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Information and Entropy

= Finite-alphabet random variable
= [nformation and entropy

= Joint and conditional entropy

= Mutual information

= Relative entropy

= Data processing inequality

= Asymptotic equipartition property
= Typical sets
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Entropy of a Random Variable

= Consider a discrete, finite-alphabet random variable X
Ax ={ag,a1,...,ag_1}
fx(x) =P(X =2x2) Vrxe Ay

= “Information” associated with the event X=x
hx(x) = —logs fx(x)

= “Entropy of X” is the expected value of that information

H(X)=FE{hx(X)}=—- > [fx(x)logs fx(x)

reAx

= Unit: bits
f@%
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Information and Entropy: Properties

= Information /, (x) >0

= [nformation hy(x) strictly increases with decreasing
probability fy(x)

= Boundedness of entropy

0 < H(X) <logs (JAx]|)

equality if only one / \ equality if all outcomes
outcome can occur are equally likely

= Very likely and very unlikely events do not substantially
change entropy

—plog, p—>0 forp—>0orp—1
b
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Example: Binary Random Variable

H(X)=-plog, p—(1- p)log,(1- p)

0.2 deterministic

o 01 02 03 04 05 06 0.7 08 09 1

v P
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Joint Entropy

= Consider random vectors (with discrete, finite-alphabet
components)

X

(Xos Xseo s X, 1)
= Entropy

H(X)= E| -log, fx(X) |=E| h(X) |

= Long-hand
H(X)=H(X,,X,,...X, )

— _yyyjﬂx ('XOﬁxla"'ﬂxm—l)longX (xo’xl’""xm_l)

Xo N

Xm-1

Fe2 )
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Conditional Entropy

= Consider two discrete finite-alphabet r.v. Xand Y
(X|Y E[ 10g2fX|Y XJ/] _ZZfXY xy long)(u/(x J’)

S ) o (6o i ()

= Conditional entropy H(X]Y) is average additional
information, if Y is already known

* Joint entropy: H(X,Y)=E|-log, fy,(X.Y)]
=E:—10g2 (fY (y)f)(u/ (X>Y)):|

=E_—10g2 fy (y):|+E|:_10g2 Sxy (XaY):|
=H(Y)+H(X|Y)

o (Chain rule)

T Yy,
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Mutual Information

= "Mutual information” is the average information that
random variables X and Y convey about each other

Reduction in uncertainty about x, if y is observed
Reduction in uncertainty about y, if x is observed

I(X:Y)=HX)-HX | =HX)-H({Y | X)
fX Y(x9 )
- ,¥)log, =X
20r 2y Frr ()08 0
= Properties 0<I(X;Y)=1(Y;X)
I(X:Y) < H(X)
I(X:Y) < H(Y)

£ v ¢ Markus Flierl: EQ2845 Information Theory and Source Coding Information & Entropy no. 7
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Mutual Information

H(X) (-

I(X;Y)=H(X)+ HY) - H(X,Y)

Fe2 )
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Conditioning Reduces Entropy

= Property of mutual information

0<I(X;Y)=H(X)— H(X|Y)

= Knowing another random variable Y can only reduce the
uncertainty in X

H(X|Y) < H(X)

= Equality if and only if X and Y are independent

Fe2 )
T Yy,
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Chain Rule for Entropy

H(X1,X?)

H(X1) + H(X>2|X1)

H(X1, X2, X3) H(X1) + H(Xo, X3|X1)

H(X1) + H(X2|X1) + H(X3| X2, X1)

n
H(X17X27'°'7Xn) — Z H(Xi‘X’L'—]_?"')Xl)
=1

Fe2 )
T Yy,
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Joint Entropy and Statistical Dependency

= Theorem (Independence bound on entropy)

H(X,,X,X,,..X, )<HX)+HX)+..+H(X, )

o

Equality for statistical independence of X, X, X,,..., X

= EXxploiting statistical dependencies can reduce bit-rate

= Statistically independent components can be
compressed and decompressed separately without loss

by
S,
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Conditional Mutual Information

= Mutual information between X and Y given Z
I(X;Y|Z2)=H(X|Z) - H(X|Y, Z)

= Chain rule for information

n
I(X1, X2, Xn;YV) = 3 I(X;Y[Xi1,..., X1)
1=1

Fe2 )
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Relative Entropy

Kullback Leibler distance between two PMFs p(x) and q(x)

p(x)
q(x)

H(p | q) =) p(z)logs
= |n general
H(p |l q) # H(q | p)

= Information inequality

H(pl|lq) >0

= With equality if and only if p(x)=q(x) for all x.

Fe2 )
T Yy,
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Relative Entropy and Mutual Information

= Mutual information is the relative entropy between the
joint distribution and the product distribution

I(X,Y)=H(fxy |l fxfy)

= Non-negativity of mutual information

I(X:Y)>0

= With equality if and only if X and Y are independent.

Fe2 )
T Yy,
35 KTH;% Markus Flierl: EQ2845 Information Theory and Source Coding Information & Entropy no. 14

%‘”%%}Xﬁ? &



Data Processing Inequality

= No clever manipulation of the data can improve the
inferences that can be made from the data

= X, Y, Z are said to form a Markov chain in that order

X =Y =+ 27
= if the joint PMF can be written as

fxyz="rIxlvixlz)y

= Note, X and Z are conditionally independent given Y

fxzy = Ixiyfz)y

Fe2 )
T Yy,
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Data Processing Inequality

= Chain rule for mutual information
I(X:Y,2) = I(X;2)+1(X:;Y|2)
= I(X;Y)+I(X;Z|Y)
= f X —-Y — Z, Xand Z are conditionally independent
given Y

I(X;Z]Y) =0

= Non-negativity of mutual information: I1(X;Y|Z) > 0

= Data processing inequality: If X — Y — Z

I(X,Y) > I(X; Z)
ain

T Yy,
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Remark: Weak Law of Large Numbers

= Law of Large Numbers: The average of the results
obtained from a large number of trials is close to the

expected value

LU 4 Ust o+ U) B EU] for n— oo
n

= Convergence in probability (weak law)
1 n
im Pr{|=) U;—E[U]|]<e|=1 for e€>0

s
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Asymptotic Equipartition Property

" Let Xi, Xo, ... be i.i.d. with fy
1 1 2
——1092 fx; X5, X, = —— »_logsfx,
n "i=1

5 E[-logs fx]
= H(X)

= Asymptotic Equipartition Property (AEP): If X4, X,, ... are
1.i.d. with fy, then

1 p
— 109> fx, Xx5....x, — H(X)
S,
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Typical Set

= The typical set A" with respect to fy is the set of
sequences (X4, Xo, ..., X,) € X" with the property

>—n[H(X)+e] < Xy Xo. < >—n[H(X)—¢]

= The typical set has probability nearly 1
Pr{A§”>} >1—c¢€

All elements of the typical set are nearly equiprobable
= The number of elements in the typical set is nearly 2"

‘ AM)| < onlH(X)+]

Fe2 )
T Yy,
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Typical Sets and Source Coding

X' Non-typical set

Typical set

Represent sequences in X" using nH(X) bits on average.
b

%""“’%
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