
MD: Minimal path-based Fault-Tolerant Routing in
On-Chip Networks

Masoumeh Ebrahimi1, Masoud Daneshtalab1, Juha Plosila1, Farhad Mehdipour2

1Department of Information Technology, University of Turku, Finland
2E-JUST Center, Kyushu University, Japan

{masebr, masdan, juplos}@utu.fi, farhad@ejust.kyushu-u.ac.jp

Abstract— The communication requirements of many-core
embedded systems are convened by the emerging Network-on-
Chip (NoC) paradigm. As on-chip communication reliability is a
crucial factor in many-core systems, the NoC paradigm should
address the reliability issues. Using fault-tolerant routing
algorithms to reroute packets around faulty regions will increase
the packet latency and create congestion around the faulty
region. On the other hand, the performance of NoC is highly
affected by the network congestion. Congestion in the network
can increase the delay of packets to route from a source to a
destination, so it should be avoided. In this paper, a minimal and
defect-resilient (MD) routing algorithm is proposed in order to
route packets adaptively through the shortest paths in the
presence of a faulty link, as long as a path exists. To avoid
congestion, output channels can be adaptively chosen whenever
the distance from the current to destination node is greater than
one hop along both directions. In addition, an analytical model is
presented to evaluate MD for two-faulty cases.

I. INTRODUCTION

As is predicted by Moore’s law, over a billion transistors could
be integrated on a single chip in the near future [1]. In these chips,
hundreds of functional intellectual property (IP) blocks and
embedded memory modules could be placed together to form a
Multi-Processor Systems-on-Chip (MPSoCs) [1]. By increasing
the number of processing elements in a single chip, traditional
bus-based architectures in MPSoCs are not useful any longer and
a new communication infrastructure is needed. Network-on-Chip
(NoC) has become a promising solution for on-chip
interconnection in many-core Systems-on-Chip (SoC) due to its
reusability and scalability [2][3][4].

On-chip interconnects implemented with deep submicron
semiconductor technology, running at GHz clock frequencies are
prone to failures [2][5][6]. Due to this extreme device scaling, the
likelihood of failures increases [17]. Two different types of faults
that can occur in NoCs are transient and permanent. Transient
faults have unpredictable causes (e.g. power grid fluctuations,
particle hits) and are often difficult to be detected and corrected.
Permanent faults are caused by physical damages such as
manufacturing defects, device wear-out. In this paper, our focus is
on permanent faults. Routing techniques provide some degrees of
fault tolerance in NoCs. Routing algorithms are mainly
categorized into deterministic and adaptive approaches [7][8][9].
A deterministic routing algorithm uses a fixed path for each pair
of nodes, resulting in increased packet latency especially in
congested networks. Implementations of deterministic routing
algorithms are simple but they are unable to balance the load
across the links in non-uniform traffic. The simplest deterministic

routing method is dimension-order routing which is known as XY
or YX algorithm. The dimension-order routing algorithms route
packets by crossing dimensions in strictly increasing order,
reducing to zero the offset in one direction before routing in the
next one. In contrast, in adaptive routing algorithms, a packet is
not restricted to a single path when traveling toward a destination
node. So they can decrease the probability of routing packets
through congested or faulty regions. In sum, unlike deterministic
routing algorithms, adaptive routing algorithms could avoid
congestion in the network and provide better fault-tolerant
characteristics by utilizing alternative routing paths.

In wormhole routings, messages are divided into small flits
traveling through the network in a pipelined fashion. This
approach eliminates the need to allocate large buffers in
intermediate switches along the path [10]. Moreover, in wormhole
routing, message latency is less sensible to distance. However, it
should be used with special care to avoid deadlock in the network.
Deadlock is a situation when the network resources continuously
wait for each other to be released. Routing algorithms are
required to be deadlock-free and break all cyclic dependencies
among channels. Virtual channels are mainly used in the network
for avoiding deadlock, increasing performance and tolerating
faults, but it is an expensive solution.

