
ticular speech segment is estimated from speech data. A statistical motivation for the
estimation procedure and a practical implementation are described in sections 10.2.1
and 10.3. It is particularly interesting to compare the properties of the resulting esti-
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Figure 11.5: Pitch predictor structure. d is the delay corresponding to a pitch period.
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Figure 11.6: Linear-prediction-based synthesis structure including both pitch predictor
and short-term predictor.

mate with the properties of the human auditory system, as was done in section 10.2.3.
It was noted there that the fitting accuracy is very consistent with human perception:
in the power-spectral domain the estimate locally fits the shape of the spectral enve-
lope and globally maintains a constant signal-to-distortion ratio. A typical fit of the
linear-predictor spectrum to a short-term speech power spectrum is shown in figure 11.4.

Pitch (Long-Term) Predictors

The above discussion covered short-term predictors. As said, this predictor typically
has 10 coefficients and it describes the so-called short-term correlations. The short-term
predictor cannot remove the redundancy associated with the nearly periodic character
of the voiced speech signal. This periodic character of the voiced sounds is created
by oscillations of the vocal cords; vowels are examples of voiced sounds. In low-rate
linear-prediction based coders, so-called long-term predictors or pitch predictors
are commonly used to remove the redundancy associated with the nearly periodic char-
acter of the signal. The corresponding synthesis structure is shown in figure 11.5. The
long-term predictor generally has only one filter tap and both the optimal tap loca-
tion and the optimal single coefficient are usually estimated using analysis-by-synthesis
[120]. It is common practice to optimize the two predictors sequentially: the short-term
predictor parameters are estimated first, and the pitch predictor there-after. The corre-
sponding filters are simply concatenated, as illustrated in figure 11.6. For completeness,
we mention that a computationally simpler alternative to the pitch predictor is the
commonly used and closely-related adaptive codebook structure [121].

The analysis-by-synthesis structure shown in figure 10.7 is easily modified to include
the structure with both pitch predictor and short-term predictor. Let the transfer
function of the operator in figure 11.6 be denoted by H(z). Then figure 11.7 illustrates
the corresponding analysis-by-synthesis structure. (The figure is simplified from figure
10.6.)
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Figure 11.7: General analysis-by-synthesis structure for a synthesis filter with transfer
function H(z). This transfer function can include a pitch structure. The loop within
the encode box indicates the quantizer selection process for each sample.

Some Disadvantages of Linear Prediction

It can be argued that prediction simplifies codebook design. Since the prediction-
error samples are approximately independent and identically distributed (and assuming
that the marginal densities are independent of the speech sound) the statistics of the
prediction-error sample blocks are essentially independent of the predictor parameters
(except for a gain factor). This suggests that a single codebook for the prediction-error
blocks can perform well, independently of the power spectral envelope of the segment.
Indeed, good performance using this method is obtained in practice with the ubiquitous
code-excited linear-prediction (CELP) coder [84, 85]. However, although commonly
used, this intuitive argumentation for using a single codebook is not consistent with
what we know from rate-distortion theory.

The first inconsistency is related to the space-filling advantage of vector quantization.
Analysis-by-synthesis methods are methods that effectively create speech-domain code-
book adaptively, and a vector from these adapting codebooks is selected to represent
the target vector: the speech minus the zero-input response. While the vectors of the
codebook are adapted to model the dependencies of the vectors, through the filtering
operation, the local arrangement of the centroids is not selected to be optimal or near
optimal. In other words, the shape of the Voronoi regions is generally far from optimal.

The second inconsistency is related to reverse water filling. For Gaussian processes,
reverse waterfilling arguments (see section 6.6.2) tell us that the spectrum of the optimal
reconstruction signal is often quite different from that of the original signal. However,
in analysis-by-synthesis methods, this is generally not accounted for. In principle, the
problem can be mitigated by adapting the codebook or by modifying the synthesis filter
[122].

Another disadvantage of linear predictive coding of speech, not motivated by rate-
distortion theory, is related to long-term prediction. In general, voiced speech has high
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periodicity, but its onsets can be abrupt, and the signal shape can change relatively
rapidly. It can be shown1 that this nonstationary and-yet highly periodic character is
not efficiently represented with the all-pole structure used for synthesis with a long-term
predictor. At low bit rates, this leads to a relatively noisy character of the reconstructed
signal.

Enhancements to Linear Prediction

The performance of linear predictive coding is generally enhanced with both percep-
tual weighting and with postfiltering. In perceptual weighting the analysis-by-synthesis
structure is modified so as to account for the relative importance of different spec-
tral regions in auditory perception. In general, this implies that spectral regions with
high power are down-weighted (in these regions, masking is strong) and spectral re-
gions with low power carry increased weight (in these regions masking is generally less
strong). Postfiltering [123, 124] is used to shape the reconstructed speech for enhanced
perceptual quality. In general, postfiltering involves increasing the power of regions that
already have strong power and attenuation of regions of low power. Usually, postfiltering
attenuates regions of low signal-to-noise ratio.

The phenomenon of reverse waterfilling provides an additional motivation for postfil-
tering. We know from the theory of reverse waterfilling (section 6.6.2) that the optimal
reconstruction, in general, does not have the same power spectrum as the original sig-
nal. At low rates, low amplitude frequency bands should be missing. This motivates
the attenuation of of low-power frequency regions by the postfilter.

