
VisualNoC: A Visualization and Evaluation Environment for
Simulation and Mapping

Junshi Wang1,2, Yang Huang1, Masoumeh Ebrahimi3, Letian Huang1, Qiang Li1,
Axel Jantsch2, Guangjun Li1

1University of Electronic Science and Technology of China, Chengdu, China, 611731
2TU Wien, Vienna, Austria, 1040

3Royal Institute of Technology, Stockholm, Sweden; University of Turku, Turku, Finland
Corresponding Author: {wangjsh, huangyang}@std.uestc.edu.cn

ABSTRACT
Simulation is the most common approach to evaluate Net-
work on Chip (NoC) designs and many simulators at differ-
ent abstraction levels have been developed so far. However, 
researchers have to spend a considerable amount of time and 
effort to debug, analyze, and extract meaningful informa-
tion from the simulator reports. In this work, we propose a 
full-system visualization framework, called VisualNoC, that 
support both network simulation and task mapping. Visu-
alNoC operates in a cycle-accurate mode and is based on an 
event-based trace model which can record the behaviors of 
routers, processing elements and packets. The visualization 
interface can provide efficient debugging and analysis plat-
form by representing the simulation process and results in a 
variety of ways. One of the main features of VisualNoC is 
providing an intuitive way of analyzing the efficiency of dif-
ferent mapping algorithms that helps in finding bottlenecks 
and optimizing the design.

CCS Concepts
•Computing methodologies → Simulation and map-
ping tool;

Keywords
Visualization Simulator, Many-Core System, Network-on-
Chip, Mapping Algorithm, Debug, Statistics

1. INTRODUCTION
One application can be partitioned into several tasks, and 

each task can be allocated to one processing element (PE). 
Mapping algorithms determine the locations of tasks on dif-
ferent PEs based on the computational capacity, data depen-
dency, and traffic distribution. To achieve a high throughput 
for the underlying task mapping algorithm, traffic conges-
tion and hot-spot should be minimized. High-level full sys-
tem simulations can provide the quantitative performance

copyright text

evaluation by using the abstract knowledge on the applica-
tion tasks and the communication between tasks. The com-
plexity of analysis increases as more details are concerned
regarding the operations of PEs and routers. Translating
the collected data to the network behavior is very time-
consuming and complex.

A proper visualization of the network dynamics can greatly
facilitate the study of specific effects and aid debugging the
mapping algorithms. In design and optimization of mapping
algorithms, the important parameters are as packet travel-
ing time, traffic distribution, and the utilization of routers,
links and buffers [1]. As the reported data increases, more
time will be needed to analyze the data and extract im-
portant information. Displaying the statistical data would
help developers to observe the design bottlenecks through
intuitive plots and graphs in early design phases. Our vi-
sualization platform is also very useful for debugging pur-
poses. Debugging is time-consuming and requires efficient
tool supports. Debugging based on output text, waveform
(e.g. VCD), and general debugging tools for programming
languages (e.g. GDB) may not be efficient for the NoC de-
sign. A tool that tracks the network status and translates it
into parameters familiar to the NoC designers can be helpful
in debugging and design optimization.

VisualNoC provides a graphical user interface (GUI) to
observe the behavior of routers and packets, and PEs (such
as task assignment, task execution, and task termination).
On the other hand, VisualNoC is not only a rich graphical
user interface but also a technical tool to analyze the network
behavior and task mapping by reporting statistical data. In
principle VisualNoC can help developers in:

1. Analyzing routing and mapping algorithms in different
aspects visually and statistically (Note that in this pa-
per we focus on the mapping algorithms while routing
algorithms can be analyzed in a similar way).

2. Observing the detailed operations of routers and move-
ments of flits in an animation mode by tracing events.

3. Locating bugs related to coding, designs, and algo-
rithms, e.g. deadlock, mis-routing, disorder mapping,
and wrong arbitration.

4. Evaluating the statistics of the simulation, e.g. spatial
and temporal traffic distribution and packet delay.

In Section 2, related work is reviewed. Section 3 intro-
duces the overall architecture of VisualNoC. Section 4 de-
scribes the PE model as well as the event-based simulation



model. The debugger and analyzer are described in Sec-
tion 5. To show the main properties of the developed plat-
form, in Section 6, FF [2], CoNA [3], and WeNA [4] mapping
algorithms are analyzed and compared with each other. The
conclusion and future work are given in the last section.

