
§ Finite-alphabet random variable
§ Information and entropy
§ Joint and conditional entropy
§ Mutual information
§ Relative entropy
§ Data processing inequality
§ Asymptotic equipartition property
§ Typical sets

Information and Entropy
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§ Consider a discrete, finite-alphabet random variable X

§ “Information” associated with the event X=x

§ “Entropy of X” is the expected value of that information

§ Unit: bits

Entropy of a Random Variable
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§ Information 
§ Information hX(x) strictly increases with decreasing 

probability fX(x)
§ Boundedness of entropy

§ Very likely and very unlikely events do not substantially 
change entropy

Information and Entropy: Properties

( ) 0Xh x ³

2log 0   for 0 or 1p p p p- ® ® ®

equality if only one
outcome can occur

equality if all outcomes
are equally likely
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Example: Binary Random Variable

( ) 2 2log (1 )log (1 )H X p p p p= - - - -
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§ Consider random vectors (with discrete, finite-alphabet 
components)

§ Entropy

§ Long-hand

Joint Entropy
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§ Consider two discrete finite-alphabet r.v. X and Y

§ Conditional entropy H(X|Y) is average additional 
information, if Y is already known

§ Joint entropy:

Conditional Entropy
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Mutual Information

§ "Mutual information" is the average information that 
random variables X and Y convey about each other
– Reduction in uncertainty about x, if y is observed
– Reduction in uncertainty about y, if x is observed

§ Properties 0 ( ; ) ( ; )
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Mutual Information
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§ Property of mutual information

§ Knowing another random variable Y can only reduce the 
uncertainty in X

§ Equality if and only if X and Y are independent

Conditioning Reduces Entropy
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Chain Rule for Entropy
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§ Theorem (Independence bound on entropy)

§ Exploiting statistical dependencies can reduce bit-rate
§ Statistically independent components can be 

compressed and decompressed separately without loss

Joint Entropy and Statistical Dependency
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§ Mutual information between X and Y given Z

§ Chain rule for information

Conditional Mutual Information

Information & Entropy no. 12Markus Flierl: EQ2845 Information Theory and Source Coding



§ Kullback Leibler distance between two PMFs p(x) and q(x)

§ In general

§ Information inequality

§ With equality if and only if p(x)=q(x) for all x.

Relative Entropy
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§ Mutual information is the relative entropy between the 
joint distribution and the product distribution

§ Non-negativity of mutual information

§ With equality if and only if X and Y are independent.

Relative Entropy and Mutual Information
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§ No clever manipulation of the data can improve the 
inferences that can be made from the data

§ X, Y, Z are said to form a Markov chain in that order

§ if the joint PMF can be written as

§ Note, X and Z  are conditionally independent given Y

Data Processing Inequality
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§ Chain rule for mutual information

§ If                        , X and Z are conditionally independent 
given Y

§ Non-negativity of mutual information:

§ Data processing inequality: If 

Data Processing Inequality
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§ Law of Large Numbers: The average of the results 
obtained from a large number of trials is close to the 
expected value

§ Convergence in probability (weak law)

Remark: Weak Law of Large Numbers
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§ Let X1, X2, … be i.i.d. with fX

§ Asymptotic Equipartition Property (AEP): If X1, X2, … are 
i.i.d. with fX, then

Asymptotic Equipartition Property
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§ The typical set Ae
(n) with respect to fX is the set of 

sequences (x1, x2, …, xn) ∊ with the property

§ The typical set has probability nearly 1

§ All elements of the typical set are nearly equiprobable
§ The number of elements in the typical set is nearly 2nH

Typical Set
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Typical Sets and Source Coding
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Non-typical set

Typical set

Represent sequences in       using nH(X) bits on average.
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