
Integration of AES on Heterogeneous Many-Core system
Hassan Anwar, Masoud Daneshtalab, Masoumeh Ebrahimi, Marco Ramirez, Juha Plosila, Hannu Tenhunen

Department of Information Technology, University of Turku, Turku, finalnd
{hasanw, masdan, masebr, maanrl, juplos, hanten}@utu.fi

Abstract — Increasing in the transistor density in a single chip
makes it possible for many-core systems to utilize design space for
implementing complex embedded systems. In this paper, we
propose an architecture for heterogeneous many-core system to
integrate block cipher algorithm which is based on Advanced
Encryption Standard (AES). In order to implement AES as a
crypto-core along with heterogeneous many-core system two
different approaches are proposed. In the first approach, the
platform is composed of an AES module, a crypto-core, a network
interface, and an internal memory which are managed through a
controller. In the second approach, the platform is composed of a
Direct Memory Access (DMA), network interface, an internal
memory, and a microprocessor in which the AES module is
integrated as a crypto-core. Both approaches have been analyzed
and compared in terms of area overhead and performance.

Keywords—Many-Core; Field Programmable Gate Array;
AES; Network Interface; Crypto-Core.

I. INTRODUCTION

Multiprocessor systems-on-chip (MPSoC) have been
proposed [1]- [2]. In order to process applications at faster rates
which are not possible by a single core processor. In order to
provide data security for applications running on MPSoC we
incorporate MPSoC with Advanced Encryption Standard (AES).
The AES is works as a crypto-core in order to provide the data
security to applications which are supposed to be run on
heterogeneous many-core systems. Field Programmable Gate
Arrays (FPGAs) is a suitable choice for implementing
cryptographic algorithms on hardware. For instance, servers that
need to handle lots of encrypted authentications are benefited by
using FPGAs. The AES is a very widespread symmetric-
cryptography algorithm for encrypting the data. FPGAs offer the
required performance for this algorithm. Besides the
performance and speed, there are other characteristic of FPGAs
(e. g. device utilization) that make them suitable choices for
cryptography [3]. The main purpose of the cryptographic
algorithm is to provide security. The Data Encryption Standard
(DES) [4] has been used as a cryptographic algorithm for last
several years but it is replaced by the Rijndael algorithm due to
its shorter key length. The Rijndael algorithm has become as a
standard in cryptography which is called Advanced Encryption
Standard [5]. Encryption is a transformation technique to change

the user data (known as plain text) to an unreadable form called
cipher text. The hardware implementation of the crypto
algorithm which is associated with keys is by nature more secure
in terms of unauthorized usage [6]. FPGAs provide a suitable
platform for the hardware implementation of cryptographic
algorithms because of their re-programmable capability and their
ability to modify design at any time. FPGAs offer the best
solution for researchers to implement and test the designs.

When the Rijndael algorithm has become as a standard
encryption algorithm, many hardware implementations based on
FPGA and Application Specific Integrated circuit (ASIC) have
been proposed [7-12]. ASIC provides low power design but the
design time and time to market are very high and it has the lack
of flexibility.

Number of transistors on a processor core is intensely
increasing but clock speed does not grown at the same
speed [13]. The increased number of transistor on a processor
core makes it possible to design a complex and heavily
computational systems on a single chip called System-on-Chip
(SoC). The SoC contains a processing element (PE), memory
block IP core, and communication architecture. SoC integrated
with several processors in a same chip is named MPSoC. In this
paper, we present two different approaches for FPGA based
MPSoC platforms name AXI-based MPSoC (AXIM) [14], with
AES module on a tile. The tile is composed of Network
Interface (NI), Controller, AES, and internal memory for first
approach (see Fig. 3), and in the second approach tile is
composed of NI, plasma processor [15], AES, Direct Memory
Access (DMA), and internal memory (see Fig. 4). The plasma
processor used in the second approach is a three stage pipelined
32-bit Reduced Instruction Set computer (RISC)
microprocessor. In order to offer encryption and decryption, the
AES module works as a crypto-core with the processor module.
This paper is organized as follows. Section II presents the AES
algorithm. Section III describes the FPGA implementation of
AES. The AXIM platform is described in Section IV. The
implementation approach of the tile (proposed design) is
presented in Section V. Experimental results are given in
Section VI while Section VII concludes the paper.

II. AES ALGORITHM
As it is already mentioned, an AES has been selected as an

encryption standard in November 2001 which is based on the

Rijndael algorithm [1]. AES utilizes symmetric cipher blocks,
supporting different data lengths of 128, 192 and 256 bits. It also
has the ability to support different key sizes of 128, 192 and 256
bits. Encryption and decryption depends on the number of
rounds, i.e. 10 (requires 128 bits), 12 (requires 192 bits), and 14
(requires 256 bits). The AES algorithm comprises of four
different steps as: key addition, S-box substitution, Shift Rows,
and MixColumn (see Fig. 1).

