
Optimizing Dynamic Mapping Techniques for
On-Line NoC Test

Shuyan Jiang∗, Qiong Wu∗, Shuyu Chen∗, Junshi Wang∗, Masoumeh Ebrahimi†, Letian Huang∗, Qiang Li∗
∗University of Electronic Science and Technology of China, Chengdu, China,

†Royal Institute of Technology (KTH), Sweden

huanglt@uestc.edu.cn

Abstract—With the aggressive scaling of submicron technology,
intermittent faults are becoming one of the limiting factors in
achieving a high reliability in Network-on-Chip (NoC). Increasing
test frequency is necessary to detect intermittent faults, which
in turn interrupts the execution of applications. On the other
hand, the main goal of traditional mapping algorithms is to
allocate applications to the NoC platform, ignoring about the
test requirement. In this paper, we propose a novel testing-aware
mapping algorithm (TAMA) for NoC, targeting intermittent
faults on the paths between crossbars. In this approach, the idle
links are identified and the components between two crossbars
are tested when the application is mapped to the platform. The
components can be tested if there is enough time from when the
application leaves the platform and a new application enters it.
The mapping algorithm is tuned to give a higher priority to the
tested paths in the next application mapping. This leaves enough
time to test the links and the belonging components that have
not been tested in the expected time. Experiment results show
that the proposed testing-aware mapping algorithm leads to a
significant improvement over FF, NN, CoNA, and WeNA.

Keywords—Network-on-Chip; mapping algorithm; intermit-
tent fault; on-line testing

I. INTRODUCTION

With the development of fabrication process technology

and computing architectures, Multi-Processor Systems-on-

Chip (MPSoCs) are likely to have some hundreds of cores inte-

grated into the same chip. However, the performance of a bus-

based SoC does not scale with a number of cores. Network-

on-Chip (NoC) emerges at a historic moment, which proposes

a modular and scalable communication architecture [1], [2].

In such an aggressive trend, reliability has become one of

the most important challenges. In fact, the shrunken transistors

are prone to the variability phenomena while easily influ-

enced by internal defects, aging process, and wear-out [3].

Furthermore, parameters are more difficult to control when

the transistors’ size is reduced, which can lead to tiny defects

in the process of production [4]. These tiny defects lead

to intermittent faults under the combined effect of voltage,

temperature, circuit behavior and other factors. The latest

research shows that intermittent faults have accounted for more

than 40% of the processor’s faults, showing the importance of

handling them [5].

Mapping algorithms decide the location of application tasks

on the NoC-based multi-core system. Different methods are

proposed to allocate the tasks onto the cores in an optimal

way. Depending on the underlying routing algorithm and the

mapping strategy, some links are idle during the execution of

an application. Traditional methods usually ignore about these

idle times while in this paper we utilize them for the purpose

of testing.

Intermittent faults have a distinct characteristic that they

occur repeatedly in fixed positions while having a certain

randomness on the time of occurrence. One solution to detect

intermittent faults is increasing the test frequency. The periodic

Built-In Self-Test (BIST) is used to detect and diagnose the

intermittent faults [6]. BIST has the advantages of fine-grained

diagnosis and high fault coverage. However, increasing the test

frequency comes at the cost of interrupting the applications

which are not desired. To address this issue, we combine the

test and mapping so that the idle times in mapping can be

utilized for injecting test vectors.

In this paper, we target the intermittent faults that if not

well-treated they may develop to permanent faults. We propose

a mapping strategy with embedded testing, called TAMA.

The motivation behind this work is that the mapping strategy

and the routing algorithm directly affect the link utilization.

Thereby, the idle links can be recognized and the compo-

nents on the idle path can be tested in free times without

interrupting the running applications. In short, TAMA tests

unused links and components while an application is executing

and then tries to map the next application on the tested

links/components so that the other idle links can be tested.

The remainder of this paper is organized as follows: Section

II presents the related work about the NoC test and mapping

algorithms. The mapping problems along with the concept of

idle links in mapping are formally modeled in Section III. In

Section IV, we propose an optimized testing-aware mapping

algorithm. Section V presents and discusses the simulation

results. Finally, the conclusion is given in the last section.

