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high performance and adaptive routing algorithm has been proposed for partially connected 3D-NoCs. Latency of the routing algorithm
under different traffic patterns, different number of elevators and different elevator assignment mechanisms are reported. An analytical
model, tailored to the adaptivity of the algorithm and under low traffic scenarios, has been developed and the results have been verified
by simulation. According to the results, simulation and analytical results are consistent within a 10% margin. D-NoCs have been the
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communication between cores. Both simulation and analytical models are applied to estimate the communication latency of NoCs.
Generally, simulations are time-consuming and slow down the design process. Analytical models provide, within a fraction of the time,
nearly accurate results which can be used by simulation to fine-tune the design. In this paper, a high performance and adaptive routing
algorithm has been proposed for partially connected 3D-NoCs. Latency of the routing algorithm under different traffic patterns, different
number of elevators and different elevator assignment mechanisms are reported. An analytical model, tailored to the adaptivity of the
algorithm and under low traffic scenarios, has been developed and the results have been verified by simulation. According to the
results, simulation and analytical results are consistent within a 10% margin. 2
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1 INTRODUCTION

N ETWORK-ON-CHIP (NoC) architecture has been pro-
posed to tackle the unscalability and lower perfor-

mance of System-on-Chip designs. This promising architec-
ture provides wider bandwidth, higher throughput, lower
power consumption and better scalability [1]. Topologically,
NoCs can be classified as two and three dimensional. Three
dimensional NoCs (3D-NoCs) have emerged as a solution to
certain shortcomings of 2D-NoCs. For 2D-NoCs, delay and
power consumptions increase with the length of the global
wire [2] [3].

In order to stack 2D layers of NoC on top of each other,
Through-Silicon-Via (TSV) is applied [4] [5]. TSVs are the
most promising solution among other vertical interconnec-
tions, since they provide high density, high bandwidth and
low power [6]. TSVs impose their own challenges. First,
TSV pads consume considerably larger bonding area in each
layer compared to horizontal wires [7] [8]. Second, TSV
technology does not scale with feature size [9]. Therefore,
transistor and wire shrinkage make the above problems
even more severe. Third, the TSV fabrication process suffers
from low yield [10] [11]. The higher the number of TSVs,
the lower is the yield [12]. The low yield is caused by the
wide range of chemical and mechanical properties of the
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materials used in the TSV fabrication process. Specifically,
the non-uniformity of chemical and mechanical properties
of different materials magnifies the conversion of thermal
stress into mechanical stress during fabrication. While the
mechanical stress itself can directly lead to mechanical
failures, it can also indirectly affect device performance by
altering carrier mobility in active silicon [13]. Finally, TSV
parasitic parameters depend on the layout and properties of
the insulating barrier [14]. Consequently, a non-optimized
layout design or an improper insulating barrier material
can take away TSV advantages such as high bandwidth
and low power consumption [15]. In short, although 3D-
NoC exhibits higher speed and shorter wiring compared
to 2D-NoC, employing a large number of TSVs degrades
reliability and causes area overhead. To overcome some of
these challenges, in partially connected 3D-NoCs, a subset of
routers are connected to the upper/lower layers using TSVs
while the routers in the same layer are connected using
global links. This architecture takes advantage of 3D-NoC
philosophy while mitigating the disadvantages of a fully-
connected 3D-NoC.

An appropriate routing algorithm should be used to
utilize a partially connected 3D-NoC. The absence of TSVs
at certain points results in more load being pushed on
the present TSVs, and the algorithm should be capable of
distributing the load across the TSVs more uniformly to
enhance the network performance and mitigate TSV aging.
This issue highlights the significance of adaptive routing al-
gorithms in such architectures, especially in load balancing
for non-uniform traffics. Previous works have considered
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partial connectivity but they suffer from not being adaptive,
imposing packets to move toward specific direction and not
being able to use all the elevators in the network [16], [17]
and [18].

Performance metrics of routing algorithms on a specific
platform are typically evaluated through simulation in order
to determine whether or not the algorithm satisfies applica-
tion constraints [19] [20]. Unfortunately, simulation-based
performance analysis is considerably time-consuming and
the situation exacerbates as the network size increases. In
addition, comparisons are challenging as different methods
might be applied on different tools. Analytical models are
an alternative approach to estimate performance metrics in
a fraction of time. To be tractable, most analytical models
rely on certain assumptions. The validity of an analytical
model is directly related to how well the real-world scenario
follows the assumptions. If a good enough analytical model
is used to approximate the real-world situation, the desired
performance metrics can be calculated efficiently and reli-
ably. Typically, the analytical models are used to get the
design within an acceptable vicinity of the desired outcome,
and then simulations are performed for fine tuning and re-
moving the effect of assumptions. This analysis-simulation
sequence saves designers considerable time and helps them
focus on improving the design by getting fast and accurate
feedback from the proposed designs.

The contribution of this paper is to propose an adaptive
routing algorithm for partially connected 3D-NoC which
provides better performance compared to the previously
published routing algorithms. Moreover, a queuing-theory-
based analytical model is presented to accommodate the
adaptivity of the routing algorithm. The algorithm will be
referred to as LEAD which stands for Longitudinal Exclu-
sively Adaptive or Deterministic. LEAD uniformly distributes
traffic in the network and keeps the temperature low, which
is critical for 3D-NoCs. LEAD requires one extra virtual
channel along the X and Y dimensions to be both adaptive
and deadlock-free. Simulations are performed to compare
various performance metrics under LEAD and the previous
works. Also, simulation and analytical outputs are com-
pared side by side to cross-check the results and verify the
analytical model.

The remainder of this paper is organized as follows:
Section 2 elaborates the related work. LEAD routing algo-
rithm is discussed in Section 3. Sections 4 and 5 contain the
results and queuing analysis. Finally, Section 6 concludes
the paper.

2 RELATED WORK

2.1 Routing algorithms

3D-NoC routing algorithms have been widely studied in the
literature. LA-XYZ [21], AFRA [22], DyXYZ [23] and MAR
[24] are the routing algorithms for 3D mesh architectures.
Fault-tolerant routing algorithms for 3D mesh NoCs have
been presented in HamFa [25], 4NP-First [26], LAFT [27] and
HLAFT [28]. However, there are few works that consider
partial connectivity.