Conventional fault-tolerant routing algorithms reroute packets
around faulty regions, either convex or concave, so that the
selected paths are not always the shortest ones. However,
rerouting is an expensive solution and considerably increases
packet’s latency and router’s complexity. In addition the
information about faulty components is insufficient or the way of
utilizing them is inefficient. On the other hand, most of the
presented fault tolerant algorithms are limited to deterministic
routing algorithms, resulting in considerable performance loss. In
this paper, we present a minimal and defect-resilient (MD)
routing algorithm where the key ideas are threefold. First, it can
tolerate all one-faulty links using a minimal path between each
pair of source and destination nodes, if a minimal path exists.
Second, to avoid congestion, output channels can be adaptively
chosen whenever the distance from the current to destination node
is greater than one hop along both directions. Third, to evaluate
the presented routing for two faults condition, an analytical model
is introduced and analyzed.

The rest of this paper is organized as follows: Section II
reviews the related work, while the underlying fully adaptive
routing algorithm is also discussed in this section. Fault
distribution mechanism, bypassing faulty links and the proposed
fault-tolerant algorithm are explained in Section III. The results
are given in Section IV while we summarize and conclude in the
last section.

II. RELATED WORK

Fault-tolerant routing algorithms can be classified into two
main groups: one can handle convex or concave regions
[11][12][13][14] and the other utilizes the contour strategy for
addressing faults [15][16]. The basic assumptions in all of these
methods are the permanent faulty cases. The methods in the first
group are based on defining fault ring (f-ring) or fault chain (f-
chain) around faulty regions where healthy nodes are disabled in
order to form a specific shape. A reconfigurable routing algorithm
using the contour strategy provides the possibility of routing
packets through a cycle free surrounding a faulty component. The
presented algorithm in [15] is able to tolerate all one-faulty
routers in 2D mesh network without using virtual channels and
disabling healthy nodes. However, to support more number of
faulty routers, the contours must not be overlapped and thus
faulty routers should be located far away from each other. This
algorithm is deterministic and does not make any effort toward
alleviating congestion in the network.

Fault-tolerant routing algorithms could be also divided into
two classes: the methods using virtual channels [16][17][18] and
those without using virtual channels [19][20]. In general, different
methods define a new tradeoff between the number of virtual
channels, the ability to handle different fault models, and the
degree of adaptiveness. The virtual channel-based fault-tolerant
routing algorithms provide better fault-tolerant characteristics
than those without virtual channels. The methods that do not use
any virtual channel are mainly based on the turn models [21][22].
In turn models, some turns are eliminated in order to guarantee
the deadlock freeness in the network and then the remaining turns
are used both for routing packets and tolerating faults.

In this paper, the fault information is distributed and utilized in
such a way that packets can be routed through the shortest paths
in the presence of faults. This method can be used with any
number of virtual channels in the network. However, in order to
keep the area overhead low, we use two virtual channels in each
direction. The proposed method not only is able to tolerate all
one-faulty links but also all packets can be routed through the
shortest paths as long as any path exists. Moreover, the algorithm
is adaptive and in most cases, packets have alternative choices to
reach the destination node.

A. Dynamic XY Routing Algorithm
Our proposed method is based on a fully adaptive routing

algorithm. To provide this requirement, we take advantage of the
Dynamic XY (DyXY) method. DyXY is an adaptive and
deadlock free routing algorithm proposed in [23]. In this
algorithm, which is based on the static XY algorithm, a packet is
sent either to the X or Y direction depending on the congestion
condition. It uses local information (i.e. the current queue length
of the corresponding input buffer in the neighboring routers) to
decide on the next hop. It is shown that the usage of this local
information leads to a lower latency path from the source to the
destination node. Fig. 1 shows an example of the DyXY method
where the nodes S and D are the source and destination of the
packet. In the DyXY method, at the source node S, the number of
free buffer slots at the west input buffer of node 1 is compared
with that of the south input buffer of node 4. The packet is sent in
a less congested direction that is the east direction in this
example. When the packet arrives at node 1, it has to be delivered
toward the destination node through either node 2 or node 5.

According to the congestion condition shown in Fig. 1, the node 5
is less congested and thus the packet is delivered to it. In this way,
the packet chooses a less congested direction at each routing step
until it reaches the destination node.