It is interesting to note that prediction has an obvious path for further improvement
in performance. In prediction, the optimality of the quantized excitation samples for
the synthesis structure is dependent on neighboring samples. However, in most current
coders (including idealized coders that reach the asymptotic limit), the selected quanti-
zation value of an excitation sample depends on past samples only. In other words, the
excitation samples are not optimized simultaneously and the excitation is nonoptimal.
We can get closer to optimality by using delayed-decision methods (e.g., [62]). Such
techniques also work for vector excitation methods [125, 126]. In general, such methods
require additional computational effort. It is natural to interpret them as a particular
form of constrained vector quantization.

Commercial Success of Linear Prediction

Most speech coding standards developed between 1980 and 2000 are based on linear
prediction [2]. The European (GSM) and American (TIA) standards for digital mobile
telephony are commercially important examples. The success of this method for redun-
dancy removal can be attributed to the advantages listed above: i) the inter-symbol
redundancy associated with the correlations introduced by the vocal-tract is effectively
removed with a low-order linear predictor, ii) the estimation of the linear-predictor
parameters is consistent with hearing, and iii) long-term linear prediction performs rea-

1Using a pitch-synchronous signal expansion, the synthesis filter corresponding to the pitch predictor
is a first-order AR filter. This time-variance frequency-variance product of the impulse response of such
a filter is infinite and displays thus very poor time-frequency resolution.
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sonably well in the removal of long-term correlations related to the near periodicity of
the voiced speech signal (particularly when a short delay is required).

11.4.2 Nonlinear Prediction and Speech Coding

Nonlinear predictors can exploit all known dependencies between samples. This implies
that optimal nonlinear predictors can remove all redundancy from a signal, and this
suggests that usage even of nonoptimal nonlinear predictors could lead to improved
coding performance. Yet, they are rarely used in current speech coding algorithms.
Some possible reasons for this are difficulties with their estimation, high computational
complexity, difficulty with encoding their structure in forward-adaptive schemes, and
the relatively good performance of linear prediction for speech signals. This relatively
good performance is associated with the fact that the vocal-tract is well described by an
all-pole filter structure. However, a similar argument is not valid for the signal exciting
the vocal tract.

The excitation signal for the vocal tract is a pressure wave that emanates from the
vocal cords. During voiced speech (as in vowels), the vocal cords oscillate resulting in a
pressure wave with a periodic character. This wave is modified (colored) by the vocal-
tract and radiated into space where it is picked up by our microphone and converted
into a sampled signal. After removing short-term correlations (the spectral envelope)
from this signal using a short-term predictor, a pulse train is observed.

The fact that the signal becomes a pulse train after flattening of the envelope indi-
cates that linear correlations cannot describe all sample dependencies. This is easily
illustrated using an ideal filter bank operating on a (time-invariant) pulse train. Let
us delay the outputs of each filter by a different amount prior to adding them back
together. Clearly, the sample correlations of the input signal are identical to those be-
fore the signal. Yet, we have modified the structure of the signal. Thus, there must be
dependencies in the signal that are not characterized by linear correlations, and that,
therefore, cannot be removed by linear prediction. Note also that the existence of such
dependencies also implies that the signal is not Gaussian.

It can be concluded that it is reasonable to use nonlinear prediction to remove the
redundancy associated with the “long-term” structure in the speech signal that is created
by the oscillation of the vocal cords. That nonlinear prediction is very effective for the
long-term structure in speech was confirmed in [127].

11.4.3 Filter-Bank Based Coders

In speech coding, most filter bank-based methods can be included in one of two classes:
i) filter bank coders with relatively few bands that are always time-invariant, ii) fil-
ter bank-based coders with an adaptive band structure. In most implementations the
reconstruction filter bank is not a perfect inverse of the analysis filter bank.
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Low-Resolution Filter bank Based Coders

The usage of low-resolution filter banks is easily motivated for Gaussian stationary
signals. For now, we ignore the fact that the Gaussian assumption is not quite right (cf.
section 11.4.2). (In fact, it probably forms the actual historical motivation for using the
subband coder structure in speech.) According to this motivation, as was discussed in
chapter 9, the samples of the individual filters of an ideal critically sampled filter bank
are uncorrelated within the band and between bands. This means that distortion is
reduced when these coefficients (filter outputs) are quantized rather than the original
signals samples (assuming scalar quantization). That this is true for speech signals
in practice is a small measure of vindication for using our initial assumptions. The
individual bands can be encoded using predictive coders, as, for example, in [128].

In the period between 1975 and 1985, filter banks were commonly used in both research
and commercial products (e.g., [128, 129, 130, 131]). In the following years, their usage
declined, although they were applied to some specialized applications (e.g., [132]). In
the years there-after more and more coders were based on linear prediction.

In speech coding, low-resolution filter banks have two obvious disadvantages compared
to linear prediction: i) low-resolution subband coders cannot remove redundancy associ-
ated with the nearly periodic structure of voiced speech and ii) low-resolution filterbanks
do not describe the spectral structure of speech as accurately as all-pole filters . The
first disadvantage is associated with the inability of the low-resolution filter bank to re-
solve the harmonic structure present in the power spectrum. The second disadvantage
is associated with the fact that the vocal tract instills a particular type of structure on
speech spectra that is not reflected by the filter bank.