2. RELATED WORK
An evaluation platform for mapping algorithms often in-

tegrates communication infrastructures and processors. The
PE models are based on instruction-based PE models (i.e.
run ISA of different kinds of PEs on the same pipeline ar-
chitectures) or the actual model of a particular type of PEs
(e.g. MIPS [5] and SPARC). To support PE models, some
simulators provide detail and accurate models for memory
systems [5, 6]. Although these models provide accurate re-
sults, they are costly in terms of time and resources.

Several cycle-accurate Network-on-Chip simulators have
been developed so far, focusing on the communication be-
tween PEs, such as Noxim [7], GARNET [8] in GEMS [6],
and Hermes NoC [9] in HeMPS [5].

To reduce scripting, some simulation environments have
been advanced by the means of visualization. In [10, 11, 12,
13], GUI interfaces have been used to configure the simula-
tion parameters. In [13, 14, 15], intuitive performance charts
or tables are provided in addition to reporting information
such as throughput, buffer utilization, traffic distribution,
and power consumption. NoCScope [14] and NoCVision [15]
can provide information in the dynamic environment to ob-
verse the variations.

Even through GUIs can provide much useful information,
they cannot still visualize the details of router operations
and the movement of flits within routers. This shortage
limits the debugging capacity as packets cannot be traced
within routers. In addition, current GUIs do not provide
information about the full-system simulation integrating the
network and processors together, which puts up barriers on
the analysis of mapping algorithms.

VisualNoC integrates a cycle-accurate NoC model with a
communication-based PE model that offers a unique plat-
form to analyze mapping algorithms. Moreover, VisualNoC
is enriched with a GUI tool to automate the behavior of PEs,
routers and packets while presenting the analysis results in
intuitive charts and graphs and reporting the statistical data
in tables.

3. OVERVIEW OF THE DEVELOPED PLAT-
FORM

VisualNoC consists of two main elements: a GUI interface
to visualize network behavior and a simulator to evaluate
mapping algorithms (Figure 1).

A three-step design flow is shown in Figure 1. The first
step is “Network Configuration” and “Task Generator”. The
user configures the network architecture parameters such as
topology, the number of physical ports, virtual channel, and
buffer sizes. The configuration is stored in an XML file that
will be used by the mapping simulator. Concurrently the
tasks are generated for example by TGFF (Task Graphs
For Free [16]) and stored in an input task file. The input
task file also contains the general information of PEs such
as average power, static power, and average execution time
of a task on a target PE. In the second step, several simu-
lations are run in series or parallel using a “Cycle-Accurate

Figure 1: Architecture of the VisualNoC platform

Mapping Simulator”, controlled by the “Simulation Execu-
tion Engine”. The operations of routers, PEs, and packets
are stored in an event trace file after each simulation run.
In the last step, the “Debugger/Analyzer” parses the event
trace file in the visualization mode. The user can easily
check the correctness of the design by analyzing the opera-
tions of routers and PEs and tracing the movements of flits
in the network and inside routers. Any desired operation can
be easily reproduced for further analysis. The features pro-
vided by Debugger/Analyzer are very helpful to understand
the design bottlenecks and locate the bugs.

4. SIMULATION MODELS

Figure 2: Architecture of the mapping simulator

The mapping simulator (Figure 2) is a cycle-accurate sim-
ulator, modeling both routers and PEs. The router model
describes the behavior of routers such as routing and arbitra-
tion while a PE simulates a task finite state machine. The
simulation platform controls the data exchanges and syn-
chronization between the routers and PEs. The mapping
algorithms are implemented in the “Mapping Management
Unit” while this unit is also responsible for the allocation
of tasks to PEs. The “Event Recorder” collects the events
generated by the mapping simulator. The event trace file
will be used by GUI for visualization.

4.1 Application and the PE Model
The data dependencies of an application can be presented

by a directed acyclic graph (DAG) [17], as shown in Fig-
ure 3 (a). Each node in DAG denotes a task and each
weighted edge denotes the communication between two con-
nected tasks. The weight is the amount of transferred data.
The task in the root is called the entry task while the tasks
in leaves are called the exit tasks. The source node of an
edge is called the parent task while the sink node is called
the child task. Each task begins the computation only after
receiving all of the necessary data. The entry tasks have no



(a) (b)

Figure 3: Example of a task graph generated by (a)
TGFF and (b) PE state machine

parent task and thus they start running immediately after
being scheduled. The parent tasks send a certain amount of
data to their child tasks after the computation except the
exit tasks which have no child. For example in Figure 3(a),
the task 0 is the entry task and it begins the computation
when the task graph is scheduled. The task 1 begins compu-
tation after it has received 37 units of data from the task 0.
A task graph is called periodic if executed for several times
while it is called aperiodic if run just once.