II. RELATED WORK

Due to the high pressure to reduce time to market, the

high failure rate of modern chips, and the complexity of large

multi-core architectures, the testing process of intermittent

faults is becoming increasingly important. However, most

fault detection methods focus only on permanent or transient

faults [7]–[9], ignoring the intermittent faults. On the other

hand, increasing the number of processors in a single chip

demands an efficient run-time task mapping algorithm. In the

case of dynamic mapping, the task assignment and ordering

are performed during the execution of an application [10]–

[12].
Research has been very limited when considering testing

and mapping at the same time. Most researches on map-

ping algorithms simply focus on improving some essential

performance indicators such as traffic and congestion while

putting less attention on the system reliability. For example, the

CoNA mapping algorithm [10] mainly targets the reduction of

internal and external congestion through keeping the mapped

region contiguous and placing the communicating tasks in

a close neighborhood. The WeNA mapping algorithm [11]

primarily aims at decreasing inter-processor communication

overhead by arranging the order of task mapping based on the

communication volume.
Among different test strategies [7], [9], periodic built-in

self-test (BIST) is usually applied to detect and diagnose the

intermittent faults [6]. However, traditional BIST methods sig-

nificantly influence the NoCs’ throughput because the circuit

under test should be disabled for testing and isolated from the

rest of the circuit by wrappers. TARRA [13] tries to reduce

the negative impact of BIST methods on performance by

introducing a reconfigurable router architecture combined with

a test strategy. However, TARRA does not take into account

the idle time during mapping.
The test infrastructure in this paper is derived from [14]

that presents the on-the-field test and configuration infras-

tructure for a 2D-mesh NoCs. Unlike the traditional BIST

methods [15], [16], a controlled BIST strategy is used to

diagnose and locate the faults in the components of the path

between two crossbars.
The goal of this paper is to integrate the test procedure in

application mapping. In this way, it is possible to ensure the

reliability of NoC without interrupting the running applications

to perform the test. However, if a link is highly utilized during

the application mapping, it should be tested with a higher

frequency as it is under stress and thus prone to faults. On

the other hand, the under-utilized links should not be tested

too frequently in order to avoid wasting resources. Therefore,

a proper test scheduler and a reasonable mapping strategy

should be designed using the information of link utilization.

We propose an efficient method to identity the free links and

test the path between two crossbars during the task mapping

and give priority to the tested links when mapping the next

application.

III. PROBLEM DEFINITION

An application includes a set of communication tasks which

can form an application graph. The mapping algorithm is

a process of mapping an application graph (Fig. 1(a)) to a

topology graph (Fig. 1(b)) in an optimal way [17]. In order

to simplify the comparison and reduce the problem size, we

consider a uniform mesh-based NoC in our definitions and

experiment.

A. Testing the Paths
The occupied cores with busy and free links can be easily

found by considering a uniform mesh-based NoC with the

underlying XY routing (as we assumed in this paper). Fig. 1(b)

shows a case study that presents the result of mapping an

application (Fig. 1(a)) to the cores of NoC using the CoNA

mapping algorithm. As can be seen from this figure, the

red and green links stand for the occupied and free links,

respectively. The free links and the related components can

be tested when the application is running without interrupting

it or increasing the execution run. The occupied links will be

tested as soon as the application exits the platform. The test

lasts until either the test period ends or the paths are needed

by a new application. It should be emphasized that the test

is immediately stopped when the path is requested by a new

application. To reduce these conflicting situations, the mapping

strategy tries to utilize the links that have been recently tested

than those of under the test or requiring a test.

(a) (b)

Fig. 1. (a) An application with 8 tasks and 9 edges. (b) free (green) and
occupied (red) links.

B. BIST Strucure

Fig. 2 shows the test structure between two routers, which

is derived from [14]. Router A generates the test packets in

the TPG unit and delivers them toward the TPA unit of Router

B for analysis. Test packets pass through the crossbar, output

registers, wires and the input buffer controlled by a switch

arbiter, routing calculation and state machines. Thus the test

procedure is able to capture intermittent faults on data paths as

well as the control-units. For simplicity, in this paper we use

a link/path test that actually means testing all the components

between the TPG unit of one router to the TPA unit of the

next router.

Fig. 2. The BIST structure.

C. On-the-field Test Strategy

The test strategy aims at a specific test method to meet the

maximum test frequency. Intermittent faults may suffer from

the detection delay that is the difference between the time a

fault is triggered and the time it is detected. One solution to

reduce this delay is to increase the test frequency. On the other

hand, the application execution time should not be affected by

the test procedure. So, the test scheduling algorithm should be

developed by taking into account the three issues:

1) The test start time: one of the test constraints is that it

should not affect the application mapping, so once a path

is not occupied by any application, the path test starts

immediately, like path1 in Fig. 3.