TDAR [29] proposes an adaptive routing algorithm for
the cases in which the vertical bandwidth is less than the
horizontal bandwidth. This routing algorithm works for 3D
mesh NoCs with limited vertical bandwidth.

Another fully adaptive routing algorithm named 3D-
FAR [30] divides the network into four disjoint virtual

subnetworks. The packets are free to take any shortest paths
between the source and destination nodes. This algorithm
requires two, two and four virtual channels along the X , Y
and Z dimensions, respectively.

Elevator-first [16] is a distributed routing algorithm for
partially connected 3D-NoCs which requires two virtual
channels along X and Y dimensions. Elevator-first is a de-
terministic routing algorithm with no limitation in choosing
elevators to transfer the packets to the destination layer.
ETW [17] is an adaptive routing algorithm for NoCs with
partial connectivity. ETW uses one less virtual channel com-
pared to Elevator-first. Therefore, there is only one extra
virtual channel along Y dimension. The packets have to
take the east direction before moving toward west. This
condition increases congestion in X dimension and results
in lower performance compared to Elevator-first. However,
ETW is fully reliable when there is one healthy elevator in
the east-most side of the network.

Redelf [18] is an energy efficient deadlock-free routing al-
gorithm for partially connected 3D-NoCs. Redelf completely
eliminates the virtual channel requirement of Elevator-first
by introducing certain rules for choosing elevators. While
providing cost-efficiency, the added rules limit the region
for choosing an elevator and thus threaten the reliability of
the system.

To the best of our knowledge, a light-weight and adap-
tive routing algorithm which provides good performance
for partially connected 3D-NoCs without imposing specific
rules on elevator selection is missing from the literature.
Compared to 3D-FAR, proposed algorithm provides adap-
tivity with fewer number of virtual channels. The number
of virtual channels along the Z dimension is four in 3D-
FAR while LEAD has only one virtual channel along the
Z dimension. Moreover, the new algorithm relaxes both
the deterministic behavior of Elevator-first algorithm and
the obligation in moving toward east in ETW. LEAD has
the same number of virtual channels as Elevator-first along
different dimensions while ETW has fewer number of vir-
tual channels along the Y dimension as compared to the
other two routing algorithms. Furthermore, in contrast with
Redelf, our algorithm takes advantage of higher diversity
by providing a contribution chance to all elevators in the
network.

2.2 Analytical Verification
Analytical latency models for NoC are formulated for spe-
cific topology and traffic patterns in [31] and [32]. Queuing
theory is used in [33] to determine individual buffer depths
for the given target application and available buffering
space. However, the approach relies on many simplistic
assumptions such as packet size distribution and determin-
istic routing. The allocation of link capacities in NoCs is
addressed in [34] through an analytical latency model where
network contention and queuing delays have been ignored.

Other works have tried to tailor the analysis to the char-
acteristic of the wormhole-switching network. Authors in
[35] propose an analytical latency and throughput analysis
under Poisson packet arrival rates in low traffic scenarios.
The formulation may not be accurate enough under realistic
traffic arrival rates and also near the saturation point. In [36],
an NoC latency model has been proposed for the priority-
based router architecture which takes into account the ran-
dom processes that accommodate bursty traffic. However,
the framework is only applicable to deterministic routing
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algorithms and is valid under the limiting assumption that
packet inter-arrival processes over different channels are
identical. More complex and realistic models have been pro-
posed in [37] and [38] for deterministic routing algorithms,
where comprehensive information can be extracted from
latency distribution, rather than average latency.

The framework of [35] was selected to verify the su-
periority of LEAD over Elevator-first. This is because the
approach in [35] is the most amenable to adaptive routing
algorithms among other works. However, in this work, the
framework is modified to allow for analysis of adaptive
routing algorithms on top of the deterministic ones dis-
cussed in [35]. To the best of our knowledge, this is the first
attempt to model adaptive routing algorithms using queuing
theory and analyze network performance.

3 LEAD ROUTING ALGORITHM

The LEAD algorithm takes into account the vertical par-
tial connectivity in 3D-NoCs where the traditional routing
algorithms (e.g. XY Z) are not applicable. In this routing
algorithm, a packet is free to take any elevator without
limitation.

LEAD needs two, two and one virtual channels along the
X (X0, X1), Y (Y 0, Y 1)and Z dimensions, respectively. X0
and Y 0 refer to virtual channel 0, while X1 and Y 1 refer to
virtual channel 1. The algorithm takes advantage of adap-
tivity for transmitting the packets in source and destination
layers. To prove the deadlock-freedom, we assume that
the network is virtually partitioned into five disjoint sub-
networks: Subnetwork1 (X0+, Y 0∗), Subnetwork2 (X0−),
Subnetwork3 (Z∗), Subnetwork4 (X1+) and Subnetwork5
(X1−, Y 1∗). The +, - and * symbols in the subnetwork
definition represent positive, negative and bi-directional
channels respectively. In Subnetwork1 and Subnetwork5,
packets have the flexibility to take X and Y dimensions
in any order. In other words, moving along the X and Y
dimensions is random and does not necessarily follow the
dimension order routing.

In addition to subnetwork definitions, a rule for switch-
ing between subnetworks is provided to completely char-
acterize the routing algorithm. The switching rule is very
simple: the only allowed switching from subnetwork i is
i→ j, for j > i.

The subnetwork definitions and the switching rule imply
that in the source layer packets move adaptively toward
east and deterministically toward west. Next, Subnetwork3
is applied to deliver packets to the destination layer. Finally,
packets follow the reverse pattern in the destination layer
(i.e. adaptively toward west and deterministically toward
east).

3.1 Proof for Deadlock-freedom
A routing algorithm is deadlock-free if no cycle forms in
the network. A deadlock is a situation in which packets are
waiting for each other to release the reserved resources. In
other words, if a waiting activity never finishes, deadlock
lasts forever.

