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Abstract — Increasing in the transistor density in a single chip 
makes it possible for many-core systems to utilize design space for 
implementing complex embedded systems. In this paper, we 
propose an architecture for heterogeneous many-core system to 
integrate block cipher algorithm which is based on Advanced 
Encryption Standard (AES). In order to implement AES as a 
crypto-core along with heterogeneous many-core system two 
different approaches are proposed. In the first approach, the 
platform is composed of an AES module, a crypto-core, a network 
interface, and an internal memory which are managed through a 
controller. In the second approach, the platform is composed of a 
Direct Memory Access (DMA), network interface, an internal 
memory, and a microprocessor in which the AES module is 
integrated as a crypto-core. Both approaches have been analyzed 
and compared in terms of area overhead and performance. 

Keywords—Many-Core; Field Programmable Gate Array; 
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I. INTRODUCTION

Multiprocessor systems-on-chip (MPSoC) have been 
proposed  [1]- [2]. In order to process applications at faster rates 
which are not possible by a single core processor. In order to 
provide data security for applications running on MPSoC we 
incorporate MPSoC with Advanced Encryption Standard (AES). 
The AES is works as a crypto-core in order to provide the data 
security to applications which are supposed to be run on 
heterogeneous many-core systems. Field Programmable Gate 
Arrays (FPGAs) is a suitable choice for implementing 
cryptographic algorithms on hardware. For instance, servers that 
need to handle lots of encrypted authentications are benefited by 
using FPGAs. The AES is a very widespread symmetric-
cryptography algorithm for encrypting the data. FPGAs offer the 
required performance for this algorithm. Besides the 
performance and speed, there are other characteristic of FPGAs 
(e. g. device utilization) that make them suitable choices for 
cryptography  [3]. The main purpose of the cryptographic 
algorithm is to provide security. The Data Encryption Standard 
(DES)  [4] has been used as a cryptographic algorithm for last 
several years but it is replaced by the Rijndael algorithm due to 
its shorter key length. The Rijndael algorithm has become as a 
standard in cryptography which is called Advanced Encryption 
Standard  [5]. Encryption is a transformation technique to change 

the user data (known as plain text) to an unreadable form called 
cipher text. The hardware implementation of the crypto 
algorithm which is associated with keys is by nature more secure 
in terms of unauthorized usage  [6]. FPGAs provide a suitable 
platform for the hardware implementation of cryptographic 
algorithms because of their re-programmable capability and their 
ability to modify design at any time. FPGAs offer the best 
solution for researchers to implement and test the designs.  

When the Rijndael algorithm has become as a standard 
encryption algorithm, many hardware implementations based on 
FPGA and Application Specific Integrated circuit (ASIC) have 
been proposed [7-12]. ASIC provides low power design but the 
design time and time to market are very high and it has the lack 
of flexibility.  

Number of transistors on a processor core is intensely 
increasing but clock speed does not grown at the same 
speed  [13]. The increased number of transistor on a processor 
core makes it possible to design a complex and heavily 
computational systems on a single chip called System-on-Chip 
(SoC). The SoC contains a processing element (PE), memory 
block IP core, and communication architecture. SoC integrated 
with several processors in a same chip is named MPSoC. In this 
paper, we present two different approaches for FPGA based 
MPSoC platforms name AXI-based MPSoC (AXIM)  [14], with 
AES module on a tile. The tile is composed of Network 
Interface (NI), Controller, AES, and internal memory for first 
approach (see Fig. 3), and in the second approach tile is 
composed of NI, plasma processor  [15], AES, Direct Memory 
Access (DMA), and internal memory (see Fig. 4). The plasma 
processor used in the second approach is a three stage pipelined 
32-bit Reduced Instruction Set computer (RISC)
microprocessor. In order to offer encryption and decryption, the
AES module works as a crypto-core with the processor module.
This paper is organized as follows. Section II presents the AES
algorithm. Section III describes the FPGA implementation of
AES. The AXIM platform is described in Section IV. The
implementation approach of the tile (proposed design) is
presented in Section V. Experimental results are given in
Section VI while Section VII concludes the paper.