Orthonormal filter banks do have a strong advantage over linear prediction in that the
mean squared-error criterion can be used for quantization of the transformed signals.
However, the empirical short-term statistics of the signals in the individual bands vary
with the speech sound, which means that different codebooks (at least separate scaling
factors) are necessary for different sounds. This is an implementation disadvantage
compared to linear prediction, where single codebooks have been found to work well in
practice (although they are not optimal, as was discussed earlier).

High-Resolution Filter-Bank Based Coders

High-resolution filter-bank based coders are known as sinusoidal and waveform interpo-
lation coders. Such coders are commonly used at bit rates below 4 kb/s. While it is
natural to interpret sinusoidal (e.g., [133, 134]) and waveform interpolation coders (e.g.
[135, 136]) as high-resolution orthonormal filter banks or approximations there-of, the
filter bank interpretation and terminology is rarely used in the literature.

The significant signal structure that remains within the bands of low-resolution filter
banks provides a good reason to simply increase the number of bands. However, for such
high-resolution filter banks we can also give several motivations that are not based on the
Gaussianity assumption: i) narrow-band filter banks generally lead to significant energy
concentration for voiced speech, which makes coding with significance maps attractive
and ii) properly selected adaptive narrow-band filter banks can render each band low-
pass in character (again for voiced speech), even when critically sampled, facilitating
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simple redundancy removal techniques such as down-sampling and prediction.

Sinusoidal Coding

The relation between sinusoidal coders and high-resolution filter banks is based on
the notion that the outputs from narrow-band filters are conveniently represented as
modulated sine waves. Let us analyze this for the continuous signal case. Consider a
filter bank with N filters with center spacing 2π/N radians. For the k’th filter with
impulse response hk(t), the amplitude modulation for the filter output can be written
as

ak(t) = exp(
−j2πkt
N

)

∫ ∞

−∞

s(t− t′)hk(t
′)dt′. (11.14)

If the filters hk(t) satisfy

∑

k

hk(t) = δ(t), (11.15)

which is true for ideal bandpass filters, the original speech signal can be written as

s(t) =
∑

k

∫ ∞

−∞

s(t− t′)hk(t
′)dt′

=
∑

k

ak(t) exp(
j2πkt

N
), (11.16)

which clearly displays the “sinusoidal” interpretation of the filter bank. This representa-
tion is particularly natural for voiced speech. Due to the nearly periodic nature of voiced
speech, only a subset of the sinusoids have a significant amplitude at any time instant.
Within the frequency resolution of the filter bank, these sinusoids are harmonically re-
lated. This implies that the significance map is described efficiently by simply encoding
the fundamental frequency. (For unvoiced speech, the sinusoidal representation does
not provide these advantages.)

The usage of a signficance map in sinusoidal coding implies that the basis (more gen-
erally, frame) functions have a support that is significantly longer than a single pitch
period, thus resolving the harmonics. While this is desirable to resolve harmonics, it gen-
erally leads to problems at sharp onsets of periodic signal segments, which are clearly
identified by the human auditory system, but not by the long-support basis (frame)
functions.

The effectiveness of the sinusoidal method depends on the particularities of the imple-
mentation. The filters must be practical digital filters and this leads to analysis and
synthesis filter banks that fall into the general class of discrete Gabor transforms. The
frame functions for these transforms are windowed exponentials. For coding, it is de-
sirable that the filter banks are orthonormal and that the windows on the exponentials
are smooth. The first property ensures that the distortion criterion is invariant with the
transform and that the number of variables to be coded is small (which would not be
the case for a redundant representation). The smoothness property ensures that quan-
tization does not result in discontinuities of the reconstructed signal and increases the
frequency resolution of the coding system. We note that human perception is sensitive
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to discontinuities in an acoustic signal even when these are of no significant conse-
quence in the commonly used distortion measures based on squared error. Thus, the
usage smooth frame functions facilitates the efficiency of distortion measures that are
imperfect descriptions of human perception.

Unfortunately, as was discussed in section 9.3.5, the above list of desirable properties
can only be reached for oversampling. It can be argued that the usage of analysis and
synthesis methods that do not guarantee perfect reconstruction in sinusoidal coding
areas is a result of the requirement of oversampling for perfect reconstruction using
Gabor frame functions. Particularly at the low bit rates where sinusoidal coding was
employed, where the quantization error dominates, perfect reconstruction by the filter
bank was not a high priority.

Waveform Interpolation

An alternative narrowband filter bank approach is waveform interpolation (WI). In
this method, the support of the basis (frame) functions is sufficiently short to resolve
the onsets of voiced speech. Sparseness can be obtained by a second-stage processing
procedure [137], but the procedure is in this respect more flexible than the sinusoidal
coding method. In WI the speech signal is thought of as being based on an evolving
characteristic waveform s(t, φ), where t is time and φ displays the waveform. s(t, φ) is
periodic in φ with a fixed period of 2π. The speech signal is then s(t, φ(t)), where φ(t)
is a particular pitch track.