VisualNoC uses TGFF to generate task graphs which are
stored in the input task file (Figure 1). This file also contains
the general information of PEs such as the execution time
of a task on a PE. A user can edit our template to generate
a custom task graph.

The task execution process is described in a form of a
state machine (Figure 3(b)). Each PE in the proposed sim-
ulator contains six states: Release, Wait, Receive, Compute,
Send, and Finish. Three parameters are used to control the
transitions in the state machine: the number of received
packets (PR =

{
P 1
R, P

2
R, . . .

}
), the number of sent packets

(PS =
{
P 1
S , P

2
S , . . .

}
) and the execution time (texec). P i

R

indicates the number of received packets from the parent
i while P j

S represents the number of delivered packets to
the child j. A PE is initialized in the “Release” state and
switches to the “Wait” state when a task is assigned to it
(Arrow 1). Once the PE has received a packet from one of
its parent tasks, it switches to the “Receive” state (Arrow 3)
and stays in this state until receiving all PR packets from
the parent tasks. Then a transition takes place to the “Com-
pute” state (Arrow 4). If the task is an entry task, the PE
switches directly from the “Release” state to the “Compute”
state (Arrow 2). The PE waits for texec cycles before it
switches to the “Send” state (Arrow 7). The “Send” state is
skipped by the exit tasks (Arrow 5 and 6). If the task graph
is periodic, the PE switches to the “Wait” state (Arrow 5
and 8) and repeats the operations until the last operation.
If the task graph is aperiodic or it is under the last execution
loop, the PE switches to the “Finish” state (Arrow 6 and 9).
The PEs belong to the same task graph are halted in the
“Finish” state until all of them switch to the “Finish” state.
When the execution of the task graph is completed, the PEs
return to the “Release” state (Arrow 10).

The Network Interface (NI) function is integrated into the
PE model. PEs inject packets into the network by triggering
events in the simulation platform. Routers generate packets
as a response to these events (the number of payload flits is

selected randomly). Similarly, PEs receive packets from the
network by responding the events generated by routers.

4.2 Task Mapping and Management
The mapping simulator has a mapping management unit

(MMU) where a mapping algorithm is implemented. MMU
is also responsible for monitoring the latest system status
and controlling the execution of applications on the whole
platform. MMU reads the task graphs from the applica-
tion repository and schedules them by a scheduling policy.
A mapping algorithm accepts the scheduled task graph and
determines the location of tasks on PEs. Then the corre-
sponding PEs are informed about the mapping decision by
receiving a triple (PR, PS , texec). A user can implement the
desired mapping algorithm and the application scheduling
policy using our defined interface.

4.3 Event-based Trace Model

Table 1: Events in the event-based behavioral model
Event Definition

PI NI Injects a Packet into the network
PR NI Receives a Packet from the network
FD The router Delivers a Flit from an output vir-

tual channel
FR The router Receives a Flit from an input vir-

tual channel
FS A Flit Switches from an input virtual channel

to an output virtual channel
CR An input virtual Channel Requests an output

virtual channel after routing calculation and
virtual channel arbitration

CRR The Channel Request is Released from an in-
put virtual channel to an output virtual chan-
nel

CG An input virtual Channel is Granted an output
virtual channel

CGR The Grant is Released from an input virtual
Channel to an output virtual channel

CS The State of an input virtual Channel changes.
Possible values include “INIT”, “ROUTING”,
“SW AB”, and “SW TR”.