2) Identifying and testing the free paths: we utilize the de-

terministic routing algorithm XY that enables identifying

the free paths as soon as an application is mapped to the

platform.

3) Handling the conflicting situation of test and mapping:

when an application is entering the platform, the re-

quested paths should be ready and thus the test should

be stopped immediately. In other words, mapping has an

absolute priority for the use of paths which ensures that

the test does not interrupt or delay the execution of an

application, like path2 in Fig. 3.

Fig. 3. The path test time under two conditions.

D. Reliability Evaluation Metrics

We define a reliability evaluation metric called average test

time. The test time is the time from when an application

enters the platform until a path is tested (Fig. 3). The average

test time is computed by considering the test time of all

paths. Lower average test time means a higher test frequency.

We also use average test time to indirectly evaluate system

reliability. By increasing the test frequency, intermittent faults

can be detected, and appropriate fault-tolerate methods can

be adopted on time [18] [13]. Therefore, packets will not be

affected by faults if faults are detected and tolerated early.

IV. TESTING-AWARE MAPPING ALGORITHM

We analyze the link utilization under four mainstream

mapping algorithms as FF [12], NN [12], CoNA [10], and

WeNA [11], shown in Fig. 4. The analysis is performed

under two situations where the experiment environment of

situation1 and situation2 are adapted from [10] and [11], re-

spectively. Link utilization stands for the number of cycles that

links are utilized over all simulation run. The link utilization

(Lutilization) can be modeled as:

Lutilization =

∑Ts

t=1 Nc(t)

Nl × Ts
(1)

where Nc stands for the number of utilized paths at each

simulation cycle; Nl represents the number of paths in the

network; and Ts is the total simulation cycles. For all four

mapping algorithms, the link utilization is less than 10%,

verifying the fact that the paths are mostly in an idle mode.

Therefore, an opportunistic on-line test scheduling method can

take advantage of such situations to test the paths when free. A

reasonable mapping algorithm can provide a balance between

test and mapping. It not only improves the link utilization,

avoiding the waste of resources, but also increases the test

frequency.

Fig. 4. The link utilization for different mapping algorithms under two
different situations in 8×8 NoC.

We claim that there is a quest for a testing-aware mapping

algorithm which can achieve the goal of application mapping

while detecting intermittent faults in NoCs. It will not degrade

the overall system performance. In other words, the paths

can be tested without interrupting the mapping procedure. To

realize the testing-aware mapping technique, we optimize the

mapping algorithm while satisfying the requirements of online

testing.

The proposed mapping algorithm, named testing-aware

mapping algorithm (TAMA) takes the status of on-line testing

to exploit an efficient mechanism for mapping. Based on this

method, the tasks are first ordered and then mapped to the

platform.

A. Sorting tasks

Tasks should be ordered before mapping to the platform.

The ordering method of TAMA is similar to WeNA [11]. First,

the tasks with the largest number of edges are selected as

candidates. For example on the task graph of Figure 5(a), four

tasks have three edges (i.e. t2, t3, t4, and t5). Then, the one

with the largest number of communication volume is chosen

as the first task to map (i.e. t3).

To sort the remaining tasks, we follow the breadth-first

traversal technique similar to [11]. In the example of Figure

5(b), the breadth-first traversal technique starts from the first

task (t3) and explores the first-level neighbor tasks (t1, t2, and

t5), and sorts them based on their communication volume (t5

(18), t1 (16), and t2 (4)) from the father task, t3. In the next

step, the neighbor tasks of t5 are explored and sorted (t4(11)

and t7(7)), as shown in Figure 5(c). The procedure is repeated

for t1 (Figure (d)) and t2, and finally the neighbor task of t4

(i.e. t6) is examined in the last level (Figure (e)). As a result,

the tasks’ order will be t3, t5, t1, t2, t4, t7, t0, and t6.

B. Mapping tasks to nodes

For mapping tasks to the platform, The CoNA and WeNA

algorithms starts with selecting the first node by taking the

situation of the neighboring nodes into account. This prevents

the area fragmentation to a large extend while decreasing the

congestion probability [10], [11]. For the remaining tasks,

CoNA randomly maps them to one of the closest neigh-

bors [10]. WeNA, on the hand, takes the communication

Fig. 5. An example of TAMA mapping algorithm.

volume into account [11] in the mapping decision. Similar

to other mapping algorithms, TAMA starts by selecting the

first node to map and then continue with the rest. The first

node selection of TAMA is based on three consecutive steps,

given in Algorithm1:

Step1: the nodes with the maximum number of free neigh-
bors are selected as candidates. This selection prevents

area fragmentation and decreases the congestion probability.

