Quantization

- Scalar quantizer
- Lloyd-Max scalar quantizer
 - Quantizer design algorithm
 - High rate approximation
- Entropy-constrained scalar quantizer
 - Quantizer design algorithm
 - High rate approximation
- Vector quantization
- Lattice vector quantization

Quantization

Input-output characteristic of a scalar quantizer

Markus Flierl: EQ2845 Information Theory and Source Coding

Quantization no. 2

Lloyd-Max Scalar Quantizer

• Problem: For a signal x with given PDF $f_X(x)$ find a quantizer with M representative levels such that

$$d = MSE = E\left[\left(X - \hat{X}\right)^{2}\right] \rightarrow \min.$$

Solution: Lloyd-Max quantizer

[Lloyd, 1957][Max, 1960]

- M-1 decision thresholds exactly half-way between representative levels.
- M representative levels in the centroid of the PDF between two successive decision thresholds.
- Necessary condition

$$t_{q} = \frac{1}{2} (\hat{x}_{q-1} + \hat{x}_{q}) \quad q = 1, 2, ..., M-1$$

$$\int_{t_{q}}^{t_{q+1}} x f_{X}(x) dx$$

$$\hat{x}_{q} = \frac{\int_{t_{q+1}}^{t_{q+1}} x f_{X}(x) dx}{\int_{t_{q}}^{t_{q+1}} f_{X}(x) dx}$$

Iterative Lloyd-Max Quantizer Design

- 1. Guess initial set of representative levels \hat{x}_q q = 0, 1, 2, ..., M-1
- 2. Calculate decision thresholds

$$t_q = \frac{1}{2} (\hat{x}_{q-1} + \hat{x}_q) \quad q = 1, 2, ..., M-1$$

3. Calculate new representative levels

$$\hat{x}_{q} = \frac{\int_{t_{q+1}}^{t_{q+1}} x \cdot f_{X}(x) dx}{\int_{t_{q}}^{t_{q+1}} f_{X}(x) dx} \qquad q = 0, 1, \dots, M-1$$

4. Repeat 2. and 3. until no further distortion reduction

Example: Lloyd-Max Design I

- X zero-mean, unit-variance Gaussian r.v.
- Design scalar quantizer with 4 quantization indices with minimum expected distortion D*
- Optimum quantizer, obtained with the Lloyd algorithm
 - Decision thresholds -0.98, 0, 0.98
 - Representative levels -1.51, -0.45, 0.45, 1.51

$$-D^* = 0.12$$

$$-D^* = 9.30 \text{ dB}$$

Markus Flierl: EQ2845 Information Theory and Source Coding

Quantization no. 5

Example: Lloyd-Max Design II

- Convergence
 - Initial quantizer A:
 decision thresholds -3, 0, 3

Initial quantizer B:
 decision thresholds -0.5, 0, 0.5

After 6 iterations, in both cases (D-D*)/D* < 1%

Lloyd Algorithm with Training Data

- 1. Guess initial set of representative levels \hat{x}_q ; q = 0, 1, 2, ..., M-1
- 2. Assign each sample x_i in training set T to closest representative \hat{x}_q

$$B_q = \{x \in \mathcal{T} : Q(x) = q\}$$
 $q = 0, 1, 2, ..., M-1$

3. Calculate new representative levels

$$\hat{x}_{q} = \frac{1}{\|B_{q}\|} \sum_{\mathbf{x} \in B_{q}} x \quad q = 0, 1, \dots, M - 1$$

4. Repeat 2. and 3. until no further distortion reduction

Lloyd-Max Quantizer Properties

Zero-mean quantization error
$$E\left[\left(X-\hat{X}\right)\right]=0$$

Quantization error and reconstruction decorrelated

$$E\left[\left(X - \hat{X}\right)\hat{X}\right] = 0$$

Variance subtraction property

$$\sigma_{\hat{X}}^2 = \sigma_X^2 - E \left[\left(X - \hat{X} \right)^2 \right]$$