The S-box substitution is the only non-linear transformation
which comprises of two steps. The first step is the multiplicative
inverse of input bytes in which an affine transformation can be
applied on it. There are two different ways to implement S-box
entries as using look up tables or computing mathematically.
The purpose of Shift Rows and MixColumn are to create
diffusion that is a linear operation.

Plain Text

Add Round Key

S-Box

Shift Row

Mix Column

Add Round Key

S-Box

Add Round Key

Shift Row

Cipher Text

Cipher Text

Add Round Key

S-Box

Inverse Shift Row

Inverse Mix Column

Add Round Key

S-Box

Add Round Key

Inverse Shift Row

Plain Text

Encryption

Nr-1

Final
Round

Nr-1

Final
Round

Decryption

Fig. 1. AES Algorithm.

III. FPGA IMPLEMENTATION OF AES
The efficient implementation of the AES algorithm on FPGA

is being under discussion from last several years in terms of
throughput, resource utilization, and high speed. The main
reason to choose FPGA for the implementation of the
cryptographic algorithms is because of FPGA permits to change
the design with almost no additional time. The cost and a design
cycle is also very low for FPGA based design. An FPGA-based
AES implementation is presented in [6] while several other high
speed Implementations have been explored in [7-12], in which
the speed ranged from Mbps to several Gbps. The pipelining in
the Advanced Encryption Standard is used to get a higher
throughput and a higher speed as multiple rounds of AES can be
handled concurrently. The pipelined AES have been proposed to
achieve high throughput which can achieve the throughput of
around 20.3 Gbps [16-18].

IV. AXIM PLATFORM

The AXIM platform [19] has three main components: a
cluster of processing elements (CPE), the Advance eXtensible
Interface (AXI) subsystem [20] and an embedded controller.

As shown in Fig. 2, the AXIM platform uses the AXI
interface in order to provide linkage between AXI and CPE. The

AXI subsystem is constituted by a set of AXI controllers,
external DDR memory, Ethernet, FLASH memory, and USB
host. A keystone of the platform is the NoC-AXI interface. It
creates the communication channel between the CPE and AXI
bus. The internal memory receives data from the external
memory through NoC-AXI interface. NoC-AXI interface are
composed of following components:

Network interface [21]: lies between a tile and NoC to
handle the data flow control between router and the rest of the
internal units.

AXI units: AXI bus handles read and write transactions and
both are independent allowing simultaneous execution.

Internal memory unit: stores data need to be processed by the
micro-processor.

WebCam
Mic

DDR3
256 MB

Embedded
Controller

DDR Memory
Controller

Ethernet
Controller

USB
Controller

Ethernet
PHY

AXI Bus

SlaveNoC-AXI
Interface Slave

SlaveSlave Slave

AES
Processor

Tile
Master Customized

AES Tile

FLASH
Memory

I/O
Controller

Fig. 2. AXIM platform.

In this work, we equip AXIM with the customized AES-
based crypto module. This enables a heterogeneous many-core
platform to be capable of accelerating the AES-based crypto
requests [22]. There are two different design approaches. For the
first approach, we develop a customized AES-based crypto tile,
shown in Fig. 3. The main component of this tile is the
controller which is designed such that to communicate with the
network interface [23]. The controller is designed in such a way
to read the data from the memory for AES operations and also
used to write the AES output back to memory. The output of the
AES module is called cipher data. This cipher data needs to be
write back into the memory which is also accomplished by the
controller. The second approach is to integrate the AES module
with the plasma processor in a tile, which is depicted in Fig. 4.
In this approach, we use the plasma processor and DMA. The
processor is used to generate the crypto-instruction for the AES
module in order to perform the AES operations. The DMA
module is used to access contents of the internal memory to
load/store the plain or cipher text. The on-chip network exploits
static XY routing [24].

V. IMPLEMENTATION

Fig. 3 shows the basic design for the first approach; the
external memory contains the data which is supposed to be

encrypted/decrypted by the AES. The controller is used to
control all the operations among the network interface, internal
memory, and the AES module. Initially, the controller gets the
data for the internal memory through the network interface from
the external memory. When the data is stored in the internal
memory, the AES module will be activated. Once the process is
finished by the AES module and output gets ready, the cipher
data will write back to the internal memory.

For the second approach we integrate the AES module with
the plasma processor, presented in Fig. 4. In this case, the
internal memory accesses the data through DMA and the AES
module is activated by the plasma processor through dedicated
instructions called crypto-instruction.