To prove the routing algorithm is deadlock-free, it is
necessary to show that each subnetwork is deadlock-free
and also transitions between subnetworks do not form
cycles. We argue that to form a cycle, positive and negative
directions along at least two dimensions have to be taken.
Based on this definition, all subnetworks are deadlock free.

Subnetworks CompletedPair Missed Dimension MissedDirection
Sub1 (X0+, Y 0∗) Y Z is missing X0− is missing

Sub2 (X0−) - Y and Z are missing X0+ is missing
Sub3 (Z∗) Z X and Y are missing -

Sub4 (X1+) - Y and Z X1− is missing
Sub5 (X1−, Y 1∗) Y Z is missing X1+ is missing

TABLE 1: completed pairs within each subnetwork

Table 1 illustrates how the subnetworks are deadlock-free
in this algorithm. As an example, subnetwork1 is deadlock-
free as packets can use only three channels and with these
three channels no cycles can be formed. We should note
that 180-degree turns are not allowed. Transitions between
deadlock-free subnetworks in an ascending order (or de-
scending order) can not lead to a deadlock as it forms a
spiral rather than a closed cycle.

3.2 LEAD Algorithm Procedure
The basic goal of every routing algorithm is to find a path
from a specific source to a specific destination. Routing
algorithms proposed for partially connected 3D-NoCs are
responsible for delivering the packets to the elevator in the
source layer and determine a path from the elevator to the
destination in the destination layer. The proposed routing
algorithm based on the subnetwork definition is described
as follows according to Algorithm 1:

3.2.1 Source and destination are on the same layer
The virtual channel number is randomly selected from
{0, 1}, which corresponds to (X0, Y 0) and (X1, Y 1) re-
spectively (lines 13 and 14). The randomness in selecting
the channel distributes the traffic more evenly compared
to deterministic assignment of one fixed channel to source
and destinations located in the same layer. The algorithm
behaves as follows:

1) Virtual channel 0 is selected (lines 15 and 16): Two
cases can happen depending on the relative position of
source and destination:

1a) If the destination is to the east of the source, Subnet-
work1 (X0+, Y 0∗) is used to deliver the packet to the desti-
nation adaptively, not necessarily following the dimension-
ordered routing.

1b) If the destination is to the west of the source,
first, Subnetwork1 is applied and the packet is forwarded
through Y 0 channel. Then, the packet is delivered to the
destination by switching to Subnetwork2 and taking X0−

direction. The routing algorithm is deterministic if the des-
tination is to the west of the source.

2) Virtual channel 1 is applied (line 18):
2a) If the destination is to the east of the source, the

packet is delivered to the destination deterministically. That
is, the packet takes Subnetwork4 (X1+) first since moving
eastward is not allowed in Subnetwork5. Second, the packet
is delivered to the destination by switching to Subnetwork5
and taking the Y 1∗ dimension.

2b) If the destination is on the west side of the source, the
packet is delivered to the destination adaptively by moving
in Subnetwork5 X1−, Y 1∗.

Figure 1 illustrates an example in which the destination
is located on the east or west side of the source. First,
suppose that source node 9 generates a packet for node 7
at the east side of the source. Since source and destination
are on the same layer, either of the virtual channels 0 or 1
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Algorithm 1 Routing algorithm procedure

1: Xs, Ys, Zs ← X , Y , Z coordinates of source router
2: Xc, Yc, Zc ← X , Y , Z coordinates of current router
3: Xd, Yd, Zd ← X , Y , Z coordinates of destination router
4: Sub1← Subnetwork1{X0+, Y 0∗}
5: Sub2← Subnetwork2{X0−}
6: Sub3← Subnetwork3{Z∗}
7: Sub4← Subnetwork4{X1+}
8: Sub5← Subnetwork5{X1−, Y 1∗}
9: Route VC0(a,b) (function for routing from a to b

through VC0)
10: Route VC1(a,b) (function for routing from a to b

through VC1)
11:
12:
13: if (Zs = Zd) then
14: Randomly chosen VC {0,1}
15: if (V C = 0) then
16: Route VC0(S, D)
17: else
18: Route VC1(S, D)
19: end if
20: else
21: Route VC0(S, E)
22: Vertical transmission to destination layer through

Sub3
23: Route VC1(E, D)
24: end if
25:
26: function Route VC0(a, b)
27: {

28: if (Xa < Xb) then
29: Randomly choose channels from Sub1
30: else if (Xa > Xb) then
31: Y 0∗ submission from Sub1 then X0− from

Sub2
32: else
33: Y 0∗ submission from Sub1
34: end if
35:
36: return

37: }
38:
39: function Route VC1(a, b)
40: {

41: if (Xa < Xb) then
42: X1+ Submission from Sub4 then Y 1∗ from

Sub5
43: else if (Xa > Xb) then
44: Randomly choose channels from Sub5
45: else
46: Y 1∗ submission from Sub5
47: end if
48:
49: return

50: }

might be selected randomly. If virtual channel 0 is chosen,
the channels of subnetwork1 are utilized which allows the
packet to be delivered to the destination through one of the
possible paths: {9, 10, 11, 7}, {9, 10, 6, 7} or {9, 5, 6, 7}, as
shown in Figure 1a. If the virtual channel 1 is selected as
in Figure 1b , the packet is delivered to the destination by
taking the channels of Subnetwork4 and then Subnetwork5
which enables the packet to take X1+ before taking Y 1+,
referring to the path {9, 10, 11, 7}.

Now lets us assume that the source node is node 7 and
destination is at node 9 to cover the case where the desti-
nation is to the west of the source. In this example, taking
(X0, Y 0) virtual channels result in deterministic routing as
in Figure 1c while applying (X1, Y 1) virtual channels takes
advantage of adaptive routing as shown in Figure 1d .

3.2.2 Source and destination are not on the same layer
A vertical transmission is necessary to deliver a packet to
a destination that is not located on the same layer as the
source. Therefore, the packet needs to be forwarded to the
elevator in the source layer, transferred to the destination
layer, and delivered from the elevator to the destination in
the destination layer.