High Rate Approximation I

- Let Δ_i be the step size of the scalar quantizer in cell i
- Local density of centroids c_i : $g(c_i) = \frac{1}{\Delta_i}$
- Centroid density function

$$\int_{\mathcal{R}} g(x) dx = M$$
 M representative levels

Expected distortion

$$D = \sum_{i} p_{i} \frac{\Delta_{i}^{2}}{12} \approx \frac{1}{12} \int_{\mathcal{R}} g^{-2}(x) f_{X}(x) dx$$

Optimal constrained resolution scalar quantizer

$$\min_{g} D(g)$$
 s.t. $\int_{\mathcal{R}} g(x)dx = M$

High Rate Approximation II

 Approximate solution of the "Max quantization problem," assuming high rate and smooth PDF [Panter, Dite, 1951]

Approximation for the quantization error variance:

$$d = E\left[\left(X - \hat{X}\right)^{2}\right] \approx \frac{1}{12M^{2}} \left[\int_{x} \sqrt[3]{f_{X}(x)} dx\right]^{3}$$

High Rate Approximation III

High-rate distortion-rate function for scalar Lloyd-Max quantizer:

$$d(R) \cong \varepsilon^{2} \sigma_{X}^{2} 2^{-2R}$$
with $\varepsilon^{2} \sigma_{X}^{2} = \frac{1}{12} \left[\int_{x} \sqrt[3]{f_{X}(x)} dx \right]^{3}$

• Some example values for ε^2

uniform 1
Laplacian
$$\frac{9}{2} = 4.5$$
Gaussian $\frac{\sqrt{3}\pi}{2} \cong 2.721$

High Rate Approximation IV

 Partial distortion theorem: Each interval makes an (approximately) equal contribution to overall meansquared error.

$$\begin{split} & \Pr\left\{t_{i} \leq X < t_{i+1}\right\} E\left[\left(X - \hat{X}\right)^{2} \middle| t_{i} \leq X < t_{i+1}\right] \\ & \cong \Pr\left\{t_{j} \leq X < t_{j+1}\right\} E\left[\left(X - \hat{X}\right)^{2} \middle| t_{j} \leq X < t_{j+1}\right] \quad \text{for all } i, j \end{split}$$

Entropy-Constrained Scalar Quantizer

- Lloyd-Max quantizer optimum for fixed-rate encoding. How can we do better for variable-length encoding of the quantizer index?
- Problem: For a signal x with given pdf $f_X(x)$ find a quantizer

$$d = MSE = E\left[\left(X - \hat{X}\right)^{2}\right] \rightarrow \min.$$
 s.t.
$$R = H\left(\hat{X}\right) = -\sum_{q=0}^{M-1} p_{q} \log_{2} p_{q}$$

Solution: Lagrangian cost function

$$J = d + \lambda R = E\left[\left(X - \hat{X}\right)^{2}\right] + \lambda H\left(\hat{X}\right) \rightarrow \min.$$

Iterative Entropy-Constrained SQ Design

- 1. Guess initial set of representative levels \hat{x}_q ; q=0,1,2,...,M -1 and corresponding probabilities p_q
- 2. Calculate *M-1* decision thresholds

$$t_{q} = \frac{\hat{x}_{q-1} + \hat{x}_{q}}{2} - \lambda \frac{\log_{2} p_{q-1} - \log_{2} p_{q}}{2(\hat{x}_{q-1} - \hat{x}_{q})} \quad q = 1, 2, ..., M - 1$$

3. Calculate M new representative levels and probabilities p_q

$$\hat{x}_{q} = \frac{\int_{t_{q+1}}^{t_{q+1}} x f_{X}(x) dx}{\int_{t_{q}}^{t_{q+1}} f_{X}(x) dx} \qquad q = 0, 1, ..., M-1$$