PS The State of a PE changes. Possible value
include “Release”, “Wait”, “Receive”, “Execu-
tion”, “Send”, and “Finish”

AR Application Requests scheduling
AB Application Begins execution
AS Application Stops execution

An event-based model is employed to record the network
behavior and mapping operations. The behavior of routers,
PEs, and flits are abstracted into a series of events listed in
Table 1. Each event is described by a set of parameters, rep-
resenting almost all information about that event. The pa-
rameters are such as the occurrence time of the event and the
source and the destination of a packet. The PI (PR) event
denotes packets’ injection (removal) to (from) the network.
FR, FS, and FD represent the movement of flits within a
router. CR and CRR events show the results of the rout-
ing decision while CG and CGR events show the allocation
results. The CS event denotes the operations of the state
machine in routers. In summary, PI, PR, FR, FS, and FD
events trace the activities on the data path (such as buffers
and the crossbar unit) while CR, CRR, CG, CGR, and CS
events record the behavior of the control units (such as the
routing unit and the switch allocation unit). In addition to



these events, AR, AB, AS, and PS events are involved with
the task mapping where they refer to application scheduling
request, execution start, execution stop, and the PE state
change, respectively.

4.4 Statistical Data
The event trace file is used to extract a lot of useful in-

formation and statistical data such as resource utilization,
task throughput and congestion.

Most of the common statistic metrics can be extracted us-
ing the described events as follows where in the equations sc
and ec refer to the “Start Cycle” and “End Cycle”, respec-
tively. Count(e, sc, ec) is a function to count the number
of times that the event e has occurred from cycle sc to cy-
cle ec (ec is not included). Similarly, CounterR(e, c) and
CounterB(e, c) are the number of times that the event e
(related to an specific router or buffer) has occurred up to
the cycle c (cycle c is included).

(a) Packet injection rate (packets/cycle) from cycle sc to
cycle ec can be obtained by counting the number of PI
events occurring within specified time.

PIR =
Count(PI, sc, ec)

ec− sc
(1)

(b) Network throughput (NetT) (packets/cycle) from cycle
sc to cycle ec is the number of PR events occurring
within specified time.

NetT =
Count(PR, sc, ec)

ec− sc
(2)

(c) The number of stored flits in a router (FIR) at cycle
c:difference between the number of FR events and the
number of FS events (related to the specific router),
from simulation start time to cycle T .

FIR(c) = CounterR(FR, c)− CounterR(FS, c) (3)

(d) The number of stored flits in a buffer (FIB) at cycle
c:the same with FIR, except that the FR and FS events
is related to the specific buffer.

FIB(c) = CounterB(FR, c)− CounterB(FS, c) (4)

(e) Application throughput (AppT) from cycle sc to cycle
ec is the number of AS events occurring within specified
time.

AppT =
Count(AS, sc, ec)

ec− sc
(5)

(f) Application execution time (AppET) is the occurrence
time of AS minus the occurrence time of AB for a spe-
cific application. Application average execution time
(AppAET) from cycle sc to cycle ec is the average of
AppETs for all applications.

AppAET =

∑count(AS,sc,ec)
i=1 (ASi −ABi)

Count(AS, sc, ec)
(6)

5. FUNCTIONS OF GRAPHICAL USER IN-
TERFACE

Table 2: Network and router configuration parame-
ters

Network Con-
figuration

Topology (2D-mesh/2D-
torus/Irregular), network size,
number of ports

Port Configura-
tion in Network
Configuration

Number of virtual channels, port di-
rection, network interface port, size
of input buffers and output buffers

Router Configu-
ration

Router position in graphics axis,
number of ports

Port Configura-
tion in Router
Configuration

Number of virtual channels, port di-
rection, network interface port, size
of input buffers and output buffers,
neighboring ports (router id, port
id)

5.1 Network Configuration
VisualNoC provides an option to configure the network in

GUI while it also accepts the network configuration in an
XML file. The network configuration parameters are clas-
sified into network configuration and specified router con-
figuration. In the network configuration, the parameters
(in the first and second row of Table 2) are valid for all
routers. If there are some heterogeneous routers (different
from the default parameters in the network configuration),
router configuration parameters (in the third and fourth row
in Table 2) are used to customize the special routers. With
the help of network configuration and specified router con-
figuration, VisualNoC supports regular topologies as well as
irregular topologies.

5.2 Execution Engine
The simulations and GUI run in parallel. The user can

configure the arguments of simulations and call the simula-
tion in GUI directly. To take advantage of the computational
capacity of a physical computer and to speed up the whole
process, the execution engine supports parallel simulations,
each with different parameters. The execution engine can
start more than one simulation in parallel and collect the
simulation results at the end of each simulation and gener-
ate a table directly for further analysis.