If s(t, φ) is represented as a Fourier series,

s(t, φ) =
∑

k

ak(t) exp(
jkφ

N
), (11.17)

a similar representation as is used for sinusoidal coders is obtained. However, the notion
that equation 11.17 displays one pitch cycle along φ leads to a particular filter bank
resolution. In WI, the filter bank is selected such that its frequency resolution is exactly
the fundamental frequency of the signal. No significance map is used in WI. Since the
filter bank is tailored to the signal properties, it can be interpreted as an example of a
best-basis procedure.

The filter bank interpretation has been exploited directly in WI coders. In one im-
plementation, the speech signal is time-warped, so that a perfect-reconstruction fixed
filter bank can be employed [138]. To improve the time-frequency resolution, the mod-
ulated lapped transform (see section 9.3.4) has been used. In contrast to the Gabor
transform, this transform allows critical sampling with smooth windows. However, the
interpretation of the signal along the φ axis is less straightforward.

Because of the particular frequency resolution of the filter bank WI interpolation, the
bands of this filter bank (the coefficients of a the basis/frame functions for a partic-
ular pitch-synchronous channel) are particularly convenient for the separation into a
noise-like component and a nearly-periodic component. For voiced speech, most bands
are essentially low-pass in character, facilitating further down sampling even when a
critically sampled filter bank is used. In contrast, for noise-like (wide band) signals,
each signal band will have a flat power spectral density. By applying straightforward a
two-band filter bank (with high-pass and low-pass filters) for each of the bands, signals
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corresponding to the noise and the nearly-periodic components of the speech signal can
be separated. In combination with distortion criteria that correspond to a more ac-
curate representation of perception, this facilitates the removal of irrelevancy by using
separate quantizers for the voiced and unvoiced components.

11.5 Problems

1. Consider the analysis-by-synthesis structure of figure 11.7. Consider the block-
wise selection of an excitation vector from a codebook.

(a) Let the impulse response of the synthesis structure be h0, h1, · · · and the
original signal vector be s. Determine the criterion for the selection of a
codebook vector ci, where i is the index of the vector in the codebook. Write
the criterion in matrix notation.

(b) Consider the case where the vector has a separate gain factor. That is, the
excitation is of the form λkci where k is the index in the gain codebook.
Derive an expression for the ideal gain λ for a given excitation vector.

(c) Simplify the criterion for the excitation vector, under the assumption of op-
timal gain.

(d) Derive the simplest expression for the criterion to be used in the gain quan-
tizer given the excitation vector.

2. In this problem we review and contrast the basic properties of prediction-based
coding schemes and filter-bank based coding schemes. We consider Gaussian pro-
cesses only.

(a) Is a block-by-block discrete Fourier transform a linear operator? Is adaptive
linear predictive filtering, also operating on a block-by-block basis, a linear
operator?

(b) Starting from the expression for redundancy (see equations), show that an
“ideal” predictor (explain what “ideal” is) can remove all redundancy from
a stationary Gaussian process.

(c) Provide a qualitative reasoning that shows that, asymptotically, the discrete
Fourier transform can also remove all redundancy from a stationary Gaussian
process.

(d) The Fourier transform is a unitary transform that implements an approxi-

mate minimization of
∏k

i=1 σ
2
i . Show that such a minimization (under the

constraint of unitarity) corresponds to concentration of signal energy.

(e) Argue that, for a stationary signal, prediction results in a uniform variance
of the prediction residual samples.

3. Prove Jensen’s inequality for convex functions (equation 11.9).

4. Like some famous entrepeneurs, you and your friend try to sell your product
before it is ready. You have a customer who wants you to encode a stationary
signal with the power spectrum shown in figure 11.8. You do the better sales job
and tell the customer it will take about 1/6 bits to half the distortion per sample
(assuming squared-error criterion). Unfortunately, your friend had earlier told the
same customer that it will take about 1/2 bit to half the distortion per sample.
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Figure 11.8: Power spectrum for problem 4. Note that the vertical axis is logarithmic.

(a) Show that both results are correct (or very close to it) under certain condi-
tions. Make sure to list all assumptions made.

(b) Outline the principles of a good high-rate coder that you would design for
this signal. Assume the distortion is a squared-error criterion and use scalar
quantizers. No further constraints are imposed.

5. We usually consider Euclidean distance based distortion criteria. For such criteria
and high-rate conditions, a scalar quantizer can not perform as well as a vector
quantizer. These conclusions change dramatically if we change the distortion
criterion.

(a) Describe a distortion criterion for which scalar quantization can perform as
well as vector quantization for certain densities. What must the densities
be?

(b) For the criterion you selected and for a Gaussian distribution, would the
Karhunen-Loeve transform be useful for improving the efficiency of scalar
quantization? Why?

6. Lossless codes can be seen as the result of minimizing the mean codeword length
L =

∑

x∈A pX(x)l(x) subject to the constraint that the code is uniquely decod-
able. Such entropy coding leads to a mean codeword length that is close to the
entropy. The minimization of the mean-codeword-length cost criterion can lead
to individual codewords that are very long and, thus, to long delay. If delay is
more important than mean rate, alternative cost criteria can be considered. In
the following, you can first assume that the codeword lengths l(x) can take any
value on the real line (as was done in the derivation of the Shannon code) and
upon completion of the derivation introduce suitable rounding to make the code
discrete.