Due to the fact that packets can be routed in both X and Y
directions, there is possibility of deadlock. DyXY uses two virtual
channels along the Y direction and one virtual channel along the
X direction. This algorithm avoids deadlock as follows: The
network is partitioned into two subnetworks called +X and –X,
each having half of the channels in the Y dimension. If the
destination node is on the right of the source, the packet will be
routed through the +X subnetwork. If the destination node is on
the left of the source, the packet will be routed through the -X
subnetwork. When the destination is in the north or south of the
source node, either subnetwork can be used. Without the loss of
generality, in this work we take advantage of two virtual channels
in each direction. The first virtual channel is used for the eastward
packets and the second virtual channel is utilized for the westward
packets.

S 1 2 3

4 5 6 7

8 9 D

14

11

12 13 15

Fig. 1. Dynamic XY (DyXY) routing algorithm

III. MD: THE PROPOSED APPROACH

A. Fault Distribution Mechanism
We present a new fault distribution mechanism and the method

of utilization which avoids taking unnecessary non-minimal
paths. As shown in Fig. 2(d), the fault information is distributed
in a way that each router is informed about the fault condition in
two-hop links. For this purpose, each router transfers the fault
information on its direct links to the neighboring nodes. Note that
in this figure, E, W, N, and S stand for the East, West, North, and
South directions. In Fig. 2(a), the neighboring node in the north of
the current node (C) transfers the fault information on its links in
N, E, and W directions to the current node. Accordingly, the
current node would be informed about the fault information in its
N, NN, NE, and NW paths. In Fig. 2(b), by receiving the fault
information from the neighboring node in the east direction, the
current node knows about the fault information of E, EE, EN, and
ES paths as well. Similarly, in Fig. 2(c), this knowledge is
extended to know about the fault information on the links in S,
SS, SE, and SW paths. Finally, as shown in Fig. 2(d) by receiving
the information from the neighboring node in the west direction,
the current node has the information about the links in E, EE, EN,
ES, W, WW, WN, WS, N, NN, NE, NW, S, SS, SE, and SW
paths in total. For routing a packet in the northeast direction, for
instance, a router uses the fault information on the corresponding
minimal paths (e.g. EE, EN, NN, and NE). Similarly, for a
southwest packet, the fault’s information on some paths (e.g.
WW, WS, SS, and SW) is beneficial for making a reliable routing
decision. Using this information, packets are routed through
minimal and non-faulty paths which avoids making unnecessary
routing around faulty components.

Fig. 2. The fault distribution mechanism

B. Bypassing Faulty Links
Regarding the relative position of the source and destination

nodes, a packet can be sent in eight directions: north, south, east,
west, northeast, northwest, southeast, and southwest. By using the
DyXY method and the explained distribution mechanism (Fig. 2),
we show that the packets destined for northeast, northwest,
southeast, and southwest directions, take only the shortest paths in
the presence of a faulty link in the network. Therefore, no
rerouting takes place in these cases and the algorithm remains
deadlock free. However, for eastward, westward, northward, and
southward packets, non-minimal paths must be taken if a faulty
link exists in the path.

1. Northeast, Southeast, Northwest, and Southwest Directions
Using the DyXY method, all shortest paths in the east direction

are valid for eastward packets. Similarly, westward packets can
utilize all shortest paths in the west direction. When the destination
is in the northeast position of the current node, the packet can be
delivered in either the north or east direction. As illustrated in Fig.
3(a), the distances along both east and north directions are one. On
the other hand, according to the distribution mechanism, the
current node is informed about the faulty condition of the links in
EN and NE paths. Using this information, if a link is faulty in
either the NE or EN path, the other shortest path is selected by the
routing unit. As a result, the packet is always routed through a
minimal path to the destination.