5.3 Debugging

Figure 4: Event trace reproduction panel

To debug the design, the simulation can be replayed us-
ing a replay event trace panel (Figure 4). The control panel



controls the reproduction process, including pause, forward,
backward, fast-forward and fast-backward at the desired
speed. The program parses the event trace file and visual-
izes the corresponding activities on each virtual simulation
cycle. Therefore, VisualNoC offers a cycle-accurate retrace
of network behavior. Animation may take a long time from
the start to the desired cycle. The replay process of Visu-
alNoC allows jumping directly to any desired cycle. If only
the PE behavior is concerned, the network event activity
can be turned off to accelerate the retrace process. During
visualization, extra information regarding the router under
observation is dynamically reported in a panel, such as buffer
utilization, and the source and destination of the first packet
in the buffers.

During the retrace of the event trace file, packets move
in NoC on the screen. As shown in Figure 4, both PE 36
and PE 44 send packets to PE 43. Both streams request
the NI of the Router 43 at the same time which leads to the
congestion at the input ports of the router 43. This port
contention affects the congestion at the router 35, 36 and 44
as well. As shown in Figure 4, the application ID, the task
number, and the PE state are labeled in each router. For
example, the label of the router 36 indicates that the task
5 of the application 2 is currently executing in the PE and
the PE is in the “Send” state. The routers of the PEs which
are assigned to the same application are represented by the
same color, like PE 35, 36, 42, 43, and 44 that are allocated
to application 2 and thus colored the same.

5.4 Analysis

Figure 5: Event trace analysis panel

Event trace analysis panel displays the information pro-
vided in the event trace file. In Figure 5, the analysis re-
sults are depicted with line charts, bar charts or spectrogram
charts to give a clear and direct view of statistic variables.
In the right panel, the analysis tasks, statistic filters, figure
types, and axis ranges can be controlled by the user. More-
over, the values of statistic variables are listed in the table.
Event trace analysis accepts filters to specify the analysis
range. The parameters of a filter contain specified stream,
router, port and application. The analyzer only considers
the events specified by the filter. For instance, if the appli-
cation ID is given in the filter, the analyzer only counts the
events related to this application.

The analysis tasks are listed as bellow:

1. General Statistic shows the global statistic variables

about the application and network behavior, for exam-
ple the packet injection rate, throughput, average la-
tency, maximum latency, application throughput, and
average execution time.

2. Traffic Temporal Distribution shows the fluctuation in
injecting/receiving flits to/from the network, fluctua-
tion in receiving/sending flits by routers, and fluctua-
tion in buffering flits in routers during the simulation.
This option accepts the specified router and applica-
tion ID for filtering.

3. Traffic Spatial Distribution shows the distribution of
flits injected into the network, flits received from the
network, and flits flow through the routers. The spatial
traffic distribution is illustrated with a bar chart or
a color-spectrogram. Moreover, VisualNoC can show
the distribution within a time window. The window
can shift with a specified step length and the charts
are updated automatically. This option accepts the
application ID for filtering.

4. Traffic Spatial Distribution of Ports shows the flow of
flits through the ports by reporting the number of flits
at the ports. This option accepts the application ID
for filtering.

5. Distance and Latency Distribution shows the frequency
of packets with a certain distance or latency. This op-
tion accepts specified stream and application ID for
filtering.

6. Application Information shows the states of PEs in
the Gantt chart. The states of PEs are marked with
different colors. The result table lists the time when
applications enter and quit the network and when ap-
plications are mapped.

6. CASE STUDIES
In this section, an 8× 8 homogeneous many-cores system

is simulated. Each router has four ports in the East, West,
North, and South directions and one port to the PE [18]. No
virtual channel is used in this network and the XY routing
algorithm is applied [19]. PEs inject packets (5 flits/packet)
into the network with the maximum packet injection rate of
0.2 packet/cycle/router.

Task graphs are generated by TGFF. The number of tasks
is between 4 and 16. The communication volumes between
each two tasks are spread over 10 to 50 packets and the
computation time is assumed to be between 60 to 140 cy-
cles. All task graphs are a-periodic. The applications enter
the platform at a rate of 0.002 application/cycle and are
scheduled under the First Come First Serve (FCFS) policy.
Simulations last for 10,000 cycles.