(a) Find a codeword length that is optimal (or close to -) for a uniquely decodable
code and the cost L = maxx∈A(l(x)). Motivate your solution.

(b) For a cost L =
∑

x∈A pX(x)eal(x) find a near-optimal codeword length as a
function of the probability (use methods similar as those used to motivate
the Shannon code). Naturally, your code must be uniquely decodable. We
call the resulting code an exp-length code.
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(c) Your objective is a good quantizer for a given set of data, a squared error cri-
terion, and an exp-length code. Define a complete iteration step of an iterative
quantizer optimization method that, for each iteration, improves the quan-
tizer that assumes an exp-length based code (rather than constrained-entropy
or constrained-resolution codes). (The algorithm is a Lloyd algorithm.)

7. Consider a continuous-amplitude, discrete-time, Gaussian, white-noise (flat power
spectrum) process, Xi, sampled at 8 kHz. The process Xi is upsampled to 16 kHz,
then low-pass filtered with 4 kHz cut-off (assume an ideal filter) with as output
the process Vi. Consider the squared-error criterion.

(a) Provide the rate-distortion function for the process Vi.

(b) Design a practical efficient coding system for the process Vi that gets close
to the rate-distortion function.

(c) Design a practical and efficient coding system for the process Vi under the
constraint that the overall delay of your coder (consider delay in both encoder
and decoder!) design is zero (0) samples. As always motivate your choice.
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Appendix A

Probability Theory Basics and
Notation

In this appendix, we review the basic probability theory that is assumed known through-
out the book. We start with the notion of sample space or alphabet, which is a
collection of elementary events, also called elementary experimental outcomes, or
simply points.

The discrete values that an output sample of an A/D (analog-to-digital) converter can
take form an alphabet. For the output of a 16-bit linear A/D converter, the sample space
is all integers from -32768 to 32767. Alphabets can contain a finite number of elements,
a countable infinite number of elements (for example the set of integer numbers, Z) or an
uncountably infinite number of elements (such as the set of points in any interval of the
real line R). The number of points in an alphabet is called its cardinality. Alphabets
are often referred to as discrete or continuous. A discrete alphabet has countably
finite or infinite elements while a continuous alphabet has uncountably infinite elements.

An event is a subset of the sample space (this is consistent with a sample being an ele-
mentary event). An event has a particular probability. The basic axioms of probability
theory are that the probability must satisfy three properties:

1. The probability of any event is in [0, 1].

2. The probability of the entire alphabet is unity.

3. The probability of the countable union of disjoint events (subsets of the sample
space which share no elements) is the sum of their probabilities.

We now have defined the three aspects of a probability space: the sample space, the
event space, and the probability of the events.

For our example of the A/D output, an event can be the subset of positive values of the
alphabet. This event can have a probability of 0.5, for example.

Next, we define the random variable. A random variable is a function that maps
each point in the sample space onto a finite real number. A condition is that the set of
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points in sample space corresponding to the random variable being less than any real
number should be an event. The condition, together with the defined properties for the
probability, ensures that the probability that a random variable takes a certain set of
values is defined.

The function FX(x) = P (X ≤ x) is called the cumulative distribution function,
often abbreviated to distribution function. For discrete-alphabet random variables
or simply discrete random variables the distribution function has a staircase pattern,
while for continuous-alphabet random variables the continuous distribution is continu-
ous. Random variables outside these two classes have a mixed-alphabet. For continuous
alphabets, the derivative of the distribution function, the probability density, is gen-
erally used.

A random discrete-time signal, also called a discrete-time process, consists of a se-
quence of random variables. Let us consider an infinite sequence. It makes it easier
to analyze such a sequence if we can assume that the statistics of the sequence are the
same for all random variables of the sequence. An infinite sequence for which all prob-
ability functions (joint and/or marginal) are independent of the time index, is called
stationary. We extend this definition to a finite sequence, to mean that all probability
functions are independent of the time index, as far as they apply to the finite sequence.

A process is considered wide-sense stationary (also called weakly stationary) if
the first and second order moments, E[Xi] and Ri,j ≡ E[XiXj ] are invariant with time
shifts (i.e., E[Xi] = E[Xi+q] and Rij = Ri+q,j+q).

A special case of a stationary sequence is a sequence with independent, and identi-
cally distributed (iid) variables, which are defined by the property

FX1,X2(x1, x2) = FX1 (x1)FX2(x2), (A.1)

where FX1,X2(x1, x2) = P (X1 ≤ x1, X2 ≤ x2). Property A.1 simplifies the evaluation
of information-theoretic measures, and iid variables are, therefore, often used in models
of natural signals.

For a stationary process that is also ergodic, the time average of the functions of the
random variables approach the expected value of the random variable, i.e.,

E[f(Xi)] = lim
k→∞

1

k

n=k−1
∑

n=0

f(Xn). (A.2)

In our applications, we will not need to define ergodicity in a more general context.
However, we note that a process can be ergodic without being stationary.