Fig. 5(f) shows an example of the TAMA mapping algorithm

where an application with 8 tasks and 9 edges is going to

be mapped to a 3 × 4 mesh NoC with the node ñ0,0 as the

manager. The recently-tested nodes are identified by high-

lighted arrows. By following Step 1, the maximum number

of available neighbors belongs to the nodes ñ1,1 and ñ2,1, and

thus selected as candidates.

Step2: from the candidates, the ones with the maximum
number of tested links are chosen as new candidates. This

avoids selecting the non-tested links as much as possible to

give them free time to test in the next round. It can also balance

the link utilization and improve the reliability by choosing the

links that are recently tested. In the given example, since both

nodes have four tested links, both of them are chosen again.

Step3: from the new candidates, the node that is closer to the
manager (ñ0,0) is selected as the first node. This is to reduce

the system latency. If there are more than one candidates, a

node is chosen randomly. Since the node ñ1,1 is closer to the

manager, it is selected as the first node to map. Thereby, the

first task, t3, is mapped to the node ñ1,1.

The nodes for mapping the remaining tasks are chosen based

on the following three steps, given in Algorithm2:

Step1: the nodes that are closest to the father task node are
selected. As shown in Fig. 5(f), there are four available nodes

to map t5 (ñ0,1, ñ1,0, ñ2,1, and ñ1,2).

Step2: the nodes with the maximum number of tested links
are chosen with regard to the location of the father node and
the data flow direction. Considering the fact that the flow of

data is from t3 to t5, then both ñ1,0, ñ2,1 are considered as

the nodes with 1 tested link and thus suitable to map the

Algorithm 1 Selecting the first node to map

Input: Ap: The given application task graph;

Output: FN : The selected first node;

1: N ← all nodes in NoC except the manager;

2: for node i in N do
3: S1 ← select the nodes with the maximum number of

free neighbors;

4: end for
5: for node i in S1 do
6: S2 ← select the nodes with the largest number of

tested links;

7: end for
8: for node i in S2 do
9: FN ← select the node with the smallest Manhattan

distance to node n(0,0);

10: end for

task. In this example we map t5 to the node ñ2,1, which

is chosen randomly. t1 and t2 are also mapped to ñ1,0 and

ñ0,1, respectively, as shown in Fig. 5(g). If the father node is

located some hops away from the candidate nodes, then the

XY routing is considered to find the number of tested links

on the path.

Step3: the nodes with the maximum number of tested links
are chosen considering the location of other mapped tasks and
the data flow direction. For mapping t4 in Fig. 5 (g), there are

three available nodes close to t5 (ñ2,0, ñ3,1, and ñ2,2); two

of which with one tested link. On the other hand, as can be

seen from the task graph, t4 has data communication with

t2 as well which is already mapped to the platform. So, in

this step the number of tested links on the path from t2 to t4

is counted to decide for a better node to map. The path can

be found by considering a static routing like XY. From two

possible options (ñ3,1 and ñ2,2), the node with the maximum

number of tested links (i.e. ñ2,2) is selected to map t4 (Fig.

(h)). Following Step1 to Step3, t7, t0, and t6 are mapped to

the platform, shown in Fig. (h) to (j).

Algorithm 2 Selecting other nodes to map

Input: Ap: The given application task graph;

TQ: The ordered task queue;

P: The given platform for mapping;

t and n: The task to map and the selected node;

Output: MAP : T→ P: Mapping tasks to the platform;

1: N ← all nodes in NoC except the manager;

2: map nalg1 ← t1; //map t1 to the node selected by Alg.1

3: for i=2→ |TQ| do
4: for node j in N do
5: S1 ← select nodes that are closest to father node;

6: end for
7: for node j in S1 do
8: S2 ← select the nodes with the largest number of

tested links to/from the father node;

9: end for
10: for node j in S2 do
11: S3← select node with the largest number of tested

links on the path to/from the other nodes;

12: end for
13: map ns3 ← ti
14: end for

V. RESULTS AND DISCUSSION

A. Experiment Setup

We compare TAMA with four different mapping algorithms

as First Free (FF), Nearest Neighbor (NN) [12], Contiguous

Neighborhood Allocation (CoNA) [10] and Weighted-based

Neighborhood Allocation (WeNA) [11]. The algorithms are

implemented in the ESY-net simulator [19]. Several sets of

applications are generated using TGFF [20] with the parame-

ters listed in Table I. Apart from the parameters listed in this

table, we set the system usage rates to 1, 0.8, 0.6, and 0.4.