First Free (FF [2]), CoNA [3] and WeNA [4] mapping algo-
rithms are used for the evaluation. The FF algorithm tracks
the rows in the ascending order and maps the tasks into the
first free PE. The CoNA algorithm tries to keep the mapped
region contiguous and thus places the communicating tasks
in a close neighborhood as much as possible. The WeNA al-
gorithm improves the CoNA algorithm by sorting the tasks
based on the communication volume. WeNA tries to replace
the CoNA random steps by exploiting a more deterministic
and reasonable allocation policy. For this purpose, WeNA



utilizes the expanding parameter and occupancy status in its
mapping decision. To have a fair performance comparison
between WeNA and CoNA, the first node selection policy
of CoNA is also applied in WeNA as well. For all mapping
algorithms, PE 0 is used as the central manager (CM) which
is in charge of the resource management.

All the figures in this section are screenshots that are di-
rectly extracted from VisualNoC.

6.1 Simulation Reproduction
Figure 6 shows the screenshots of the PEs and routers

at the random cycle of 1553 which gives an intuitive view
about the mapping strategy of the FF, WeNA, and CoNA
algorithms regarding App 0, 1, 2 and 3. As the simulation
starts, the tasks of App 0 are mapped into PE 1, 8, 9, 10 and
11 (all the tasks are terminated before the cycle 1553 and
thus not shown in Figure 6). Then App 1 (green color) and
App2 (pink color) enter the platform at the cycle 500 and
1000, respectively. CoNA and WeNA map these applications
close to App 0. Tasks of App 1 are mapped into a more
contiguous region using the WeNA mapping algorithm than
CoNA. Tasks of App 2 are mapped to the almost similar PEs
under both WeNA and CoNA. Based on the quantitative
values, extracted from VisualNoC, the Average Weighted
Manhattan Distance (AWMD) of App 1 and App 2 under
WeNA is 1.87 and 1.61 hops while these values are 2.28 and
1.79 hops under CoNA. The task graph of App 2 is shown
in Figure 3(a). Based on the WeNA mapping algorithm, the
tasks with more communication volume are mapped close
to each other such as the tasks in communication with the
task 5.

Before App 3 enters the platform, App 0 has already been
completed and a fragment in the northwest corner of the
network is de-allocated and became free. Because the map-
ping algorithms tend to start mapping from the closest PE
to the central manager (i.e. PE 0 in this example), this free
fragment is selected for the mapping of App 3 which results
in a discontinuous mapping region. The AWMD of App 3 is
2.11 and 1.77 hops under WeNA and CoNA, respectively.

The FF mapping algorithm, shown in Figure 6(c), maps
the tasks row by row that leads to a totally different task
mapping than both WeNA and CoNA.

6.2 Analysis and Statistics of the Entire Sim-
ulation

6.2.1 General Statistic

Table 3: Statistical variables from simulation
Parameter FF CoNA WeNA
Packet Injection Rate
(packets/cycle)

0.61 0.615 0.614

Packet Throughput (pack-
ets/cycle)

0.605 0.61 0.608

Average Weighted Man-
hattan Distance (AWMD)

3.281 1.783 1.66

Max Manhattan Distance 10 5 6
Average Latency (cycles) 91.017 50.944 42.177
Maximum Latency (cycles) 711 528 526
Total Application Request 20 20 20
Total Application Enter 20 20 20
Total Application Exit 15 15 15
Average Execution Time
(cycles)

1757.67 1593.53 1529.4

Table 3 shows the statistics on the mapping algorithms
and also the network performance parameters. FF shows
the highest latency value and execution time. This is mainly
due to the highest average distance than the other two algo-
rithms. WeNA leads to the best average distance, average
latency and average execution time. The average packet la-
tency of the FF, CoNA and WeNA mapping algorithms is
91.0, 50.9, and 42.2 cycles, respectively, and AWMD of FF,
CoNA and WeNA is 3.28, 1.78 and 1.66 hops, respectively.
The reason behind this observation is that WeNA has a bet-
ter allocation policy by taking into account more parameters
in the task mapping decision.

Due to the similar performance level of the CoNA and
WeNA mapping algorithms, for the rest of the evaluation
part, we focus on these algorithms to observe the differences
in other aspects.

6.2.2 Gantt Charts
Figure 7 is the Gantt chart for the WeNA algorithm when

running all applications during the entire simulation period.
Different colors represent different execution phases (i.e. de-
scribed in Section 4.1) while different border colors denote
different applications. “Release” state has no color and no
border. The color for “Receive”, “Compute” and “Send” is
magenta, green and red, respectively. In “Wait” and “Fin-
ish”, the color is same as the border but in different opacity.
The horizontal axis shows the time and the vertical axis
represents the PE ID.

