Quantization

= Scalar quantizer

= |loyd-Max scalar quantizer

Quantizer design algorithm
High rate approximation

= Entropy-constrained scalar quantizer
Quantizer design algorithm
High rate approximation

= Vector quantization
= | attice vector quantization
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Quantization

Input-output characteristic of a scalar quantizer

Y Q A

Sometimes, this

Output X convention is used:

M represen-—%
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Lloyd-Max Scalar Quantizer

= Problem: For a signal x with given PDF £, (x) find a
quantizer with M representative levels such that

AN 2
d :MSE:E{(X—X) }—nnin.

= Solution: Lloyd-Max quantizer

[Lloyd, 1957][Max, 1960]

e M-1 decision thresholds exactly
half-way between representative
levels.

e M representative levels in the
centroid of the PDF between two
successive decision thresholds.

e Necessary condition
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lterative Lloyd-Max Quantizer Design

1. Guess initial set of representative levelsx, ¢=0,1,2,...,M -1
2. Calculate decision thresholds

3. Calculate new representative levels

tq+l
| x- fe(x)x
% = qg=0,1,..,M-1

[ £, (o

o 4. Repeat 2. and 3. until no further distortion reduction
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Example: Lloyd-Max Design |
= X zero-mean, unit-variance Gaussian r.v.

= Design scalar quantizer with 4 quantization indices with
minimum expected distortion D*

= Optimum quantizer, obtained with the Lloyd algorithm

Decision thresholds -0.98, 0, 0.98
Representative levels —1.51, -0.45, 0.45, 1.51
D*=0.12
D*=9.30 dB 035}
03

025¢

f(x), g{x)

2 4

e x
%?"‘"%
35 KTH 2 Markus Flierl: EQ2845 Information Theory and Source Coding Quantization no. 5



Example: Lloyd-Max Design |l

= Convergence

Initial quantizer A: Initial quantizer B:
decision thresholds -3, 0, 3 decision thresholds -0.5, 0, 0.5
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After 6 iterations, in both cases (D-D*)/D* < 1%
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Lloyd Algorithm with Training Data

1. Guess initial set of representative levelsx_; ¢=0,1,2,...,M -1

2. Assign each sample x; in training set T to closest
representative x_

Bq:{xeT:Q(x)zq} g=0,12,...,.M -1

3. Calculate new representative levels

=0,1,....M -1

4. Repeat 2. and 3. until no further distortion reduction
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Lloyd-Max Quantizer Properties

= Zero-mean quantization error
£l )0
= Quantization error and reconstruction decorrelated
E[(X - X)X] =0
= Variance subtraction property

0)22 =0, —E[(X—)A()z}
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High Rate Approximation |

Let A, be the step size of the scalar quantizer in cell i
= Local density of centroids ¢;: g(c;) = ~
= Centroid density function '

de = M
| 9(x)da
= Expected distortion
AZ 5
D=3 pt~ [ g72@)fx(a)de
i
= Optimal constrained resolution scalar quantizer

mgin D(g) s.t. /Rg(a:)da; = M

M representative levels

Frery
T Yy,
§§ KTH?; Markus Flierl: EQ2845 Information Theory and Source Coding Quantization no. 9

%%%xé? &



High Rate Approximation |

= Approximate solution of the "Max quantization problem,"
assuming high rate and smooth PDF [Panter, Dite, 1951]

1 _ 1 Jr \3/fX(33‘)diU
/g(x) M \3/fX<U)

Distance between two
successive quantizer
representative levels

Probability density
function of x

= Approximation for the quantization error variance:
N

d = E[(X—f()z} ~ 12]1\42 {j ; fX(x)de
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High Rate Approximation Il

= High-rate distortion-rate function for scalar Lloyd-Max
quantizer:

d(R)z¢&’cy 27" — M =2"
13

with &202 é j3 £ (x)dx

2
= Some example values for &
uniform |

Laplacian >=4.5

. \/572’
Gausstan ——=2.721
B 2
¢ s & Markus Flierl: EQ2845 Information Theory and Source Coding Quantization no. 11

%e%i“\,}x&? &



High Rate Approximation IV

= Partial distortion theorem: Each interval makes an
(approximately) equal contribution to overall mean-
squared error.

