Lossless Coding

- Data processing
- Source code
- Prefix code
- Kraft inequality
- Optimal code
- Noiseless source coding theorem
- Huffman code

Markus Flierl: EQ2845 Information Theory and Source Coding

Encoding and Decoding

Encoding and decoding as data processing

- Lossless coding: Z = X
- Data processing inequality: $H(X) \le I(X;Y)$

Binary Source Code

 A binary source code C for a random variable X is a mapping from X to Y, the set of finite length strings of binary symbols.

 The expected length R(C) of a source code C for a random variable X with PMF f_X is

$$R(C) = \sum_{x \in \mathcal{X}} f_X(x) l(x),$$

where I(x) is the length of the codeword associated with x.

Example: 20 Questions

- Alice thinks of an outcome (from a finite set), but does not disclose her selection.
- Bob asks a series of yes-no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible on average.
- **Our goal:** Design the best strategy for *Bob.*

Example: 20 Questions

 Observation: The collection of questions and answers yield a binary code for each outcome.

Which strategy (=code) is better?

Fixed Length Codes

- Average description length for K outcomes $l_{av} = \log_2 K$
- Optimum for equally likely outcomes
- Verify by modifying tree

Variable Length Codes

- If outcomes are NOT equally probable:
 - Use shorter descriptions for likely outcomes
 - Use longer descriptions for less likely outcomes
- Intuition:
 - Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities.
 - The unbalanced code trees such obtained are also optimum.
 - Hence, an outcome of probability p should require about

$$\log_2\left(\frac{1}{p}\right)$$
 bits

Variable Length Codes

- Given IID random process $\{X_n\}$ with alphabet A_X and PMF $f_X(x)$
- Task: assign a distinct code word, c_x , to each element, $x \in A_x$, where c_x is a string of $||c_x||$ bits, such that each symbol x_n can be determined from a sequence of concatenated codewords c_{x_n}
- Codes with the above property are said to be "uniquely decodable"
- Prefix codes
 - No code word is a prefix of any other codeword
 - Uniquely decodable, symbol by symbol, in natural order 0, 1, 2, ..., n, ...

Binary Trees and Prefix Codes

 Each binary tree can be converted into a prefix code by traversing the tree from root to leaves.

 Each prefix code corresponding to a binary tree meet McMillan condition with equality

$$\sum_{x \in \mathcal{A}_X} 2^{-\|c_x\|} = 1$$

0

$$3 \cdot 2^{-2} + 2 \cdot 2^{-4} + 2^{-3} = 1$$

Binary Trees and Prefix Codes

- Augmenting binary tree by two new nodes does not change McMillan sum.
- Pruning binary tree does not change McMillan sum.

 McMillan sum for simplest binary tree

Markus Flierl: EQ2845 Information Theory and Source Coding

Kraft Inequality

 For any prefix code (instantaneous code) over a binary alphabet, the codeword length l_i must satisfy the inequality

$$\sum_{i} 2^{-l_i} \le 1$$

- Necessary condition for uniquely decodable code
- Sufficient condition that a prefix code exists

Optimal Code

Constrained optimization problem

$$R = \sum_{i} p_i l_i \quad \text{s.t.} \quad \sum_{i} 2^{-l_i} \le 1$$

Unconstrained optimization problem

$$J = \sum_{i} p_{i}l_{i} + \lambda \left(\sum_{i} 2^{-l_{i}} - 1\right)$$

Optimal codeword length

$$l_i^* = -\log_2 p_i$$

Shannon code

$$l_i = \left\lceil -\log_2 p_i \right\rceil$$

Markus Flierl: EQ2845 Information Theory and Source Coding

Noiseless Source Coding Theorem

- Consider IID random process $\{X_n\}$ (or "source") where each sample X_n (or "symbol") possesses identical entropy H(X)
- H(X) is the entropy rate of the random process.
- Noiseless Source Coding Theorem (Shannon, 1948):
 - The entropy H(X) is a lower bound for the average word length R of a decodable variable-length code for the symbols.
 - Conversely, the average word length R can approach H(X), if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code: $\rho = R H(X) \ge 0$

Instantaneous Variable Length Encoding without Redundancy

R = H(X)

requires all individual code word lengths

$$l_{\alpha_k} = -\log_2 f_X(\alpha_k)$$

 All probabilities would have to be binary fractions:

$$f_X(\alpha_k) = 2^{-l_{\alpha_k}}$$

Example

α_{i}	$P(\alpha_i)$	redundant code	optimum code
α_0	0.500	00	0
α_1	0.250	01	10
α_2	0.125	10	110
α_3	0.125	11	111

H(X) = 1.75 bits R = 1.75 bits $\rho = 0$

Markus Flierl: EQ2845 Information Theory and Source Coding

Redundancy of Prefix Code for General Distribution

 Theorem: For any distribution f_X, a prefix code may be found, whose rate R satisfies

$$H(X) \le R < H(X) + 1$$

- Proof:
 - Left hand inequality: Shannon's noiseless coding theorem
 - Right hand inequality:

Choose code word lengths $||c_x|| = \left[-\log_2 f_X(x)\right]$

Resulting rate
$$R = \sum_{x \in A_X} f_X(x) \left[-\log_2 f_X(x) \right]$$
$$< \sum_{x \in A_X} f_X(x) \left(1 - \log_2 f_X(x) \right)$$
$$= H(X) + 1$$

Markus Flierl: EQ2845 Information Theory and Source Coding

Huffman Code

- Design algorithm for variable length codes proposed by Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:
 - **1** Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
 - **2** Calculate the probability of the auxiliary symbol.
 - 3 If more than one symbol remains, repeat steps1 and 2 for the new auxiliary alphabet.
 - **4** Convert the code tree into a prefix code.

Example: Huffman Code