A random elevator is assigned to each packet upon
its creation if the packet needs to move vertically. With
this strategy, the traffic between any source-destination pair
is distributed uniformly over the network. Compared to
fixed elevator assignment, the random method improves
the overall performance by not overwhelming any specific
elevator. The advantage is much more significant if there are
hot-spots in the network, which could cause bottlenecks if
traffic is not distributed uniformly. Moreover, random eleva-
tor assignment improves the fault tolerance of the network.
Although a smart deterministic selection can outperform
random selection, such a scheme requires availability of
global network knowledge at the cost of more complicated
hardware. The algorithm delivers the packets to elevators
using Subnetwork1 or/and Subnetwork2; then utilizes Sub-
network3 to forward the packet to the destination layer,
and finally switches to Subnetwork4 or/and Subnetwork5
to deliver the packet to the destination.

Figure 2 illustrates an example in which the source node
0 delivers packets to the destination at node 21. Suppose
that the elevator at node 6 is randomly selected for this
transmission among the elevators located at nodes 6, 7 and
8. Since the elevator is to the east side of the source, the
channels of Subnetwork1 are used to forward the packet to
the elevator adaptively. Then, the channels of Subnetwork3
are applied to deliver the packet to the destination layer.
Packets are ultimately delivered to the destination by using
the channels of Subnetwork5 because the destination is
located at the west of the elevator. As another example,
suppose the source node 3 targets the destination at node 13
using the elevator at node 6. In this example, packets are first
forwarded to the elevator using channels of Subnetwork1
and then Subnetwork2 since the elevator is located at the
west side of the source. Subnetwork3 is applied to deliver
packets to the destination layer and finally Subnetwork5
delivers packets to the node 13.

4 RESULTS AND DISCUSSION
4.1 Latency analysis
AccessNoxim simulator [39] is used for the simulation-
based results. Noxim [40] (a cycle accurate simulator) and
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HotSpot [41] (providing architecture-level thermal model)
are integrated in AccessNoxim. This co-simulator combines
the network model, power model and thermal model of 3D-
NoC.

A 4× 4× 4 3D-NoC is considered as the baseline archi-
tecture. The routers have two pipeline stages and the buffer
depth equals 4-flit FIFOs in all the routers. Also, the packet
is assigned a size between a minimum and maximum value
of two and six flits, respectively. The latency results are
reported for 100,000 cycles simulations with 10,000 cycles
for warm-up.

We compare the efficiency of LEAD routing algorithm
with three recently proposed routing algorithms named
Elevator-first [16], Redelf [18] and ETW [17]. While Redelf
has no virtual channels, ETW has only one extra virtual
channel along the Y dimension. Moreover, both Elevator-
first and LEAD have two virtual channels along both X and
Y dimensions. A variation of Redelf so called Redelfv2 [18]
with two added virtual channels is considered in order to in-
crease performance and make a fair comparison with LEAD
and Elevator-first which employ two extra virtual channels.
The routing algorithms are compared under various traf-
fic patterns, number of elevators and elevator assignment
mechanisms. Different TSV configurations are illustrated in
Figure 3. The applied traffic patterns span both synthetic
and real traffics.

Horizontal lines in the line graphs represent the packet
injection rate in every router (packet/cycle/node) and the
vertical lines reports latency (cycles). While this section
provides intuitive reasons justifying relative performance
of LEAD versus other algorithms, more solid mathematical
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verification based on queuing theory is presented in the next
section.

4.1.1 Performance under synthetic traffics
Figures 4a, 4b and 4c illustrate the latency comparisons
under random, transpose and shuffle traffic for the elevators
located at the east-most column, i.e. the pattern of Figure
3a. Under random traffic (Figure 4a), Redelfv2 outperforms
LEAD by a small margin, while both LEAD and Redelfv2
perform relatively better than Elevator-first and ETW. Under
Transpose traffic (Figure 4b), Redelfv2 performs better than
all other algorithms. This can be attributed to the traffic
being distributed more evenly as a result of the rules im-
posed by Redelfv2 under this specific TSV configuration and
traffic. However, the applicability of Redelfv2 is limited to
TSV configurations with a south-east corner elevator. This
limitation also threatens the fault tolerance of the system
when there is no healthy elevator at south-east corner of the
network. Under shuffle traffic (Figure 4c), LEAD provides
the best performance compared to the other three routing
algorithms. Also, Elevator-first and Redelfv2 provide nearly
the same performance. The performance improvement of
LEAD is due to taking advantage of adaptivity in moving
toward east and distributing the traffic more uniformly
compared to the other algorithms.

Figures 5 through 7 compare the performance of LEAD
and Elevator-first. ETW and Redelfv2 have the limiting
requirement of the presence of an east most column TSV
and a south-east corner TSV respectively. Both ETW and
Redelfv2 create these rules as a byproduct of removing
virtual channels and providing lower communication cost.

Figures 5a, 5b and 5c represent the latency results for the
aforementioned traffics where elevators are located similar
to Figure 3b. Moreover, Figure 5a includes the performance
comparison for the hot-spot traffic. For this TSV configura-
tion, the same trend as the random traffic is observed but the
network saturates at a lower rate since specific nodes receive
more load compared to uniform traffic. The superiority of
LEAD over Elevator-first is due to Elevator-first taking the
X dimension first by applying the XY algorithm and thus
increasing the traffic on the west-most elevators. Therefore,
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these elevators are applied both as intermediate node to
forward the packet to the proper elevator and as elevator
to the other layers. LEAD, on the other hand, performs
a deterministic routing in this configuration by using the
Y dimension first and elevators are only responsible for
transmitting packets to the other layers.

Figures 6a, 6b and 6c report the performance with the
TSV configuration of Figure 3c. LEAD and Elevator-first
perform relatively similar when elevators are located at four
corners of the network. Based on Figure 6b, Elevator-first
performs slightly better than LEAD because in this config-
uration the impact of TSV selection on the performance is
minimized.

Figures 7a, 7b and 7c illustrate the latency result un-
der the TSV configuration of Figure 3d. LEAD marginally
outperforms Elevator-first for the same reasons discussed
in justification of Figures 4 and 5, where same column
elevators lead to better performance.