4. Repeat 2. & 3. until no further reduction in Lagrangian cost

ECSQ Design with Training Data

- 1. Guess initial set of representative levels \hat{x}_q ; q = 0,1,2,...,M -1 and corresponding probabilities p_q
- 2. Assign each sample x_i in training set T to representative minimizing Lagrangian cost $J_{x_i}(q) = (x_i \hat{x}_q)^2 \lambda \log_2 p_q$

$$B_q = \{x \in \mathbf{7} : Q_{\lambda}(x) = q\}$$
 $q = 0, 1, 2, ..., M-1$

3. Calculate new representative levels and probabilities p_q

$$\hat{x}_{q} = \frac{1}{\|B_{q}\|} \sum_{\mathbf{x} \in B_{q}} x \quad q = 0, 1, \dots, M - 1$$

4. Repeat 2. and 3. until no further reduction in overall cost

$$J = \sum_{x_i} J_{x_i} = \sum_{x_i} (x_i - Q(x_i))^2 - \lambda \log_2 p_{q(x_i)}$$

Example: ECSQ Design I

- X zero-mean, unit-variance Gaussian r.v.
- Design entropy-constrained scalar quantizer with rate $R \cong 2$ bits, and minimum distortion D^*
- Optimum quantizer, obtained with the entropy-constrained Lloyd algorithm
 - 11 intervals (in [-6,6]), almost uniform
 - D*=0.09 (10.53 dB), R=2.0035 bits (compare to fixed-length example)

Markus Flierl: EQ2845 Information Theory and Source Coding

Quantization no. 16

Example: ECSQ Design II

- Same Lagrangian multiplier is used in all experiments
 - Initial quantizer A, 15 intervals Initial quantizer B, 4 intervals in [-6,6], with the same length

in [-6,6], with the same length

High Rate Results for ECSQ

- For MSE distortion and high rates, uniform quantizers (followed by entropy coding) are optimum [Gish, Pierce, 1968]
- Entropy and distortion for smooth PDF and fine quantizer interval △

$$H(\hat{X}) \cong h(X) - \log_2 \Delta$$

Distortion rate function

$$d(R) \cong \frac{1}{12} 2^{2h(X)} 2^{-2R}$$

is factor $\frac{\pi e}{6}$ or 1.53 dB from Shannon Lower Bound

$$D(R) \ge \frac{1}{2\pi e} 2^{2h(X)} 2^{-2R}$$

 $d \cong \int_{-\Lambda/}^{2} \varepsilon^2 d\varepsilon = \frac{\Delta^2}{12}$

Comparison: High Rate Performance of SQ

High-rate distortion-rate function

$$d(R) \cong \varepsilon^2 \sigma_X^2 2^{-2R}$$

• Scaling factor ε^2

	Shannon LowBd	Lloyd-Max	Entropy-coded
Uniform	$\frac{6}{\pi e} \cong 0.703$	1	1
Laplacian	$\frac{e}{\pi} \cong 0.865$	$\frac{9}{2} = 4.5$	$\frac{e^2}{6} \cong 1.232$
Gaussian	1	$\frac{\sqrt{3}\pi}{2} \cong 2.721$	$\frac{\pi e}{6} \cong 1.423$

Vector Quantization

LBG Algorithm

Lloyd algorithm generalized for VQ [Linde, Buzo, Gray, 1980]

- Assumption: fixed code word length
- Code book unstructured: full search

Design of Entropy-Constrained VQ

- Extended LBG algorithm for entropy-coded VQ [Chou, Lookabaugh, Gray, 1989]
- Lagrangian cost function: solve unconstrained problem rather than constrained problem

$$J = d + \lambda R = E\left[\left\|X - \hat{X}\right\|^{2}\right] + \lambda H\left(\hat{X}\right) \rightarrow \min.$$

Unstructured code book: full search for

$$J_{x_i}(q) = ||x_i - \hat{x}_q||^2 - \lambda \log_2 p_q$$

The most general coder structure:
Any source coder can be interpreted as VQ with VLC!

Lattice Vector Quantization

8D VQ of Memoryless Laplacian Source

Markus Flierl: EQ2845 Information Theory and Source Coding

8D VQ of a Gauss-Markov Source