From the Gantt chart, we can easily observe that the uti-
lization of PEs that are located closer to the central manage-
ment unit is higher than the rest (e.g. PE 1 vs. PE 52). PE
0 is the central management unit, taking the responsibility
of task scheduling and mapping. PE 1 executes applications
for 8836 cycles with the utilization of 88%. On the other
side, PE 56, 57 and 63 are never used and thus the utiliza-
tion is 0%. The reason for this low utilization is the trend
of mapping tasks closer to the central management unit.

6.2.3 Distance Distribution
The packet distance distribution of the WeNA and CoNA

mapping algorithms are illustrated in Figure 8(a) and (e).
The figures show that WeNA has a higher proportion of
short distance packets compared with CoNA. Using WeNA,
3720 packets take only one hop while using CoNA 3131 pack-
ets route just for one hop. On the other hand, the worst-case
packet distance is higher in WeNA than CoNA (18 packets
with 6 hops vs. no packet in CoNA).

6.2.4 Traffic Spatial Distribution
Traffic spatial distribution graph shows the spatial dis-

tribution of packets injected or accepted by processing ele-
ments. It also shows the spatial distribution of packets sent
or received by routers during the execution time of a par-
ticular application or an entire simulation run. The graph
can be a bar chart or a spectrum. The red color shows the
routers with the most delivered packets while the blue color
indicates those with the least delivered packets.

Figure 8(d) and (h) show the spatial distribution of pack-
ets passing through routers during the entire simulation run.
The hotspot under both WeNA and CoNA appears at the
router (1,1) with 1840 delivered flits. The traffic on the
northwest part is heavier than the other parts mainly be-
cause of the location of the central manager at PE 0.



(a) WeNA (b) CoNA (c) FF

Figure 6: Mapping reproduction of applications 1, 2, and 3 under (a) WeNA (b) CoNA, and (c) FF

Figure 7: Gantt chart for all applications using
WeNA mapping algorithm.

6.3 Analysis and Statistics of Application 2
In this section, we take App 2 as an example. The task

graph of App 2 is shown in Figure 3(a).
Figure 8(b) and (f) illustrate Gantt charts for the App

2 under WeNA and CoNA. In CoNA, App 2 lasts for 2388
cycles while in WeNA it lasts 2059 cycles. The major dif-
ference between these two Gantt charts can be seen in the
“Receive” status of PE 50 in Figure 8(f) (i.e. Task 3 of App2
in CoNA) which lasts for about 400 cycles. This status holds
for only 200 cycles at PE 48 in Figure 8(b) (i.e. Task 3 of
App2 in WeNA). This observation can guide a designer to
recognize the bottleneck.

Figure 8(c) and (g) show the spatial distribution of packets
passing through routers during the execution time of the
App 2. When CoNA is applied, the hotspot appears in the
router 26 within the region of App2 while when WeNA is
applied, the hotspot is the router 19 which is far away from
the area of App2.

7. CONCLUSION AND FUTURE WORK
Simulation is the most common approach to evaluate the

mapping algorithms. But the lack of visualization tools
raises the difficulties to analyze the simulation results and

fix the bugs introduced by design defects and programming
errors. In this work, we introduced VisualNoC, a unique
visualization framework for simulation and mapping. Visu-
alNoC is able to reproduce the detailed operations of PEs,
routers and packets and report the simulation results visu-
ally and statistically. VisualNoC integrates a mapping sim-
ulator based on the communication-based PE model with a
graphical user interface. The rich aspects of VisualNoC can
greatly help designers on debugging and analysis.

Acknowledgment
This paper was supported by the National Natural Science
Foundation of China (NSFC) under grant No. 61176025, No.
61006027, No. 61534002, and the Oversea Academic Train-
ing Funds (OATF), UESTC. This work is also supported by
VINNOVA-MarieCurie and Academy of Finland.

8. REFERENCES
[1] H. Hsin, E. Chang, C. Lin, and A.-Y. Wu, “Ant colony

optimization-based fault-aware routing in mesh-based
network-on-chip systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 11, pp. 1693–1705, 2014.

[2] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics
for dynamic task mapping in noc-based heterogeneous
mpsocs,” in Rapid System Prototyping, 2007. RSP
2007. 18th IEEE/IFIP International Workshop on.
IEEE, 2007, pp. 34–40.