Pr{t, sX<zi+l}E[(X—f()2 t £X<tl.+l}

;Pr{tj SX<tj+1}E[(X—)A()2 ‘tj £X<tj+l} for all 7, j

Frery
T Yy,
§§ KTH?; Markus Flierl: EQ2845 Information Theory and Source Coding Quantization no. 12

%‘”%%}Xﬁ? &



s

T Yy,

§KTHY
G verensar

%%%xé?

g

Entropy-Constrained Scalar Quantizer

= Lloyd-Max quantizer optimum for fixed-rate encoding. How
can we do better for variable-length encoding of the
quantizer index?

= Problem: For a signal x with given pdf £, (x) find a quantizer
) . M -1

d =MSE=E[(X—X) }—)min. s.t.|R :H(X) =—> p,log, p,
q=0

= Solution: Lagrangian cost function

J=d+ AR :E[(X—X)2}+ZH<)A()—>min.
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lterative Entropy-Constrained SQ Design

1. Guess initial set of representative levelsx,; ¢=0,1,2,...,M -1
and corresponding probabilities p,

2. Calculate M-1 decision thresholds

Xpa T ')%q 2 log, Py~ log, P,
2(%,,-%,)

4. Repeat 2. & 3. until no further reduction in Lagrangian cost
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ECSQ Design with Training Data

1. Guess initial set of representative levelsx_; ¢=0,1,2,...,M -1
and corresponding probabilities p,

2. ASS|gn each sample x; in training set T to representatlve
minimizing Lagranglan cost J, (¢)=(x % ) ~ Alog, p,

Bq:{xeT:Qﬁ(x)zq} q=0,1,2,....M -1

3. Calculate new representative levels and probabilities p,

=0,1,....M -1

4. Repeat 2. and 3. until no further reduction in overall cost

J= ZJ —Z(x— (x,)) - Alog, p,.,
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Example: ECSQ Design |

= X zero-mean, unit-variance Gaussian r.v.

= Design entropy-constrained scalar quantizer with rate R=2

bits, and minimum distortion D*

= Optimum quantizer, obtained with the entropy-constrained

Lloyd algorithm

11 intervals (in [-6,6]), almost uniform

D*=0.09 (10.53 dB), R=2.0035 bits (compare to fixed-length example)
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Example: ECSQ Design Il

= Same Lagrangian multiplier is used in all experiments

Initial quantizer A, 15 intervals Initial quantizer B, 4 intervals
in [-6,6], with the same length in [-6,6], with the same length
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High Rate Results for ECSQ

= For MSE distortion and high rates, uniform quantizers
(followed by entropy coding) are optimum [Gish, Pierce, 1968]

= Entropy and distortion for smooth PDF and fine quantizer

Interval 4
i % R
H(X)zh(X)—long d = jgzdg:—
Y 12
= Distortion rate function
d(R)= L pannpan
12

IS factor % or 1.53 dB from Shannon Lower Bound

D(R)> L panxyan
2re
o
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Comparison: High Rate Performance of SQ

= High-rate distortion-rate function

d(R)= 022

= Scaling factor g

Shannon LowBd Lloyd-Max Entropy-coded
: 6
Uniform —=0.703 1 1
e
: e 9 e’
Laplacian —=0.865 — =45 — =1.232
T 2 6
Gaussian 1 V3T - 271 28 =1.423
@ 2 6
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Vector Quantization

A representative
vector

< \"7

. ' o Pdf

Amplitude 2

Amplitude 1
ap
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L BG Algorithm

= Lloyd algorithm generalized for VQ [Linde, Buzo, Gray, 1980]

!

Best partitioning
of training set

Best representative
vectors

for given partitioning for given
of training set representative
vectors

) |

= Assumption: fixed code word length
= Code book unstructured: full search

s
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Design of Entropy-Constrained VQ

= Extended LBG algorithm for entropy-coded VQ
[Chou, Lookabaugh, Gray, 1989]

= Lagrangian cost function: solve unconstrained problem
rather than constrained problem

J=d+AR =E[HX—)2 2}+/1H()2)—>min.

= Unstructured code book: full search for

J, (q)=|lx. -, - 2log, p,

The most general coder structure:
Any source coder can be interpreted as VQ with VLC!
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Lattice Vector Quantization

A odf
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8D VQ of Memoryless Laplacian Source
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8D VQ of a Gauss-Markov Source
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