II. AES ALGORITHM
As it is already mentioned, an AES has been selected as an 

encryption standard in November 2001 which is based on the 



Rijndael algorithm  [1]. AES utilizes symmetric cipher blocks, 
supporting different data lengths of 128, 192 and 256 bits. It also 
has the ability to support different key sizes of 128, 192 and 256 
bits. Encryption and decryption depends on the number of 
rounds, i.e. 10 (requires 128 bits), 12 (requires 192 bits), and 14 
(requires 256 bits). The AES algorithm comprises of four 
different steps as: key addition, S-box substitution, Shift Rows, 
and MixColumn (see Fig. 1). 

The S-box substitution is the only non-linear transformation 
which comprises of two steps. The first step is the multiplicative 
inverse of input bytes in which an affine transformation can be 
applied on it. There are two different ways to implement S-box 
entries as using look up tables or computing mathematically. 
The purpose of Shift Rows and MixColumn are to create 
diffusion that is a linear operation.  
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Fig. 1. AES Algorithm. 

III. FPGA IMPLEMENTATION OF AES
The efficient implementation of the AES algorithm on FPGA 

is being under discussion from last several years in terms of 
throughput, resource utilization, and high speed. The main 
reason to choose FPGA for the implementation of the 
cryptographic algorithms is because of FPGA permits to change 
the design with almost no additional time. The cost and a design 
cycle is also very low for FPGA based design. An FPGA-based 
AES implementation is presented in  [6] while several other high 
speed Implementations have been explored in [7-12], in which 
the speed ranged from Mbps to several Gbps. The pipelining in 
the Advanced Encryption Standard is used to get a higher 
throughput and a higher speed as multiple rounds of AES can be 
handled concurrently. The pipelined AES have been proposed to 
achieve high throughput which can achieve the throughput of 
around 20.3 Gbps [16-18]. 

IV. AXIM PLATFORM

The AXIM platform  [19] has three main components: a 
cluster of processing elements (CPE), the Advance eXtensible 
Interface (AXI) subsystem [20] and an embedded controller. 

As shown in Fig. 2, the AXIM platform uses the AXI 
interface in order to provide linkage between AXI and CPE. The 

AXI subsystem is constituted by a set of AXI controllers, 
external DDR memory, Ethernet, FLASH memory, and USB 
host. A keystone of the platform is the NoC-AXI interface. It 
creates the communication channel between the CPE and AXI 
bus. The internal memory receives data from the external 
memory through NoC-AXI interface. NoC-AXI interface are 
composed of following components:  

Network interface [21]: lies between a tile and NoC to 
handle the data flow control between router and the rest of the 
internal units. 

AXI units: AXI bus handles read and write transactions and 
both are independent allowing simultaneous execution. 

Internal memory unit: stores data need to be processed by the 
micro-processor. 
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Fig. 2. AXIM platform. 

In this work, we equip AXIM with the customized AES-
based crypto module. This enables a heterogeneous many-core 
platform to be capable of accelerating the AES-based crypto 
requests [22]. There are two different design approaches. For the 
first approach, we develop a customized AES-based crypto tile, 
shown in Fig. 3. The main component of this tile is the 
controller which is designed such that to communicate with the 
network interface [23]. The controller is designed in such a way 
to read the data from the memory for AES operations and also 
used to write the AES output back to memory. The output of the 
AES module is called cipher data. This cipher data needs to be 
write back into the memory which is also accomplished by the 
controller. The second approach is to integrate the AES module 
with the plasma processor in a tile, which is depicted in Fig. 4. 
In this approach, we use the plasma processor and DMA. The 
processor is used to generate the crypto-instruction for the AES 
module in order to perform the AES operations. The DMA 
module is used to access contents of the internal memory to 
load/store the plain or cipher text. The on-chip network exploits 
static XY routing  [24].  

V. IMPLEMENTATION

Fig. 3 shows the basic design for the first approach; the 
external memory contains the data which is supposed to be 



encrypted/decrypted by the AES. The controller is used to 
control all the operations among the network interface, internal 
memory, and the AES module. Initially, the controller gets the 
data for the internal memory through the network interface from 
the external memory. When the data is stored in the internal 
memory, the AES module will be activated. Once the process is 
finished by the AES module and output gets ready, the cipher 
data will write back to the internal memory.  

