
§ Data processing
§ Source code
§ Prefix code
§ Kraft inequality
§ Optimal code
§ Noiseless source coding theorem
§ Huffman code

Lossless Coding
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Encoding and Decoding

§ Encoding and decoding as data processing

§ Lossless coding: Z = X
§ Data processing inequality: H(X) ≤ I(X;Y)

Encoder Decoder
X Y Z
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§ A binary source code C for a random variable X is a 
mapping from     to    , the set of finite length strings of 
binary symbols.

§ The expected length R(C) of a source code C for a 
random variable X with PMF fX is

where l(x) is the length of the codeword associated with x.

Binary Source Code

C

Lossless Coding 1 no. 3Markus Flierl: EQ2845 Information Theory and Source Coding



Example: 20 Questions

§ Alice thinks of an outcome (from a finite set), but 
does not disclose her selection.

§ Bob asks a series of yes-no questions to 
uniquely determine the outcome chosen. The 
goal of the game is to ask as few questions as 
possible on average.

§ Our goal: Design the best strategy for Bob.
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§ Observation: The collection of questions and answers 
yield a binary code for each outcome.

§ Which strategy (=code) is better?

Example: 20 Questions
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Fixed Length Codes

A B C

0

0 0

1

1

D E F G

0

0 0

1

1

H

§ Average description length for K outcomes
§ Optimum for equally likely outcomes
§ Verify by modifying tree 

0 1

lav = log2 K
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Variable Length Codes

§ If outcomes are NOT equally probable:
– Use shorter descriptions for likely outcomes
– Use longer descriptions for less likely outcomes

§ Intuition:
– Optimum balanced code trees, i.e., with equally likely outcomes, 

can be pruned to yield unbalanced trees with unequal 
probabilities.

– The unbalanced code trees such obtained are also optimum.
– Hence, an outcome of probability p should require about   

log2
1
p

æ 
è ç 
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ø ÷ 
 bits
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§ Given IID random process           with alphabet        and  
PMF

§ Task: assign a distinct code word, cx, to each element,
, where     is a string of        bits, such that each 

symbol     can be determined from a sequence of 
concatenated codewords

§ Codes with the above property are said to be “uniquely 
decodable”

§ Prefix codes
– No code word is a prefix of any other codeword
– Uniquely decodable, symbol by symbol, 

in natural order 0, 1, 2, . . . , n, . . .

Variable Length Codes

}{ nX
( ) Xf x

XA

XxÎA xc xc
nx

nx
c
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Binary Trees and Prefix Codes

§ Each binary tree can be 
converted into a prefix code 
by traversing the tree from 
root to leaves.

§ Each prefix code corresponding
to a binary tree meet McMillan 
condition with equality
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Binary Trees and Prefix Codes

§ Augmenting binary tree by two
new nodes does not change
McMillan sum.

§ Pruning binary tree does not
change McMillan sum.

§ McMilllan sum for simplest
binary tree
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§ For any prefix code (instantaneous code) over a binary 
alphabet, the codeword length li must satisfy the inequality

§ Necessary condition for uniquely decodable code
§ Sufficient condition that a prefix code exists

Kraft Inequality
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§ Constrained optimization problem

§ Unconstrained optimization problem

§ Optimal codeword length

§ Shannon code

Optimal Code
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§ Consider IID random process          (or “source”) where each 
sample        (or “symbol”) possesses identical entropy H(X)

§ H(X) is the entropy rate of the random process.
§ Noiseless Source Coding Theorem (Shannon, 1948):

– The entropy H(X) is a lower bound for the average word 
length R of a decodable variable-length code for the 
symbols.     

– Conversely, the average word length R can approach 
H(X), if sufficiently large blocks of symbols are encoded 
jointly.

§ Redundancy of a code:

Noiseless Source Coding Theorem

( ) 0R H Xr = - ³

}{ nX
nX
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Instantaneous Variable Length Encoding without Redundancy

§ A code without redundancy, i.e.,

§ All probabilities would have to 
be binary fractions:

ia  ( )iP a  redundant 
code 

optimum 
code 

0a  0.500 00    0 

1a  0.250 01    10 

2a  0.125 10    110 

3a  0.125 11    111 
 

 
 

( )R H X=

requires all individual code
word lengths

( )2log
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Example
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=
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§ Theorem: For any distribution fX, a prefix code may be 
found, whose rate R satisfies

§ Proof:
– Left hand inequality: Shannon’s noiseless coding theorem
– Right hand inequality:

Redundancy of Prefix Code for General Distribution
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Huffman Code
§ Design algorithm for variable length codes proposed by 

Huffman (1952) always finds a code with minimum 
redundancy.

§ Obtain code tree as follows:
1 Pick the two symbols with lowest probabilities and 

merge them into a new auxiliary symbol. 

2 Calculate the probability of the auxiliary symbol. 

3 If more than one symbol remains, repeat steps  
1 and 2 for the new auxiliary alphabet.

4 Convert the code tree into a prefix code.
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Example: Huffman Code

Fixed length coding:
Huffman code:
Entropy
Redundancy of the Huffman code:

3.00 bits/symbol
2.71 bits/symbol

( ) 2.68 bits/symbol
0.03 bits/symbol

fixed

Huffman

R
R
H X

r

=
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