Figure 8 illustrates the latency comparison for two more
traffic patterns named bit-reversal and butterfly for eleva-
tors located at the east-most column. LEAD outperforms
Elevator-first for two cases. Figure 8b shows that the net-
work is saturated at higher injection rates for butterfly
traffic, since many sources target themselves as their des-
tinations according to this traffic pattern.

4.1.2 Performance under real traffics
Besides synthetic traffic patterns, a set of application bench-
marks including PARSEC [42] and SPLASH2 [43] are used
for performance evaluation. Figures 9a and 9b compare the
latency of the west-most and cornered elevators illustrated
in Figure 3. The reported results are based on a 4 × 4 × 4
network in which buffer depth equals four and the packet
size is randomly chosen between two to six flits. LEAD
provides noticeable performance improvement especially
when elevators are located at the west-most column. For
corner located elevators, LEAD performs slightly better than
Elevator-first.

4.1.3 Performance under different number of elevators
To illustrate the effect of the number of elevators on perfor-
mance, Figure 10 provides the results for a fully connected
3D-NoC and 3D-NoC with 50% and 75% reduction in the
number of TSVs under transpose traffic. The fully connected
3D-NoC provides the best performance as expected. By
decreasing the number of TSVs, the performance degrades
accordingly, since more traffic is directed toward TSVs. In
a fully connected 3D-NoC, every router has an elevator to
forward the packet to the destination layer. In a 3D-NoC
with 8 TSVs, every other router has an elevator. In a 3D-NoC
with 4 TSVs, TSVs are located at the center of the network.
To make a fair comparison, elevators are chosen using the
minimum hop count scheme.

4.1.4 Performance under different elevator assignments
To investigate how elevator assignment affects the perfor-
mance, Figure 11 compares three mechanisms of elevator
assignment under random traffic in a 4 × 4 × 4 3D-NoC.
The mechanisms are as follows: random elevator, the closest
elevator to the source and the elevator that minimizes
the hop count between the source and destination called
(MHpCnt). All previous results are based on random ele-
vator assignment for every source-destination pair. Figure

11a compares the performance of LEAD versus Elevator-
first under random and (MHpCnt) elevator assignments
for the centered elevators. According to Figure 11a, LEAD
and Elevator-first perform considerably better compared to
(MHpCnt) under the random elevator assignment, since ran-
dom elevator assignment distributes traffic on the elevators
and the network, thus the saturation point extends. Table 2
lists the percentage of times that different elevators are used
for different mechanisms. Random assignment distributes
the traffic symmetrically in the network while the minimum
hop count forwards the majority of the traffic to a specific
elevator.

Figure 11b compares the performance of the three differ-
ent elevator assignments for the cornered elevators. Accord-
ing to this figure, when the closest elevator to the source
is chosen to transfer packets to the destination layer, LEAD
and Elevator-first outperform both the random assignment
and elevator with minimum hop count. Table 3 summarizes
the percentage of elevator assignments for the three cases.
As it is clear, minimum hop count assignment targets spe-
cific elevators, and thus decreases the performance dramat-
ically.

4.2 Temperature Distribution

Thermal distribution of LEAD and Elevator-first are com-
pared using a traffic-thermal and mutual coupling co-
simulation platform [44]. The physical floor-plans and
power traces based on Intel 80-core chip are used as the
inputs of the thermal simulation.

To compare the thermal distribution of the two routing
algorithms, a 4×4×4 NoC under two routing algorithms are
simulated for 3 million cycles with 10000 cycles for warm-
up. Figure 12 illustrates the temperature distribution for
the west-most elevator configuration and the packet injec-
tion rate of 0.042 and under random traffic for LEAD and
Elevator-first. According to the figure, there are eight nodes
in Elevator-first hotter than 110◦C while these temperature
are not found in LEAD. As expected, the TSV-located nodes
are among these very hot nodes which can increase the
likelihood of fault on TSVs. It is noteworthy that the same
behavior is observed under other simulation configurations.

Furthermore, Table 4 reports the power consumption of
LEAD and Elevator-first routing algorithms under random
traffic for the west-most TSV configuration. AccessNoxim
accumulates energy upon flit reception and transmission at
every router. LEAD and Elevator-first consume nearly the
same amount of energy for these cases. The two algorithms
have the same number of virtual channels along the X and
Y dimensions.

5 QUEUING THEORY AND ANALYTICAL MODEL

The overall latency of a routing algorithm is a coarse per-
formance metric used to gauge the merit of the algorithm.
The overall latency is typically calculated as the average
of end-to-end latencies experienced by all packets in the
network. Although the average case analysis is not sufficient
for some purposes (for example, calculating the fraction
of times a specific application is serviced properly), it is
much simpler to handle, provides useful insight into design
bottlenecks, and can be used to compare different algo-
rithms/architectures.
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Fig. 4: Performance comparison for east-most elevators
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Fig. 5: Performance comparison for west-most elevators
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Fig. 6: Performance comparison for cornered elevators
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Fig. 7: Performance comparison for centered elevators
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Percentage of elevator usage
Random assignment Minimum hop count

Routing algorithm Node 5 Node 6 Node 9 Node 10 Node 5 Node 6 Node 9 Node 10
LEAD 25.1 25 25 24.9 80 13 5.76 1.24

Elevator-first 25.1 24.9 25 25 76.35 4.37 17.8 1.48

TABLE 2: Distribution of elevator usage for centered elevators

Percentage of elevator usage
Random

assignment
Minimum
hop count

Closest
assignment

Routing algorithm
Node

0
Node

3
Node

12
Node

15
Node

0
Node

3
Node

12
Node

15
Node

0
Node

3
Node

12
Node
15ref

LEAD 25.11 24.91 25.02 24.96 71.8 13.2 10.6 4.4 24.6 25.43 24.29 25.68

TABLE 3: Distribution of elevator usage for cornered elevators

LEAD 12.603 13.485 14.872 20 22.125 34.008 41.331 394.769

Elevator-first 12.53 13.488 15.244 32.367 136.931
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Fig. 8: Performance comparison for east-most elevators un-
der bit-reversal and butterfly traffic

Random Traffic
Average power

(Whole network)
(µJ/cycle)

Average power
(per router)
(nJ/cycle)

Routing algorithm
Westmost
elevators

Westmost
elevators

LEAD 5.0 78.1

Elevator-first 5.0 78.1

TABLE 4: Average power consumption

The end-to-end latency experienced by packets between
a specific source-destination pair depends on the latency
imposed by the individual links of the path traversed.
Consequently, the individual buffer latencies should be es-
timated first. In wormhole routing, the latency experienced
by a header flit consists of buffer waiting time (from the
time flit enters the buffer until it reaches the router) plus
residual service time, the latter of which depends on router
architecture. The buffer waiting time is naturally calculated
with queuing theory.
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Fig. 9: Performance comparison under real traffic
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Fig. 11: Performance comparison for different elevator assignment mechanisms

Fig. 13: Outline of analytical framework and the coupling of
variables.