TABLE I
THE SETUP PARAMETERS

Parameters Values
Network size 8× 8
Number of tasks 4-20
Max communication volume 10-30
Application injection rate 10
Simulation length 10,000,000
Number of applications 2,000

B. Maximum Test Time

Fig. 6(a) shows the maximum test time under different

system usage rates for five mapping algorithms. As can be

seen from this figure, TAMA decreases the maximum test

time than the WeNA algorithm by more than 28.98%, 34.6%,

39%, 43.8% under system usage rate of 1, 0.8, 0.6 and 0.4,

respectively. The benefit of TAMA is more significant in lower

usage rates that is because of testing paths at idle times and

thus shortening the test time.

C. Average Test Time

The average test time is evaluated and compared in

Fig. 6(b). As can be seen from this figure, TAMA leads to the

lowest average test time which enables a higher test frequency

and thus a better reliability against intermittent faults. If a

faulty path is detected, methods can be applied to either

tolerate or fix it, which is out of the scope of this paper. Similar

to the analysis of the maximum test time, TAMA is more

advantages in lower usage rates with the maximum increase

of 38.1% against WeNA when the system usage rate is 0.4.

D. Interrupted Test Rate

Fig. 6(c) illustrates the interrupted test rate on all paths

during the whole execution time. The interrupted test rate

(Tinterrupted) can be modeled as:

Tinterrupted =
Tc + Tic

Tc
(2)

where Tc stands for the total number of tested paths during the

application mapping over all simulation run. Tic represents the

number of tests that are interrupted due to the request on using

the path. As can be seen from this figure, the interrupted test

rate is lowest in TAMA as compared to other methods under all

configurations. This is due to the fact that TAMA identifies the

idle paths based on the underlying XY routing algorithm and

the location of the mapped application. Thereby the idle paths

are tested meanwhile the application runs in the platform. The

remaining paths are tested when the application leaves the

platform, and thus the interrupted test rate decreases. It should

be mentioned that the mapping strategy selects the tested paths

with a higher probability than untested ones. This may leave

the busy paths unallocated this time and thus allowing them

to be tested during the execution of a new application.

E. AWMD metric

Fig. 7(a) shows the results of Average Weighted Manhattan

Distance (AWMD) metric under different system usage rates.

The AWMD of TAMA is always lower than all the other

examined methods. The only exception is when the system

usage rate is 1 and the AWMD of WeNA is by 0.00085 lower

than TAMA.

F. Average Latency Evaluation

The average latency follows the same trend as AWMD. As

shown in Fig. 7(b), the average latency of TAMA, CoNA,

and WeNA are nearly the same while it is significantly lower

than FF and NN under different system usage rates. In sum,

TAMA can reduce the maximum test time, average test time,

and interrupt rate at no compromise of AWMD and average

latency.

VI. CONCLUSION

In this paper, we proposed a combined approach of mapping

algorithm and on-line testing, called testing aware mapping

algorithm (TAMA). TAMA targets at increasing test frequency

by taking advantage of free time slots during the application

execution for testing. First, On-the-field test infrastructure

and strategy are proposed, which guarantee the test program

cannot effect the process of application mapping by making

use of free paths in mapping. Second, tasks are ordered and

(a) (b) (c)

Fig. 6. (a) Max test time (b) Average test time (c) Interrupted test rate.

Fig. 7. (a) AWMD metric (b) Average latency evaluation.

a network node which has a maximum number of available

neighbors and a largest number of tested paths is selected

as the first node to map the first task. It can significantly

improve the reliability of system, decrease the congestion

probability and prevent area fragmentation. As the third part,

TAMA maps the remaining tasks according to the number of

tested path and nearest neighborhood, trying to form the most

tested and contiguous region. Experiment results showed that

TAMA leads to significant improvement on test frequency and

reliability over traditional mapping algorithms.