The example in Fig. 3(b) shows the case where the distance
along the X dimension reaches one. The current node knows the
information about EN, NE, and NN paths which are located in the
minimal path. The packet can be delivered in the east direction if
the EN path is non-faulty. However, by this choice, the distance
along the X dimension reaches zero and the packet has to take the
Y direction in the remaining path toward the destination node.
Thereby, if there is a faulty link in the Y dimension, the packet
must take a non-minimal path to bypass the fault. This is not an
optimal solution which is addressed by the presented algorithm.
MD avoids reducing the distance into zero in one direction when
the distance along the other direction is greater than one. In other
words, when the distance between the current and destination
nodes reaches one in at least one dimension, at first all the possible
shortest paths on the greater-distance dimension are checked. The
packet is sent along the greater-distance dimension if any minimal
and non-faulty paths exist; otherwise the links on the smaller-
distance dimension are examined. Thereby, in Fig. 3(b) the
availability of NN and NE paths is checked before that of EN. If
either the NN or NE path is healthy, the packet is sent through it.

In the next hop, the packet faces the similar situation as in Fig.
3(a), and thus only the shortest paths are selected by MD so far. In
another case of Fig. 3(b), when both NN and NE paths are faulty
(i.e. the north link is faulty), the packet is routed through the east
direction and is sent to the destination using the shortest path (i.e.
we assume there is one faulty link in the network). Similarly, in
Fig. 3(c) the conditions of EE and EN paths are examined earlier
than the NE path. Finally, in Fig. 3(d), the packet can be delivered
through the east direction if the EE or EN path is non-faulty or it
can be sent through the north direction when either the NN or NE
path is healthy. By these choices, the packet faces the similar
situation as in Fig. 3(b) or Fig. 3(c) and thereby only the shortest
paths are taken by MD in all cases.

Fig. 3. Bypassing faulty links when the destination is located in the
northeast position of the source node (Note that numbers determine

the priority of different paths)

2. East, West, North, and South Directions
As is already mentioned, when a packet is eastward, westward,

northward, or southward and there is a faulty link in the path, the
packet must be routed through a non-minimal path and turned
around the faulty link. As illustrated in Fig. 4(a) for the eastward
packet, at first the east link is checked and if it is healthy, the
packet is sent through this direction. However, if the link is faulty,
the packet is delivered to the north or south direction with the
same priority. The situation is similar for the westward packet

Fig. 4. Bypassing faulty links when the destination is located in the
(a) east (b) west (c) north, and (d) south positions of the source node

(Fig. 4(b)). In this case, the fault information in the west direction
is checked before those of north and south directions. When the
packet is northward (Fig. 4(c)) and the north link is faulty, the east
direction is checked earlier than the west direction. It means that
the west direction is used only when the faulty link is located in
the rightmost border. A similar perspective is applied to southward
packets (Fig. 4(d)). It is worth mentioning that for the northward
and southward packets, only the first virtual channel is used unless
the packet is generated at one of the nodes in the rightmost border
(i.e. the second virtual channel is utilized).

C. Adaptive Fault-Tolerant Algorithm
A deterministic routing algorithm is a common method used in

traditional fault tolerant methods since the path of a packet is
predictable. However, in our algorithm we use the deterministic
routing only when a packet gets close to the area of faulty link.
Based on MD, if the distance from the current to destination node
is greater than one hop along both directions, packets can
adaptively choose among the non-faulty links without any
restriction. According to DyXY, a packet is sent in a direction
which has a more number of free slots in the corresponding input
buffer. When both directions have the same number of free buffer
slots, a direction is chosen by random. On the other hand, MD tries
not to reduce the distance in one dimension to zero while the
distance along the other dimension is greater than one. To step
toward this goal, we try to keep the distances along both directions
as equally as possible. However, forcing a packet to choose a
specific direction is against the adaptive characteristic. Our
solution to this issue relies on sending a packet in a desired
direction (greatest-distance dimension) whenever the number of
free buffer slots are nearly equal in both directions. The equality
situation might happen in a few cases, but as it is obvious the
number of free buffer slots does not need to be exactly the same.
For instance, four or five free buffer slots out of eight available
slots can be seen similar in terms of affecting the performance.
Therefore, when the difference between the number of free slots in
two input buffers is less than or equal to two flits, the packet is
sent in the desirable direction.