Network
Interface

In
te

rn
al

M

em
or

y

AES

C
on

tr
ol

le
r

External
Memory N

oC
-A

X
I

In
te

rf
ac

e

N
oC

Fig. 3. Customized AES-based Crypto Tile.

When the AES module is activated by the plasma processor,
it starts receiving the data from the internal memory and
performs encryption or decryption on it. Then the output of the
AES module will write back to the internal memory.

Network
Interface

In
te

rn
al

M

em
or

yPlasma

DMA

AES

External
Memory

N
oC

-A
X

I
In

te
rf

ac
e

N
oC

Fig. 4. AES-based Crypto Co-Processor Tile.

In order to write back the AES output, called cipher data, to
the internal memory, first this data is stored in four 32-bit
registers. Then the registers’ data (cipher data) will write back to
the internal memory. The controller logic used in customized
AES-based crypto tile is based on the state machine logic, which
is used for the communication between the internal memory and
the AES module. Furthermore, the state machine is used to copy
data (cipher data) from the register to the memory. Similarly, the
state machine is used to copy data (plain data) from the internal
memory to the register. The AES module requires 128 bits of
data so that the state machine receives 32 bits of data on each
clock cycle and stores them on the registers.

VI. EXPERIMENTAL RESULTS

Integration of the AES module as a crypto-core within the
AXIM platform is one of the main idea of this work. Two
different design approaches are considered. The platform was
built using VHDL and its main features were verified through
simulation with Modelsim. The design approaches are
synthesized for Xilinx Virtex6 ML605. Xilinx ISE 14.4 is used
for synthesizing the designs and generating statistics about
resource utilization shown in Table I and Table II.

We compute the latency for both approaches as well. For
experimental set up, we store 100 requests in an external
memory and measure the latency. The latency is the time takes
for the system to complete the encrypt/decrypt requests stored in
the external memory. The latency observed for the customized
AES-based crypto tile is about 815 ns. The latency for the
system based on the second approach is about 1235 ns. The
operating frequency of the system is 100 MHz. The first
approach is simpler than the second one as the plasma processor
and DMA are replaced by the controller for the first approach.
The hardware resource utilization for the first approach is lower
than the second approach because the DMA module and the
plasma processor imposes extra overhead for each tile in the
system. Also, the number of clock cycles required by DMA is
more than the number of clock cycles required by the controller
to access the memory.

The DMA module used in the second approach is slower
than the controller used in the first approach because DMA will
take extra clock cycles to decide whether the data required by
the memory or by the processor which increases the overall
latency. However, in the first approach the controller access data
in one clock cycle. In brief, the first design approach not only
reduces the hardware resources but also increases the
performance significantly. We also calculate latency for the
different number of requests for both approaches shown in Fig.
5. Latencies for both approaches increase as the number of
requests grows. Latency for the second approach is greater than
the first approach because of the extra overhead generated by
DMA and the plasma processor.

VII. CONCLUSION

This work presented a method to incorporate the AES
module as a crypto-core within AXI-based MPSoC platform.
We proposed two different approaches for the integration of the
crypto-core with heterogeneous many-core system. The current
work is focused on the design and implementation of crypto-
core inside with a many-core system. The main purpose of this
work is not only to provide the platform to utilize the many-core
resources but also provide the security to many-core systems.

Table I: Resource utilization for customized AES-based Crypto Tile.

Functional Unit LUTs
Network Interface 237
Controller 75
AES 3112
NoC-to-AXI Interface 1,503
Internal Memory 457
Total 5384

Table II: Resource utilization for AES-based Crypto Co-Processor Tile.

Functional Unit LUTs
Network Interface 237
Plasma Processor 2935
Direct Memory Access 195
AES 3112
NoC-to-AXI Interface 1,503
Internal Memory 457
Total 8439

Fig. 5. Latencies for different number of requests for both approaches.

REFERENCES
[1] A. Shabbir, A. Kumar, B. Mesman and H. Corporaal, “Distributed

resource management for concurrent execution of multimedia
applications on MPSoC platforms,” ICSAMOS, pp. 132-139, July
2011, Greece.

[2] M. Fattah, M. Daneshtalab, P. Liljeberg and J. Plosila, “Exploration of
MPSoC Mointoring and Management systems,” in proceedings of
IEEE International Symposium on Reconfiguarble communication-
centric Systems-on-chip (ReCoSoC), pp. 1-3, June. 2011, France.

[3] 40Gbit AES Encryption using OpenCL and FPGAs,
http://nallatech.com/images/stories/technical_library/whitepapers/40_g
bit_aes_encryption_using_opencl_and _fpgas_final.pdf.

[4] B. Schneier, Applied Cryptography, Wiley, New York, 1996.
[5] National Institute of Standard and Technology (USA, Advanced

Encryption Standard). FIPS 197, Available at,
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf, September
1999.