Finally some words on notation. Following a common convention, random variables
are capitalized, whereas events are not. Thus P (X = x) is to be interpreted as the
probability that the random variable X takes the value x, or simply the probability of
the outcome x for an event. A discrete process is an indexed set of variables {Xi : i ∈
K} where K ⊂ Z. Except in a few cases where this is obvious from the context, or
explicitly stated, the index of the process indicates time, K = Z, and the process can be
interpreted as a signal. In general, we distinguish a process from a variable by labeling
it with a subscript; Xi denotes a process. The superscript of a variable can mean either
the dimensionality or the power of a variable. Generally, the letter k is reserved for the
dimensionality and so xk usually indicates a k-dimensional vector variable and xkT the
transpose of this vector variable.



Appendix B

The Lagrange Multiplier
Method

The Lagrange-multiplier method aids in the solution of constrained optimization prob-
lems. Consider a function f(xk) and a constraint g(xk) = 0 where f and g are functions
of the k-dimensional vector xk = [x0, · · · , xk−1]

T and where f and g have continuous
first partial derivatives. The Lagrange multiplier method finds the stationary points (a
minimum, a maximum, or an inflection point) of f(xk) under a constraint of the form

g(xk) = 0. (B.1)

In the more general form, the method also deals with inequality constraints of the form

g(xk) ≤ 0, (B.2)

In the first two sections, the Lagrange multiplier method is derived for equality con-
straints. The second section concludes with a summary of the method. The third
subsection describes how the method can be used for inequality constraints. Before
starting with the derivations, we note that the commonly heard interpretation that the
Lagrange multiplier method consists of the addition of a zero component λg(xk) which
has a nonzero derivative is an oversimplification.

B.1 Equality Constraints: Derivation Using Differ-
entials

We denote partial derivatives as fi(x
k) = ∂f(xk)

∂xi
which we sometimes abbreviate to fi.

At a stationary point of f(xk) we have that

df = f0dx0 + f1dx1 + · · ·+ fk−1dxk−1 = 0. (B.3)

Without the constraint, the infinitesimal quantities dxi can vary independently and for
a stationary point all fi(x

k) must vanish. However with the constraint g(xk) = 0 this
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is not the case. Then, any changes in the dxi are dependent, and this dependency is
defined by

dg = g0dx0 + g1dx1 + · · ·+ gk−1dxk−1 = 0. (B.4)

Assuming gq 6= 0, equation B.4 implies that

dxq = −
∑

i6=q

gi
gq
dxi (B.5)

(the sum is over all dimensions except q) and, thus, that

df =
∑

i

(fi −
fq
gq
gi)dxi. (B.6)

Equation B.6 allows independent variation of all dxi, since the coefficient of dxq is always
zero. It is seen that for a stationary point xk

f0(x
k)

g0(xk)
=
f1(x

k)

g1(xk)
= · · · = fk−1(x

k)

gk−1(xk)
. (B.7)

To find the constrained extrema of f(xk), i.e. to find the k components of xk for the
constrained extrema, we can solve the equations B.7 (k−1 equations) and equation B.1.

This solution can be rewritten in a simpler manner. Let us first define the Lagrange
multiplier:

λ ≡ f0(x
k)

g0(xk)
=
f1(x

k)

g1(xk)
= · · · = fk−1(x

k)

gk−1(xk)
, (B.8)

where xk is assumed to be a stationary point. Then, equations B.7 become

f0(x
k)− λg0(x

k) = 0

...

fk−1(x
k)− λgk−1(x

k) = 0. (B.9)

We now have k + 1 variables: the k components of xk and the Lagrange multiplier λ.
We solve for these variables with the k equations B.9 and the constraint equation B.1
to obtain a stationary point (if any exists).

The last method for finding the constrained extrema can be interpreted as finding
a stationary point of the function f(xk) + λg(xk) or, alternatively, of the function
f(xk) +λ(g(xk)− c) with the constraint equation B.1 as an auxiliary equation, making
the Lagrange multiplier method easy to remember. This formulation can also be derived
in a more direct manner, as is shown in the next subsection.

B.2 Equality Constraints: Direct Derivation

The direct derivation of the Lagrange multiplier method can be described by three steps:

1. The problem is to find a stationary point of f(xk) under the constraint g(xk) = 0.
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2. An identical problem is to find the stationary point of f(xk) + λg(xk) under the
constraint that g(xk) = 0, where λ is an arbitrary constant.

3. If we can find a λ such that the stationary point of f(xk) + λg(xk) also satisfies
g(xk) = 0, then we have found the desired stationary point.

Thus, the Lagrange multiplier method consists of:

1. construct the function f(xk) + λg(xk)

2. differentiate this function towards the components of xk,

3. solve the resulting k equations B.9 and the constraint g(xk) = 0 for the vector xk

(the additional unknown λ can be discarded).

B.3 Inequality Constraints

B.3.1 General Case

For simplicity, we consider the scalar case for the inequality constraint. Let us consider
the case where we want to minimize f(xk) under the constraint that g(xk) ≤ 0. We
distinguish two cases:

1. The case where f(xk) has a minimum with g(xk) < 0. The solution is straight-
forward.

2. The case where g(xk) = 0. In this case, ∂f(x)
∂xk

T
dxk ≥ 0 for all admissable

dxk. From the constraint, it follows that the set of admissable dxk satisfies
∂g(xk)
∂xk

T

dxk ≤ 0. For this case, a solution must satisfy ∂f(x)
∂xk + λ∂g(xk)

∂xk = 0 and

g(xk) = 0.