An example is shown in Fig. 5(a), when the source and
destination are located at nodes S and D while the link (11,D) is
faulty. As can be seen by the figure, there are several paths that
can be taken by MD. The simple rule is that the distance along
each direction should remain greater than or equal to one. The
number of free buffer slots is used to select among the output
channels at each router. As illustrated in Fig. 5(b), the adaptivity
options of the non-faulty case are nearly similar to the faulty case
(Fig. 5(a)).

Fig. 5. Alternative paths from source node S to destination D

Fig. 6 shows an example of comparing MD with traditional
methods which are based on contour strategy. Both methods select
the output channels based on the congestion condition and fault
information. Let us assume that the detour-based method knows
only about the fault information in its direct links. In this figure, a
packet is sent from the source node S to the destination node D
when the links (S,1), (7,11), (8,9), (8,12), and (14,D) are faulty.
This example shows that MD can support some multiple faulty
links still using the shortest paths. At the source node, the north
direction is selected by both methods since the east link is faulty.
At the node 4, the detour-based method (Fig. 6(a)) may deliver the
packet in the north direction (unaware of the faults in two-hop
links) where the packet faces the faulty links and has to be
returned to the node 4. If the packet arrives at the node 6, it might
select the intermediate node 7 as the next hop. However, the node
7 has a faulty link in the north direction and returns the packet to
the node 6. The packet might reach the node 14 where the east link
is faulty and thus it has to be rerouted. In sum, the packet takes
several unnecessary non-minimal paths which increase the latency.
In contrast, at the node 4, MD (Fig. 6(b)) is aware of the faulty
links at the NN and NE paths, so it delivers the packet in the east
direction instead of the north direction. By arriving the packet to
the node 6, MD avoids reducing the distance to zero along the X
dimension (also it notices that the EN path is faulty), so it delivers
the packet to the node 10. At this node, the packet is sent through
the east direction since it knows that the NE path is faulty.

Fig. 6. Comparison of (a) a detour-based method with (b) MD

Fig. 7. Robustness analysis, specified links must be healthy

D. Analytical Analysis of Two-Faulty Situations
Since MD could not support all two-faulty cases, we take

advantage of analytical models to evaluate the reliability of MD
when two faults occur in the network. Let us assume that the
location of faults is chosen randomly. We divide the problem into
two cases: the first fault occurs on the border links or it occurs in
central links. If the first fault occurs on one of the border links, the
second fault must not happen on some specific locations. For
example, in Fig.7 (a), if the link 2 is faulty, the specified locations
in the figure must be healthy. A similar situation exists for all
borderline links (i.e. 4(n-1) in n×n network). The probability that
the first faulty link occurs on the border links and the second one
does not locate in specific locations is calculated as follow:

Similarly, for the case of Fig.7(b), the probability is obtained by
the following formula:

According to these formulas, Table I shows the robustness
when two faults occur in different network sizes. It is worth
mentioning that, all packets are still routed adaptively in the
network.

Table I. Robustness for 2-faulty links under different network sizes

Network size Robustness for 2-faulty links
4×4 48%
6×6 63%
8×8 71%

16×16 85%

IV. EXPERIMENTAL RESULTS
To evaluate the efficiency of the proposed routing scheme, a

NoC simulator is developed with VHDL to model all major
components of the on-chip network. For all the routers, the data
width is set to 32 bits. Each input buffer can accommodate 8 flits
on each virtual channel. Moreover, the packet length is uniformly
distributed between 5 and 10 flits. As a performance metric, we
use latency defined as the number of cycles between the initiation
of a message issued by a Processing Element (PE) and the time
when the message is completely delivered to the destination PE.
The request rate is defined as the ratio of the successful message

injections into the network over the total number of injection
attempts. The simulator is warmed up for 12,000 cycles and then
the average performance is measured over another 200,000 cycles.
To have a fair comparison, we defined our baseline as a detour
strategy similar to [16]. Like MD, the baseline method has two
virtual channels along X and Y directions, respectively. Unlike
MD, the baseline method may take unnecessary longer paths as
discussed but it is able to support all one-faulty links.