The relationship between involved variables is outlined
in Fig. 13. Each set of lines with a common color repre-
sents a mathematical relationship exploited in one of the
subsections that follow. Importantly, we develop a tractable
method to calculate the required variables for adaptive algo-
rithms from the knowledge of network topology and rout-
ing algorithm. Finally, the results of the analytic model are
compared with simulation under various scenarios to verify
their accuracy and examine any possible shortcomings.

5.1 Analysis Framework
5.1.1 Service Time
Under wormhole-switching network with low packet injec-
tion rates the service time of a packet at the buffer head (i.e.
after waiting in the buffer) is given by:

T = HS +
S

W
(1)

in unit of cycles, where HS is the router service time (in
cycles) seen by a header flit at the buffer head (which
depends on the router architecture), S is the packet size in
bits, and W is the channel bandwidth in bit per cycle. Note
that in wormhole-switching network, once the header flit is
serviced, the trailing flits follow in a pipelined fashion. If
there is no head-of-line blocking in the following routers,
the trailing flits follow at a maximum uniform rate. This
condition holds under low traffic rate, and consequently
there is no need to consider the delay added by the head-of-
line blocking.

5.1.2 Average Number of Packets in Buffer

For an input buffered router r with P channels, denote the
average number of packets in buffer i by Nr

i . Let us assume
that the header flit arrival rate on the channel i follows a
Poisson distribution with the mean λri . Then the following
equilibrium equation relates τ ri , the average waiting time in
a queue for an incoming packet, and the average number of
packets in buffer:

λri =
Nr

i

τ ri
(2)

The average waiting time τ ri is composed of 1) service time
of packets already waiting in the same buffer 2) packet
waiting time in other buffers of the same router that are
served before the target packet, and 3) residual service time
[45], R, seen by the target packet. Mathematically, these
components are written as:

τ ri = TNr
i + T

P∑
k=1,k 6=i

cri,kN
r
k +R (3)

where cri,k terms, called ‘contention probabilities’, represent
the probability that a header flit at buffer k of router r
is serviced before a header flit at buffer i of the same
router, assuming that both headers are present at the buffer
head during the decision cycle. The contention probabilities
can be calculated for different scheduling policies (priority,
round robin, etc.).

The last two equations can be combined to remove
variable τ ri :

Nr
i

λri
= TNr

i + T

P∑
k=1,k 6=i

cri,kN
r
k +R (4)

Fig. 12: Temperature distribution in LEAD vs Elf
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which is one equation for P unknowns Nr
1 , Nr

2 , · · · , Nr
P .

A similar equation can be derived for all P input ports,
leading to a linear system of P equations for P unknowns.
After some algebraic manipulation and vectorization , the
following equation is obtained:

(I − TΛrCr)N r =ΛrR (5)

where

N r = [Nr
1 Nr

2 · · · Nr
P ]

T (6)
Λ =diag(λr1, · · · , λrP ) (7)

(Cr)T =
[
(Cr

1)T (Cr
2)T · · · (Cr

P )T
]

(8)

Cr
i =

[
cri,1 cri,2 · · · cri,P

]
(9)

RT = [R R · · · R] (10)

with the solution:

N r = (I − TΛrCr)−1ΛrR (11)

In summary, given traffic arrival rates Λ on all ports of
a router, the contention probabilities C, and the residual
service time R, the average number of packets N in each
input buffer of the router can be calculated by solving the
linear system of equations in Eq. 11.

5.1.3 Contention Probabilities
To calculate the contention probabilities under round robin
policy, let frj|i represents the probability that a packet exits
port j (of router r) given that it is entering through port i.
A contention happens if two packets from different input
channels need to use the same output channel. Assuming
statistical independence, the contention probability cri,j (i 6=
j) is estimated by:

cri,j =
P∑

k=1

frk|if
r
k|j (12)

The f terms are calculated from the knowledge of packet
arrival rates on different ports. Specifically, if λri,j denotes
the arrival rate of packets that enter through the port i and
exit through the port j of the router r , then:

frj|i =
λri,j
λri

(13)

5.1.4 Injection Rate and Port Utilization Probability
The λri,j parameters can be calculated from the routing
algorithm and the source-destination traffic pattern. Denote
the packet generation rate from source s to destination d
by xs,d. Each packet generated at source s and destined to
destination d can potentially enter through any input port i
and exit from any output port j of any router r with some
probability. Let Rr

s,d(i, j) denote this probability. Then, Tλri,j
is given by:

λri,j =
∑
s,d

xs,dR
r
s,d(i, j) (14)

To calculateR, let’s consider a specific source-destination
pair (s, d). First, the behavior of router r is modeled by a
P×P relaying matrix M r

s,d. The (i, j) element of the matrix,
mr

s,d(i, j), is the probability that a packet generated by s
toward d and entering on port i of router r exits through
port j. This transition matrix can be explicitly derived from
the the routing algorithm.