Both cases can be written as one optimization problem by setting constraints on the
multiplier λ: minimize

f(xk) + λg(xk) (B.10)

with the constraint

g(xk) ≤ 0 (B.11)

and where

λ = 0, g(xk) < 0, (B.12)

λ ≥ 0, g(xk) = 0. (B.13)

Equation B.12 corresponds to case 1 and equation B.13 corresponds to case 2.
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B.3.2 Common Source Coding Inequality Constraints

For source coding, it is common to have to minimize a function f(xk) subject to a set of
inequality constraints of the form xi < ci, i ∈ {0, · · ·k − 1} (where xk = [x0, · · · , xk−1].
(The function f(xk) generally contains a Lagrange equality constraint.) In this case,
the problem can be formulated as: minimize

f(xk) +
∑

i

λixi (B.14)

with the constraints
xi − ci ≤ 0, i ∈ {0, · · · , k − 1} (B.15)

where

λi = 0, xi − ci < 0, (B.16)

λi ≥ 0, xi − ci = 0. (B.17)

Differentiating equation B.14 and setting it to zero results in

∂f(xk)

∂xi
+ λi = 0 (B.18)

When combined with equations B.16 and B.17 this gives us the set of equations

∂f(xk)

∂xi
= 0, xi − ci < 0, (B.19)

∂f(xk)

∂xi
≤ 0, xi − ci = 0. (B.20)

which are straightforward to solve if a minimum exists.
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Variational Calculus

The objective of variational calculus is to find a function, f(xk), which results in a
functional, η(f(·)), (a function of this function) to be invariant with small variations
in the function f(·). For these trajectories of f(·) the functional has a stationary value.
Typically, the functional is an integral of the function:

η(f(·)) =
∫

H(f(xk))dxk, (C.1)

where H(·) is some function. Now consider a perturbation of f(·) by a function ǫw(xk)
(with continuous second partial derivatives) where ǫ is small:

η(f(·)) =

∫

H(f(xk) + ǫw(xk))dxk

=

∫

H(f(xk))dxk + ǫ

∫

∂H(f(xk))

∂f(xk)
w(xk)dxk. (C.2)

The function f(·) represents a stationary point of the functional η(f(·)) if

∂H(f(xk))

∂f(xk)
= 0 (C.3)

on the trajectory of f(xk). Equation C.3 is a simple form of the Euler-Lagrange
equation. This equation is easily generalized to the case where H(·) is also a function
of the partial derivatives of f(xk).

Generalization of variational calculus to the case with an integral constraint of the form

∫

G(f(xk))dxk = c, (C.4)

where c is a constant, is straightforward. It is most convenient to use the same line of
reasoning as in section B.2. Thus,

1. The problem is to find a stationary point of
∫

H(f(xk))dxk under the constraint
∫

G(f(xk))dxk = 0.
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2. An identical problem is to find the stationary point of
∫

H(f(xk))dxk+λ
∫

G(f(xk))dxk .

3. If we can find a λ such that the stationary point of
∫

H(f(xk))dxk+λ
∫

G(f(xk))dxk

also satisfies
∫

G(f(xk))dxk = 0, then we have found the desired stationary point.



Appendix D

Determinant Inequalities

Consider a symmetric positive-definite matrixA of dimension k. We prove that
∏

i∈{1,··· ,k Aii ≥
det(A) holds for symmetric positive definite matrices with a recursion. We then prove
that tr(A) ≥ det(A).

Proof that
∏

iAii ≥ det(A)

To prove that
∏

iAii ≥ det(A), let us partition the matrix A into a submatrix B, a
column vector b, and a scalar c. Furthermore, we select an x such that Bx = −b. Then
we have

det

[

B b
bH c

]

= det

([

I 0
xH 1

] [

B b
bH c

] [

I x
0 1

])

= det

[

B Bx + b
xHB + bH xHBx+ xHb + bHx+ c

]

= det

[

B 0
0 bHx+ c

]

= det(B) (bHx+ c)

≤ det(B) c,

where we used that xHBx = −xHb, so that xHb must be negative. We prove our
statement by decomposing the matrix B in a similar manner, and so-on until we have
only scalars.

Proof that 1
k tr(A) ≥ det(A)

1
k

Given the first results of this Appendix, to prove that 1
k tr(A) ≥ det(A)

1
k for a symmetric

positive-definite matrix, it suffices to prove 1
k tr(A) ≥ (

∏

i(Aii))
1
k . The latter relation

is the well-known arithmetic-geometric inequality, which states that for real positive

333



334 APPENDIX D. DETERMINANT INEQUALITIES

numbers {ai}i∈{1,··· ,k}

1

k

k
∑

i=1

ai ≥ (

k
∏

i=1

ai)
1
k . (D.1)

We start with the simple case k = 2 and consider

c =
√
a1 −

√
a2. (D.2)

Since c is real we have

0 ≤ c2 = a1 + a2 − 2
√
a1a2 (D.3)

Thus it follows that

1

2
a1 + a2 ≥ √

a1a2, (D.4)

which completes the proof for k = 2.

We now outline the generalization of the proof to the case where the number of dimen-
sions, k, is arbitrary. We start with proving that equation D.1 holds for k = 2n with
n a postive integer. This can be done with mathematical induction. Given that the
relation holds for k = 2n, it is easy to show that it also holds for k = 2n+1. Since we
have already shown that it holds for k = 1, we have then proven that it holds for all
k = 2n with n a positive integer.