A. Performance Analysis under Uniform Traffic Profile
In the uniform traffic profile, each processing element (PE)

generates data packets and sends them to another PE using a
uniform distribution [21]. The mesh size is considered 4×4. In Fig.
8(a), the average communication latencies of MD, the baseline
method and DyXY are measured for a fault-free case. In addition,
the latencies of the MD and baseline methods are compared in a
one-faulty link case. As observed from the results, in a fault-free
case, DyXY performs better than MD. The reason is that DyXY
method is a fully adaptive routing algorithm while MD limits
packet adaptivity when packets get close to the destination node.
The baseline method shows larger latency since it is a
deterministic method. In a one-faulty case, MD performs better
than the baseline method. This is due to the fact that MD can route
packets through the shortest paths while in the baseline method,
packets may take longer paths when facing a faulty link.
B. Performance Analysis under Hotspot Traffic Profile

Under the hotspot traffic pattern, one or more nodes are chosen
as hotspots receiving an extra portion of the traffic in addition to
the regular uniform traffic. In simulations, given a hotspot
percentage of H, a newly generated message is directed to each
hotspot node with an additional H percent probability. We
simulate the hotspot traffic with a single hotspot node at (2, 2) in
4×4 2D mesh. The performance of the MD, the baseline method,
and DyXY is also measured for fault-free and one-faulty (except
DyXY) link cases. The performance of each network with H =
10% is illustrated in Fig. 8(b). As observed from the figure, in the
hotspot traffic and in both faulty and non-faulty cases, the
performance improvement of MD is better than the detour-based
scheme.
C. Hardware Analysis

To assess the area overhead and power consumption, the
whole platform of each method is synthesized by Synopsys Design
Compiler. We compared the area overhead and power
consumption of MD with the baseline and DyXY methods [23].
The power consumption of DyXY is measured only in the fault-
free case while the other two methods tolerate one faulty link.
Each scheme includes network interfaces, routers, and
communication channels. For synthesizing, we use the UMC
90nm technology at the operating frequency of 1GHz and supply
voltage of 1V. We perform place-and-route, using Cadence
Encounter, to have precise power and area estimations. The power
dissipation is calculated using Synopsys PrimePower in a 6×6 2D
mesh. The layout area and power consumption of each platform
are shown in Table II. As indicated on the table, MD has a larger
area overhead than DyXY and a lower one than the baseline
method. It is because of using a simpler routing unit at the DyXY
method and a more complex one in the baseline method. As
indicated on the table even if the MD has to support a one-faulty
link (while DyXY is fault-free), the power consumption of MD
remains relatively small. This is due to the fact that MD could
route packets through the shortest paths and thus consuming less
power.

Fig. 8. Performance analysis of MD and the baseline method in 4×4 mesh network (a) under uniform traffic profile (b) hotspot traffic profile in
fault-free, 1-faulty link cases.

Table II. Details of hardware implementation

Network platforms Area (mm2) Power (W)
dynamic & static

DyXY 6.710 2.32
MD 6.753 2.39

baseline 6.913 2.78

V. CONCLUSION
In this paper, a fault-tolerant routing algorithm named MD was

presented using two virtual channels along both directions. The
presented algorithm avoids taking unnecessary non-minimal paths
when any minimal paths are available, resulting in significant
performance hits. This improvement achieves by a new fault’s
information propagation mechanism and utilizing the information
to deliver packets through the shortest paths. Moreover, MD is
able to deliver packets through alternative paths to the destination,
thereby alleviating congestion in the network both in fault-free and
faulty conditions. Finally, we perform robustness analysis based
on the presented analytical model for two faults in the network.

REFERENCES

[1] Xu, Jiang et al., “A Methodology for design, modeling and analysis for
networks-on-Chip,” in Proc. IEEE International Symposium on Circuits
and Systems, pp. 1778-1781, 2005.

[2] W. Tsai et al., “A fault-tolerant NoC scheme using bidirectional
channel”, in Proc. DAC, pp.918-923, 2011.

[3] M. Daneshtalab et al., “Adaptive input-output selection based on-chip
router architecture,” Journal of Low Power Electronics (JOLPE), Vol. 8,
No. 1, pp. 11-29, 2012.