[3] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg,
and J. Plosila, “Cona: Dynamic application mapping
for congestion reduction in many-core systems,” in
Computer Design (ICCD), 2012 IEEE 30th
International Conference on. IEEE, 2012, pp.
364–370.

[4] L.-T. Huang, H. Dong, J.-S. Wang, M. Daneshtalab,
and G.-J. Li, “Wena: Deterministic run-time task
mapping for performance improvement in many-core
embedded systems,” Embedded Systems Letters, IEEE,
vol. 7, no. 4, pp. 93–96, 2015.

[5] E. A. Carara, R. P. De Oliveira, N. L. Calazans, and
F. G. Moraes, “Hemps-a framework for noc-based



(a) Packet distance distribution,
WeNA

(b) Gantt chart, App 2,
WeNA

(c) Traffic vs. area, App 2,
WeNA

(d) Traffic vs. area, all Apps,
WeNA

(e) Packet distance distribution,
CoNA

(f) Gantt chart, App 2,
CoNA

(g) Traffic vs. area, App 2,
CoNA

(h) Traffic vs. area, all Apps,
CoNA

Figure 8: Analyze charts. Subfigure (a) and (e) are packet distance distribution for all applications. Subfigure
(b) and (f) are Gantt chart for App 2. Subfigure(c) and (g) are traffic spatial distribution for App 2.
Subfigure(d) and (e) are traffic spatial distribution for all applications.

mpsoc generation,” in Circuits and Systems, 2009.
ISCAS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1345–1348.

[6] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood, “Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset,” ACM SIGARCH Computer Architecture
News, vol. 33, no. 4, pp. 92–99, 2005.

[7] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and
D. Patti, “Noxim: an open, extensible and
cycle-accurate network on chip simulator,” in
Application-specific Systems, Architectures and
Processors (ASAP), 2015 IEEE 26th International
Conference on. IEEE, 2015, pp. 162–163.

[8] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha,
“Garnet: A detailed on-chip network model inside a
full-system simulator,” in Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on. IEEE, 2009, pp. 33–42.

[9] F. Moraes, N. Calazans, A. Mello, L. Möller, and
L. Ost, “Hermes: an infrastructure for low area
overhead packet-switching networks on chip,”
INTEGRATION, the VLSI journal, vol. 38, no. 1, pp.
69–93, 2004.

[10] D. Ghosh, P. Ghosal, and S. Mohanty, “A highly
parameterizable simulator for performance analysis of
noc architectures,” in Information Technology (ICIT),
2014 International Conference on, 2014, pp. 311–315.

[11] https://www.ice.rwth-aachen.de/research/tools-
projects/grace/visualization/.

[12] https://www.academia.edu/2805883/ATLAS-
An Environment for NoC Generation and Evaluation,
Tech. Rep.

[13] P. Gottschling, H. Ying, and K. Hofmann, “Gsnoc ui-a
comfortable graphical user interface for advanced
design and evaluation of 3-dimensional scalable
networks-on-chip,” in 2012 International Conference
on High Performance Computing and Simulation
(HPCS), 2012, pp. 261–267.

[14] L. MoÌ́Lller, L. Indrusiak, and M. Glesner, “Nocscope:
A graphical interface to improve networks-on-chip
monitoring and design space exploration,” in 4th
International Design and Test Workshop (IDT), 2009,
pp. 1–6.

[15] http://nocvision.eecs.umich.edu/.

[16] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task
graphs for free,” in Proceedings of the 6th international
workshop on Hardware/software codesign. IEEE
Computer Society, 1998, pp. 97–101.

[17] O. Sinnen, Task scheduling for parallel systems. John
Wiley & Sons, 2007, vol. 60.

[18] L. Huang, J. Wang, M. Ebrahimi, M. Daneshtalab,
X. Zhang, G. Li, and A. Jantsch, “Non-blocking
testing for network-on-chip,” IEEE Transactions on
Computers, vol. 65, no. 3, pp. 679–692, March 2016.

[19] F. Farahnakian, M. Ebrahimi, M. Daneshtalab,
P. Liljeberg, and J. Plosila, “Q-learning based
congestion-aware routing algorithm for on-chip
network,” in Networked Embedded Systems for
Enterprise Applications (NESEA), 2011 IEEE 2nd
International Conference on, Dec 2011, pp. 1–7.