Next, we show that if equation D.1 holds for k then it also holds for k − 1. To this
purpose, we choose

ak =
1

k − 1

k−1
∑

i=1

ai (D.5)

With this convenient choice for ak, the left-hand side of equation D.1 becomes

1

k

k
∑

i=1

ai =
1

k − 1

k−1
∑

i=1

ai. (D.6)

Equation D.1 can then be written as

1

k − 1

k−1
∑

i=1

ai = (
1

k − 1

k−1
∑

i=1

ai

k−1
∏

i=1

ai)
1
k , (D.7)

which is equivalent to the desired k − 1 relation:

1

k − 1

k−1
∑

i=1

ai = (

k−1
∏

i=1

ai)
1

k−1 . (D.8)

Thus, since equation D.1 holds for all k = 2n with n a positive integer and for k − 1 if
it holds for k, it must hold for all k (k positive integers).



Appendix E

An All-Pass Transfer Function

Let H(z) be an all-pass transfer function of the form

H(z) ≡ A(p)(z)

A(p)#(z)
, (E.1)

where A(p)(z) = 1 + a
(p)
1 z−1 · · · + a

(p)
p z−p is minimum phase and where A(p)#(z) =

z−p + a
(p)
1 z−p+1 · · ·+ a

(p)
p .

Let α
(p)
i , i = 1 · · · p denote the poles of Ap(z). Since A

(p)(z) is minimum phase we have

that |α(p)
i | < 1, i = 1 · · · p. It is convenient to write H(z) as follows:

H(z) = z−p

∏i=p
i=1(z − α

(p)
i )

∏i=p
i=1(1− α

(p)∗
i z)

. (E.2)

Using polar coordinates we note that

|z − α
(p)
i |2 − |1− α

(p)∗
i z|2 = (1− |z|2)(1 − |α(p)

i |2). (E.3)

From the minimum-phase property of A(p)(z) it then follows that

> 0, |z| > 1

|z − α
(p)
i |2 − |1− α

(p)∗
i z|2 = 0, |z| = 1

< 0, |z| < 1

(E.4)

and, therefore,
> 1, |z| > 1,

|z−α
(p)
i |

|1−α
(p)∗
i z|

= 1, |z| = 1,

< 1, |z| < 1

(E.5)

Obviously, the same equality and inequalities are valid for the complete all-pass filter
of equation E.2. Thus, it follows that

> 1, |z| > 1,
|H(z)| = 1, |z| = 1,

< 1, |z| < 1.
(E.6)
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Appendix F

The Levinson, Schur, and
Step-Up Algorithms in Matlab

In this Appendix, simple Matlab implementations of the Levinson and Schur algorithms
for obtaining the predictor coefficients are given. Note that these implementations are
only for demonstration purposes; Matlab is not very efficient when using explicit loops.

function[a,k]=levinson(R,order)

% Levinson algorithm

% a: predictor coefficients

% k: reflection coefficients

% R: first column of autocorrelation matrix

% order: predictor order

k = [];

a = 1; % initialize predictor

sigma2 = R(1); % initialize prediction error variance

for i=1:order

at = flipud(a); % flip the predictor vector

delta = R(2:(size(a,1)+1))’ * at; % perform inner product

k = [k, -delta / sigma2]; % compute k(i)

a = [[a;0],[0;at ]] * [1; k(i)]; % compute new predictor vector

sigma2 = sigma2 + delta * k(i); % update prediction error variance

%sigma2 = sigma2 * (1-k(i)^2); % altern update prediction error var

end

function[k]=schuri(R,order)

% inefficient Schur algorithm;

% this version retains the size of the generator matrix G

% k: reflection coefficients

% R: first column autocorrelation matrix

% order: desired dimension of k

k = [];

G = [R(1:order+1), R(1:order+1)]; % initialize generator matrix
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for i=1:order

Gtilde = [G(:,1),[G(i+1,1);G(1:order,2)]]; % perform shift on second column

k = [k, -Gtilde(i+1,1) /Gtilde(i+1,2) ]; % compute k(i)

G = Gtilde * [[1,k(i)];[k(i),1]]; % multiply by 2x2 "theta" matrix

end

function[k]=schure(R,order)

% efficient Schur algorithm

% this version removes the top from the generator matrix G

% k: reflection coefficients

% R: first column autocorrelation matrix

% order: desired dimension of k

k = [];

G = [R(1:order+1), R(1:order+1)]; % initialize generator matrix

for i=1:order

q = order+2-i; % 1 extra because we count from 1

Gtilde = [G(2:q,1),G(1:q-1,2)]; % perform shift; chop off top

k = [k, -Gtilde(1,1)/Gtilde(1,2)]; % compute k(i)

G = Gtilde * [[1,k(i)];[k(i),1]]; % multiply by 2x2 "theta" matrix

end

function [a]=stepup(k,order)

% step-up algorithm

% a: predictor coefficients

% k: reflection coefficients

% order: prediction order (less or equal to size(k,1))

a = 1; % initialize predictor

for i=1:order

a = [[a;0],[0;flipud(a)]] * [1;k(i)]; % compute new predictor vector

end
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