[6] S. M. Yoo, D. Kotturi, D. W. Pan and J. Blizzar, “An AES crypto
chip using a high-speed parallel pipelined architecture,” Elsevier,
Microprocessor and Microsystem, vol. 29, pp. 317-236, Jan. 2005.

[7] P. Chodowiec, “Comparison of the hardware performance of the AES
candidates using rconfigurable hardware,” Master’s thesis, George
Mason University, March 2002.

[8] H. Kuo and I. Verbauwhede, “Architectural optimization for 1.82
Gbits/sec VSLI implementation of the AES Rijindael algorithm,”
Cryptographic Hardware and embedded systems (CHES’01), vol.
2162, pp. 51-64, Springer-Verlag, 2001.

[9] N. Sklavos and O. Koufopavlou, “Architecture and VLSI
implementation of the AES-proposal Rijndael,” IEEE Trans.
Computers, vol. 51, pp. 1454-1459, 2002.

[10] P. R Schaumont, H. Kuo and I. M. Verbauwhede, “Unlocking the
design secrets of a 2.29 Gb/s Rijndael processor,” ACM Conference
on Design Automation (DAC 2002), pp. 634-639, June. 2002, USA.

[11] S. Morioko and A. Satoh, “A 10 Gbps full-AES crypto design with
twisted BSS s-box architecture,” 21st IEEE International Conference
on Computer Design VLSI in Computers and Processors, pp. 98-103,
Sept. 2002, Germany.

[12] U. Mayer, C. Oelsner and T. Kohler, “Evaluation of different Rijndael
implementaion for high end servers,” IEEE International Symposium
on Circuits and Systems, vol. 2, pp. 348-351, May. 2002, USA.

[13] E. W. Wachter, A. Biazi and F. G. Moraes, “HeMPS-S: A
homogenous NoC-based MPSoCs framework prototyped in FPGAs,”
6th International Workshop on Reconfigurable Communication-centric
Systems-on-Chip(ReCoSoC), June. 2011, France.

[14] ARM, “AMBA AXI and ACE Protocol specification,” Available on-
line.

[15] N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis and Y. Zorian,
“Low-Cost Software-Based Self-Testing of RISC Processor Cores,”
Proceedings of the conference on Design, Automation and Test in
Europe, pp. 10714, vol. 1, Mar. 2003, Germany.

[16] N. C Iyer, P. V Anandmohan , D. V Poornaiah and V. D Kulkarni,
“High through put, low cost, fully pipelined architecture for AES
Crypto Chip,” Annual IEEE India Conference, pp. 1-6, Sept. 2006,
India.

[17] Y. Zhang and X. Wang, “Pipelined implementation of AES encryption
based on FPGA,” IEEE International Conference on Information
theory and Information Security, pp. 170-173, Dec. 2010, Beijing.

[18] I. Verbauwhede, P. Schaumont and H. kuo, “Design and performance
testing of a 2.29-Gb /s rijndael processor,” IEEE J. Solid State
Circuits, vol. 38, pp. 569-572, 2003.

[19] M. Ramirez, M. Masoud, J. Plosila and P. Liljeberg, “NoC-AXI
Interface for FPGA-based MPSoC Platforms,” 22nd International
Conference on Filed Programmable Logic and Applications (FPL),
pp. 479-480, Aug. 2012, Norway.

[20] ARM. AMBA AXI and ACE Protocol Specification. Available on-
line.

[21] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H. Tenhunen,
“A High-Performance Network Interface Architecture for NoCs Using
Reorder Buffer Sharing,” in Proceedings of 18th IEEE Euromicro
Conference on Parallel, Distributed and Network-Based Computing
(PDP), pp. 547-550, Feb. 2010, Italy.

[22] J. Carabaño, F. Dios, M. Daneshtalab, and M. Ebrahimi, “An
Exploration of Heterogeneous Systems,” in Proceedings of 8th
International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), pp. 1-7, July 2013, Germany.

[23] M. Ebrahimi, M. Daneshtalab, N. Sreejesh, P. Liljeberg, Juha Plosila,
H. Tenhunen, “Efficient Network Interface Architecture for Network-
on-Chips,” in Proc. of 27th IEEE Norchip, pp. 1-4, Nov. 2009,
Norway.

[24] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H.
Tenhunen, “LEAR – A Low-weight and Highly Adaptive Routing
Method for Distributing Congestions in On-Chip Networks,” in
Proceedings of 20th IEEE Euromicro Conference on Parallel,
Distributed and Network-Based Computing (PDP), pp. 520-524, Feb.
2012,Germany.

0
500

1000
1500
2000
2500
3000
3500
4000

100 125 150 175 200 225 250 275 300

La
te

nc
y

(n
s)

Number of Requests

First Approach S econdApproach