[4] E. Rijpkema et al., “Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip,” in Proc.
DATE’03, pp. 350-355, 2003.

[5] M. Cuviello et al., “Fault modeling and simulation for crosstalk in
system-on-chip interconnects”, in Proc. ICCAD, pp. 297-303, 1999.

[6] M.H Neishaburi et al., “HW/SW architecture for soft-eError cancellation
in real-time operating system,” Journal of the Institute of Electronics,
Information and Communication Engineers, Vol. 4, No. 23, pp. 755-761,
2007.

[7] J. Duato et al., “Interconnection networks: an engineering approach”,
Morgan Kaufmann Publishers, 2003.

[8] M. Ebrahimi et al., “CATRA-congestion aware trapezoid-based routing
algorithm for on-chip Networks,” in Proc. 15th ACM/IEEE Design,
Automation, and Test in Europe (DATE), pp. 320-325, 2012.

[9] M. Dehyadegari et al., “An adaptive fuzzy logic-based routing algorithm
for networks-on-chip,” in Proc. 13th IEEE/NASA-ESA International
Conference on Adaptive Hardware and Systems (AHS), pp. 208-214,
2011.

[10] L.M. Ni et al., “A survey of wormhole routing techniques in direct
networks”, in Proc. IEEE Computer, v.26, I.2, pp.62-76, 1993.

[11] D. Fick et al., “Vicis: a reliable network for unreliable silicon”, in Proc.
of Design Automation Conference, pp. 812-816, 2009.

[12] S. Chalasani et al., “Fault-tolerant wormhole routing algorithms for
mesh networks”, IEEE Trans on Computers, 44(7):848–64, 1995.

[13] PH. Sui et al.,” An improved algorithm for fault-tolerant wormhole
routing in meshes”, IEEE Trans on Computers x;46(9):1040–2, 2011.

[14] S. Park et al., “Fault-tolerant wormhole routing algorithms in meshes in
the presence of concave faults”, in Proc. of International Parallel and
Distributed Processing Symposium (IPDPS), pp. 633–8, 2000.

[15] Z. Zhang et al., “A reconfigurable routing algorithm for a fault-tolerant
2D-mesh Network-on-Chip”, in Proc. DAC, pp. 441-446, 2008.

[16] M. Valinataja et al.,”A reconfigurable and adaptive routing method for
fault-tolerant mesh-based networks-on-chip”, in Proc. International
Journal of Electronics and Communications (AEU), v. 65, I.7, pp. 630-
640, 2011.

[17] M. Koibuchi et al., “A lightweight fault-tolerant mechanism for
network-on-chip”, in Proc. NOCS, pp.13-22, 2008.

[18] M. Ebrahimi et al., “MAFA: adaptive fault-tolerant routing algorithm for
networks-on-chip,” in Proc. DSD, pp. 201-206, 2012..

[19] J. Wu, “A fault-tolerant and deadlock-free routing protocol in 2D
meshes based on odd-even turn model”, IEEE transaction on computers,
v. 52, pp.1154-1169 ,2003.

[20] D. Fick et al., “A highly resilient routing algorithm for fault-tolerant
NoCs”, in Proc. DATE, pp. 21-26, 2009.

[21] C.J. Glass et al., “The turn model for adaptive routing”, in Proc. 19th
Int'l Symp. Computer Architecture, pp. 278-287, 1992.

[22] M. Ebrahimi et al., “An efficent dynamic multicast routing protocol for
distributing traffic in nocs," in Proc. of 12th ACM/IEEE DATE, pp.
1064 - 1069 , April 2009.

[23] M. Li et al., “DyXY - A proximity congestionaware deadlock-free
dynamic routing method for Network on Chip”, in Proc. DAC, pp. 849-
852, 2006.

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)
(a)

MD: 0-fault
DyXY: 0-fault
MD: 1-fault
Baseline: 1-fault
Baseline: 0-fault

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)
(b)

MD: 0-fault
DyXY: 0-fault
MD: 1-fault
Baseline: 0-fault
Baseline: 1-fault

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