ACKNOWLEDGMENT

This paper was supported by the National Natu-

ral Science Foundation of China under grant (NSFC)

No.61534002, No.61471407, Central Universities under Grant

ZYGX2016J042. This work is also supported by VINNOVA-

MarieCurie.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chip: a new paradigm for
systems on chip design,” in Design, Automation and Test in Europe
Conference and Exhibition, 2002. Proceedings. IEEE, 2002, pp. 418–
419.

[2] M. Palesi and M. Daneshtalab, Routing Algorithms in Networks-on-Chip.
Springer Publishing Company, Incorporated, 2013.

[3] M. Kaliorakis, M. Psarakis, N. Foutris, and D. Gizopoulos, “Accelerated
online error detection in many-core microprocessor architectures,” in
VLSI Test Symposium (VTS), 2014 IEEE 32nd. IEEE, 2014, pp. 1–6.

[4] M. Meijer and J. P. de Gyvez, “Body-bias-driven design strategy for
area-and performance-efficient cmos circuits,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 42–
51, 2012.

[5] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Characterizing the
impact of intermittent hardware faults on programs,” IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 297–310, 2015.

[6] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “Online bist for embedded
systems,” IEEE design & Test of Computers, vol. 15, no. 4, pp. 17–24,
1998.

[7] Q. Yu and P. Ampadu, “A dual-layer method for transient and permanent
error co-management in noc links,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 58, no. 1, pp. 36–40, 2011.

[8] A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng, and
V. Bertacco, “Comprehensive online defect diagnosis in on-chip net-
works,” in VLSI Test Symposium (VTS), 2012 IEEE 30th. IEEE, 2012,
pp. 44–49.

[9] X. Chen, Z. Lu, Y. Lei, Y. Wang, and S. Chen, “Multi-bit transient
fault control for noc links using 2d fault coding method,” in Networks-
on-Chip (NOCS), 2016 Tenth IEEE/ACM International Symposium on.
IEEE, 2016, pp. 1–8.

[10] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, and J. Plosila,
“Cona: Dynamic application mapping for congestion reduction in many-
core systems,” in Computer Design (ICCD), 2012 IEEE 30th Interna-
tional Conference on. IEEE, 2012, pp. 364–370.

[11] L.-T. Huang, H. Dong, J.-S. Wang, M. Daneshtalab, and G.-J. Li, “Wena:
Deterministic run-time task mapping for performance improvement in
many-core embedded systems,” IEEE Embedded Systems Letters, vol. 7,
no. 4, pp. 93–96, 2015.

[12] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for dynamic
task mapping in noc-based heterogeneous mpsocs,” in Rapid System
Prototyping, 2007. RSP 2007. 18th IEEE/IFIP International Workshop
on. IEEE, 2007, pp. 34–40.

[13] L. Huang, J. Wang, M. Ebrahimi, M. Daneshtalab, X. Zhang, G. Li,
and A. Jantsch, “Non-blocking testing for network-on-chip,” IEEE
Transactions on Computers, vol. 65, no. 3, pp. 679–692, 2016.

[14] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi, and F. Pecheux,
“On-the-field test and configuration infrastructure for 2-d-mesh nocs in
shared-memory many-core architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 6, pp. 1364–1376,
2014.

[15] S.-Y. Lin, W.-C. Shen, C.-C. Hsu, C.-H. Chao, and A.-Y. Wu, “Fault-
tolerant router with built-in self-test/self-diagnosis and fault-isolation cir-
cuits for 2d-mesh based chip multiprocessor systems,” in VLSI Design,
Automation and Test, 2009. VLSI-DAT’09. International Symposium on.
IEEE, 2009, pp. 72–75.

[16] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “Bist for network-
on-chip interconnect infrastructures,” in VLSI Test Symposium, 2006.
Proceedings. 24th IEEE. IEEE, 2006, pp. 6–pp.

[17] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for network-on-chip design,” Journal of Systems Architecture,
vol. 59, no. 1, pp. 60–76, 2013.

[18] M. R. Kakoee, V. Bertacco, and L. Benini, “At-speed distributed func-
tional testing to detect logic and delay faults in nocs,” IEEE Transactions
on Computers, vol. 63, no. 3, pp. 703–717, 2014.

[19] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, and G. Li,
“Visualnoc: A visualization and evaluation environment for simulation
and mapping,” in Proceedings of the Third ACM International Workshop
on Many-core Embedded Systems. ACM, 2016, pp. 18–25.

[20] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,”
in Proceedings of the 6th international workshop on Hardware/software
codesign. IEEE Computer Society, 1998, pp. 97–101.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