For the second approach we integrate the AES module with 
the plasma processor, presented in Fig. 4. In this case, the 
internal memory accesses the data through DMA and the AES 
module is activated by the plasma processor through dedicated 
instructions called crypto-instruction. 
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Fig. 3. Customized AES-based Crypto Tile. 

When the AES module is activated by the plasma processor, 
it starts receiving the data from the internal memory and 
performs encryption or decryption on it. Then the output of the 
AES module will write back to the internal memory.  
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Fig. 4. AES-based Crypto Co-Processor Tile. 

In order to write back the AES output, called cipher data, to 
the internal memory, first this data is stored in four 32-bit 
registers. Then the registers’ data (cipher data) will write back to 
the internal memory. The controller logic used in customized 
AES-based crypto tile is based on the state machine logic, which 
is used for the communication between the internal memory and 
the AES module. Furthermore, the state machine is used to copy 
data (cipher data) from the register to the memory. Similarly, the 
state machine is used to copy data (plain data) from the internal 
memory to the register. The AES module requires 128 bits of 
data so that the state machine receives 32 bits of data on each 
clock cycle and stores them on the registers. 

VI. EXPERIMENTAL RESULTS

Integration of the AES module as a crypto-core within the 
AXIM platform is one of the main idea of this work. Two 
different design approaches are considered. The platform was 
built using VHDL and its main features were verified through 
simulation with Modelsim. The design approaches are 
synthesized for Xilinx Virtex6 ML605. Xilinx ISE 14.4 is used 
for synthesizing the designs and generating statistics about 
resource utilization shown in Table I and Table II. 

We compute the latency for both approaches as well. For 
experimental set up, we store 100 requests in an external 
memory and measure the latency. The latency is the time takes 
for the system to complete the encrypt/decrypt requests stored in 
the external memory. The latency observed for the customized 
AES-based crypto tile is about 815 ns. The latency for the 
system based on the second approach is about 1235 ns. The 
operating frequency of the system is 100 MHz. The first 
approach is simpler than the second one as the plasma processor 
and DMA are replaced by the controller for the first approach. 
The hardware resource utilization for the first approach is lower 
than the second approach because the DMA module and the 
plasma processor imposes extra overhead for each tile in the 
system. Also, the number of clock cycles required by DMA is 
more than the number of clock cycles required by the controller 
to access the memory. 

The DMA module used in the second approach is slower 
than the controller used in the first approach because DMA will 
take extra clock cycles to decide whether the data required by 
the memory or by the processor which increases the overall 
latency. However, in the first approach the controller access data 
in one clock cycle. In brief, the first design approach not only 
reduces the hardware resources but also increases the 
performance significantly. We also calculate latency for the 
different number of requests for both approaches shown in Fig. 
5. Latencies for both approaches increase as the number of
requests grows. Latency for the second approach is greater than
the first approach because of the extra overhead generated by
DMA and the plasma processor.

VII. CONCLUSION

This work presented a method to incorporate the AES 
module as a crypto-core within AXI-based MPSoC platform. 
We proposed two different approaches for the integration of the 
crypto-core with heterogeneous many-core system. The current 
work is focused on the design and implementation of crypto-
core inside with a many-core system. The main purpose of this 
work is not only to provide the platform to utilize the many-core 
resources but also provide the security to many-core systems. 

Table I: Resource utilization for customized AES-based Crypto Tile. 

Functional Unit LUTs 
Network Interface 237 
Controller 75 
AES 3112 
NoC-to-AXI Interface 1,503 
Internal Memory 457 
Total 5384 



Table II: Resource utilization for AES-based Crypto Co-Processor Tile. 

Functional Unit LUTs 
Network Interface 237 
Plasma Processor 2935 
Direct Memory Access 195 
AES 3112 
NoC-to-AXI Interface 1,503 
Internal Memory 457 
Total 8439 

Fig. 5. Latencies for different number of requests for both approaches. 
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