In the first scenario, assume that an input port i of
the router r is connected to exactly one output port of
another router, but not to the local port that is connected
to PE. Let’s denote this neighbor router by N(r, i) and the
corresponding output port by O(r, i). Next, the R variable
of neighbors can be related to each other recursively by:

Rr
s,d(i, j) = mr

s,d(i, j)×
P∑

k=1

R
N(r,i)
s,d (k,O(r, i)) (15)

Simply stated, the target input port i of router r is connected
to the port O(r, i) of router N(r, i). The probability of a
packet passing from port i to port j is the corresponding
forwarding probability (first term) times the probability of a
packet exiting through O(r, i) (second term).

In the second scenario, assume that the input port i of
router r is connected to the local output port, called Ps. In
this simple case, the utilization probability of the input port
is equal to 1:

Rr
s,d(i, j) = mr

s,d(i, j) (16)

The last two equations provide a set of P × nr linear
equations for the same number of unknowns, where nr is
the total number of routers. Although any general methods
can be used to solve the system, the dependence of each
variable on only P other variables (rather than all P ×nr−1
other variables) significantly simplifies the solution. On top
of that, for simple enough routing algorithms, one could
start from the source node, and calculate the R values for
all immediately connected nodes. The same procedure is
applied to each new node until all R values are calculated.
In other words, the probability is calculated as flowing and
distributing away from source to destination.

To illustrate the flow method, consider the 6×6 network
of Figure 14. Each central square represents a router, and
the same-color immediate long hands represent the input
buffers of that router. The numbers on input buffers rep-
resent the probability of that buffer being used. Suppose
that node (2,2) decides to transmit a packet to TSV at (5,5).
Based on the proposed routing algorithm, the network will
use V C0 and subnetwork1. The input buffer of router (2,2)
connected to the PE (the PE and the corresponding input
buffer of router not shown here) is used with a probability
of 1. Next, the ∗ probabilities are calculated, @ calculated
from ∗, # from @, $ from #, and so on.

In general, R values are completely specified from the
knowledge of routing algorithm and network geometry. The
definition of R values are by no means bound to the specific
geometry and routing algorithms presented in this paper.
An independent module could calculate these R values and
provide them as inputs to the queuing analysis framework.
Once the probabilities are calculated, the traffic pattern xs,d
can be added to Eq. 14 to calculate the port-to-port injection
rates. Once λri,j values are calculated, all other queuing
parameters are found through the discussed equations.

As an example, consider a 6×6×4 network with 4 TSVs
at the corners carrying a random traffic using the proposed
routing algorithm. Figure 15 illustrates the λri,j values (in
log scale) for the second layer of the network. In this 11×11
representation, each square represents a 6 × 6 heat-map of
the traffic rate injected from port specified by the horizontal
index into the port specified by the vertical index. A black
color represents no traffic, while a white color represents
maximum traffic among all.
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Fig. 14: The flow method for calculating port usage proba-
bilities
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Fig. 15: λri,j for all ports of 2nd layer of a 6 ×
6 × 4 network with corner TSVs under random
traffic. Input and output port indices i and j ∈
{pe, u, d. n0, e0, s0, w0, n1, e1, s1, w1}

5.1.5 Buffer Waiting Time
To relate the overall latency to the calculated loads, we start
by using Little’s theorem to relate waiting time, injection
rate, and number of packets in queue:

τ ri = Nr
i /λ

r
i (17)

τ ri is the average waiting time of packets in an input buffer
i of a router r. Figure 16 shows an example of the calculated
waiting times (in log scale) for the same 6 × 6 × 4 network
using LEAD under a uniform random traffic pattern with
the waiting times ranging from 1 cycle to 10 cycles for
service time T = 10 and residual time R = 1.

5.1.6 End-to-End Latency
Once individual buffer latencies (waiting times) are calcu-
lated, the end-to-end latency of a packet generated at router
s and destined to the router d is found by adding the
individual latencies of the buffers traversed by the packet.
In adaptive routing, however, the packet may take different

z=1, pe z=1, u z=1, d z=1, n0 z=1, e0 z=1, s0 z=1, w0 z=1, n1 z=1, e1 z=1, s1 z=1, w1

z=2, pe z=2, u z=2, d z=2, n0 z=2, e0 z=2, s0 z=2, w0 z=2, n1 z=2, e1 z=2, s1 z=2, w1

z=3, pe z=3, u z=3, d z=3, n0 z=3, e0 z=3, s0 z=3, w0 z=3, n1 z=3, e1 z=3, s1 z=3, w1

z=4, pe z=4, u z=4, d z=4, n0 z=4, e0 z=4, s0 z=4, w0 z=4, n1 z=4, e1 z=4, s1 z=4, w1

Fig. 16: τ ri values (buffer waiting time). Each rectangle is
6 × 6, and the corresponding level is indicated above each
rectangle with letter z. The port index is also included at the
top of each box.

paths with different probabilities. Denote the set of paths
traversed by packets generated from s to d by Πs,d. Also,
let Bs,d(k) represents the set of input buffers traversed by
the kth member path πs,d(k) ∈ Πs,d. If ps,d(k) represents
the probability of path πs,d(k) being used, the end-to-end
latency for a single source-destination pair (s, d) is found
by:

Ls,d = Ws +
S

W
+
∑
k

ps,d(k)
∑

(r,b)∈Bs,d(k)

(Hs + τ rb ) (18)

where Ls,d is the average latency between source s and
destination d, Ws is the header service time at source, S
is average packet length, W is the bandwidth, Hs is header
service time at each buffer, and τ rb is the average waiting
time at buffer b of router r. Unfortunately, enumeration of all
possible paths between all possible source and destination
pairs is computationally inefficient. To resolve this issue,
consider Figure 14 again, and assume that the bottom left
node (1,1) is sending packets to top right node (6,6). From
the point of view of (6,6), a fraction of the N packets arrives
from west (Nw), and the rest from south (Ns = N − Nw).
The Nw packets arriving from west have experienced a
random delay right before entering the west input buffer
of (6,6), where the randomness comes from both the path
taken and the system status during the packet traversal.
Denote the average of these delays by `(5,6)(e) (average
delay experienced by packets (from (1,1) to (6,6)) at the
moment of being ejected from the east port of (5,6)). Then,
the average added delay until each such packet header is
serviced by (6,6) is:

`(6,6)(pe) = `(5, 6)(e) + τ (6,6)w (19)

where buffer waiting times τ can be calculated using Equa-
tion 17. This equation only holds for the packets arriving
from west. If we consider all arriving packets, from both
south and west, a correct averaging results in:

`(6,6)(pe) =
Nw

N
[`(5,6)(e) + τ (6,6)w ] +

Ns

N
[`(6,5)(n) + τ (6,6)s ]

(20)
This suggests a recursive relationship between variables

`. Similar to the flow method used to calculate the prob-
abilities, ` values can be calculated by starting from the
source and flowing toward the destination. Also, note that
the relative occurrence terms such as Nw/N are calculated
directly from the previously calculated probabilities R.
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In general, if `rs,d(j) represents the average delay experi-
enced by packets from s to d at the moment of being ejected
into output port j of router r, we can write the following
recursive equation:

`rs,d(j) =
P∑
i=1

Nr
i∑

kN
r
k

[
τ ri + `

N(r,i)
s,d (O(r, i))

]
(21)

It is observed that, similar to Rr
s,d(i, j), `rs,d(j) of neigh-

bor ports are related to each other recursively. Consequently,
the same flow method used to calculate R values can be
used to calculate ` values.

5.1.7 Overall Network Latency
Finally, once Ls,d values are calculated, the overall latency
of the network (considering all source destination pairs) is
found by the following waited averaging:

L =
∑
s,d

xs,d∑
s′,d′ xs′,d′

Ls,d (22)

5.1.8 Overview of the Procedure
To summarize, the following sequence of calculations is
performed to find the network overall latency:

1) Using the flow method, port utilization probabili-
ties, Rr

s,d(i, j), are calculated from the knowledge
of network topology and routing algorithm (Section
5.1.4).

2) R values and traffic injection rates, xs,d, are com-
bined to calculated buffer injection rates λri,j (Sec-
tion 5.1.4).

3) Contention probabilities are calculated from the
knowledge of injection rate into and out of router
ports. (Section 5.1.3).

4) Contention probabilities and injection rates are com-
bined to find the average number of packets in
buffers (Section 5.1.2).

5) Buffer waiting times are calculated from average
number of packets and injection rates (Section 5.1.5).

6) End-to-end latencies for each source destination pair
are calculated using the flow method (Section 5.1.6).

7) Overall network latency is found by averaging
single source destination pair end-to-end latencies,
with a weighting determined by traffic injection
rates xs,d (Section 5.1.7).

5.1.9 Applicability to Generic Topologies
One of the advantages of our formulation is applicability
to general topologies. To see why, note that all derivations
before Section 5.1.4 are local equations holding for a single
router, and thus will not be affected by the ’global’ picture
of the network, including topology. On the other hand, in
Section 5.1.4, we have introduced the quantity Rr

s,d(i, j)
which quantifies the probability that for an s → d commu-
nication, port i and j of router r will be used as input and
output ports, respectively. As mentioned previously, R will
depend on network geometry and routing algorithm. Given
the endless variety in the design of routing algorithms and
geometries, it is prohibitive to formulate R for all combi-
nations. Consequently, we assume that R is available as
an input. Designers of other geometries/routing algorithms
can use the definition of R to calculate it and then feed it
into the proposed queuing based framework.

5.2 Analysis vs. Simulation
In this section, the simulation and analytical results are
compared to verify the analytical model and cross check
simulation results. Figure 17 shows a comparison of ana-
lytical and simulation results under four different scenarios
using different routing algorithms. In Figure 17a, the laten-
cies of LEAD and Elevator-first, under random traffic with
corner-located TSVs as in Figure 3c, is repeated using the
analytical framework and then compared with simulation
results. The remaining three figures follow the same goal
for other configurations explained in the captions. The fol-
lowing observations are consistent in all figures:

• For a given routing algorithm, the latencies reported
by simulation and analysis agree very well within an
error margin of 5% for the low injection rate zone.

• Although only significant under higher injection
rates, the analytical latencies generally underesti-
mate the actual latency reported by simulation. This
can be contributed to the model ignoring head of line
blocking.

• The accuracy of analytical latency drops as injection
rate increases. This is an expected result since the
model is formulated under the assumption of low
injection rates.

• Even though the accuracy drops with increasing in-
jection rate, the analytical model reports valid relative
results at all injection rates. For example, in Fig. 17c,
it is observed that analytical results verify the same
saturation point superiority of LEAD over Elevator-
first as reported by the simulation. Consequently, the
analytical framework can still be used to compare
the performance of different routing algorithms for
all injection rates.

In summary, analytical results show very good accuracy
at low injection rates and also provide meaningful relative
performance measures for all injection rates. The saturation
points, however, cannot be accurately estimated since the
analysis is built upon the assumption of low injection rates.
If the final goal is not to estimate saturation points accu-
rately, the analytical framework can be used to calculate
performance measures, either relatively or individually, in
a fraction of the time consumed by simulation. Finally,
although accurate estimation of saturation point is not pos-
sible with the analytical model, it is possible to find the
vicinity of true saturation point and then fine tune with
simulation.

6 CONCLUSION

In this paper, a routing algorithm tailored to partially con-
nected 3D-NoCs is proposed. Compared to the previous
work, simulations show that the proposed algorithm pro-
vides lower latency, higher saturation point and better tem-
perature distribution under a variety of traffic patterns and
TSV configurations. Also, a queuing theory based model
targeting adaptive routing algorithms is developed. In low
injection rate regime, simulation and analytical results agree
very well within a 10% margin, proving that the analytical
model can be reliably used to estimate performance in a
fraction of the time consumed by simulation. Even though
analytical results deviate from simulation under high injec-
tion rate regime, it is observed that the analytical model can
reliably provide a valid relative saturation point comparison
between two different algorithms.
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(a) LEAD and Elevator-first, transpose traffic, West-
most TSVs

(b) LEAD and Elevator-first, shuffle traffic, Eastmost
TSVs

(c) LEAD and Elevator-first, transpose traffic, Cen-
tered TSVs

(d) LEAD and Elevator-first, random traffic, Cor-
nered TSVs

Fig. 17: Analysis vs. Simulation
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