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ABSTRACT

With the emergence of large multi-core architectures, a vol-
ume of research has been focused on distributing traffic
evenly over the whole network. However, increase in traf-
fic density may lead to congestion and subsequently degrade
the performance by increased latency in the network. In this
paper, we propose two novel route selection strategies for
on-chip networks which are based on the Q-learning frame-
work. The proposed strategies use variable learning rate to
dynamically capture the current congestion status of the net-
work using an additional parameter and improves the learn-
ing process to select a less congested output channel. Both
the proposed selection strategies are found to adapt signif-
icantly faster to the changes in traffic load and traffic pat-
terns by avoiding congested areas. The results demonstrate
that proposed strategies achieve significant performance im-
provement over conventional Q-routing and its variants with
slight area-overhead.

Categories and Subject Descriptors

B.4 [Input/Output and Data Communications]: Mis-
cellaneous

General Terms

Algorithms, Design, Performance
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1. INTRODUCTION
System-on-chip (SoC) has evolved from single core to in-

tegrating tens or hundreds of cores on single chip. As chip
area grows, the communication among cores becomes the
performance hold-up in high computing multiprocessor sys-
tems on-chip (MPSoCs).
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On-chip network (OCN) has resolved the performance and
speed-up issues of traditional bus-based systems for real-
time embedded applications. OCNs have been proven reli-
able, modular and reusable solutions [1] than shared buses.
The cores communicate with each other by routing packets
using a routing algorithm. The OCN performance depends
highly on the routing algorithm which is the main focus area
of our research.

Routing algorithms are classified as deterministic, obliv-
ious and adaptive. Deterministic routing algorithms (say,
XY) always route packets along the same path between the
source and the destination nodes. For non-uniform traf-
fic, they are unable to distribute the traffic load across the
network [15]. However, oblivious and adaptive routing algo-
rithms can forward packets along multiple paths. Oblivious
routing selects routing path without considering the current
state of the network.

In adaptive routing, path selection depends on the present
network state to improve the network performance. The
working of an adaptive routing algorithm is divided in two
phases; routing function and selection function. The routing
function first supplies the set of available output channels
for a packet depending upon the source and the destination
position. The selection function selects an output channel
from the set of available output channels.

However, in traditional methods (Q-routing) updating the
routing tables are limited to the traversing path only when
the respective path is chosen by the packet towards the des-
tination. As a result, the Q-values do not reflect the recent
network condition and at times, use a Q-value which has not
been updated over a long period of time, to make the selec-
tion decision. Moreover, Q-routing uses constant learning
rate throughout to modify the Q-values irrespective of how
recently a Q-value has been updated. In this paper we have
tried to overcome it.

This paper makes the following primary contributions:

• A new selection mechanism, Credence based Q-routing
(CrQ-routing) is proposed. As an improvement to Q-
routing, CrQ-routing uses variable learning rate to im-
prove the learning.

• We also present an extension of CrQ-routing
called Probabilistic Credence based Q-routing (PCrQ-
routing). CrQ-routing uses credence values (C-values)
to measure the uncertainty in the corresponding Q-
values and to compute the learning rate.

The rest of the paper is structured as follows: Section 2



briefs about existing research on congestion handling. Sec-
tion 3 illustrates the background of the proposed algorithms.
Sections 4 and 5 present the details of the proposed algo-
rithms, viz. CrQ-routing and PCrQ-routing, respectively.
Results are discussed in Section 6 and finally Section 7
presents the conclusions with future direction.

2. RELATED WORK
In recent years, several research proposals have been pub-

lished to mitigate congestion in OCNs. DyXY [13] uses local
information, i.e. the current queue length of the correspond-
ing input port of the neighboring switches, to decide on the
next hop. DyXY forwards packets through congested area
as the utilized local information is insufficient. Most com-
mon implementations of routing algorithms, e.g. RCA [10],
CATRA [5] and DBAR [14] have focused on collecting local
or global congestion information to get an estimate of the
congestion levels in the network. An agent-based congestion-
aware technique [4] is presented to estimate congestion at
cluster level and make the routing decision based on this
estimation.

Q-Learning [18] based frameworks have been proposed
firstly for off-chip networks [11, 12]. Later on, it has also
been applied in OCN [6, 16, 9, 3, 8, 7]. In [6], a Q-
learning based congestion-aware algorithm is proposed to
find the congested links in the network using Q-values. C-
routing [16] divides the mesh topology into clusters to re-
duce the routing table size as compared to conventional Q-
routing algorithms. CQ-routing [9] also utilizes clustering
approach to improve the network performance with reduced
table area. HARAQ [3] presented a turn-model based non-
minimal routing algorithm. The focus of the work was on
reduction of the area of the Q-table by storing regional Q-
values. Bi-LCQ [8] reduces the area overhead of the table
by maintaining Q-values only for x and y directions. Along
with this, it uses the clusters to improve its performance
with both forward and backward exploration. Congestion-
aware routing Algorithm using Dual Q-routing (CADuQ) [7]
uses both data packets and learning packets to update the
routing table. It also uses a new congestion detection met-
rics for updating local congestion information and is used
to set the learning rate to keep the values as updated as
possible. In contrast, when the switch is not congested the
learning rate is set to a minimum value.

3. BACKGROUND
Since our proposed algorithms are based on Q-learning

based routing approaches. So, we briefly describe Q-learning
and Q-routing.

3.1 Q-LEARNING [18]
Q-learning [18] is effective and simple model-free reinforce-

ment learning method to act optimally without the knowl-
edge of the environment. It successively improvises the qual-
ity of the actions taken at particular states by getting re-
wards (states close to goal state) or punishments (states
away from goal state). It uses training information which
evaluates the actions taken rather than instructs by giving
correct actions. An agent takes an action at a particular
state and evaluates the results, in terms of immediate re-
ward or penalty received in the next state to which it is
taken. By trying all possible actions in all states (trial-and-

error), it learns the best state by the evaluating the reward.
Q-learning is a primitive form of learning and algorithms
based on Q-Learning are highly adaptive and flexible.

The reward or punishment is known as Q-value and is
saved in the Q-table at each state for all state-action pairs.
Q-value is represented as Q(s, a), which includes the ex-
pected long-term reward of taking action a in state s. When
the system is in state s, it observes the environment and se-
lects action a using the Q-values. By performing the action,
it moves from the present state s to next state s′. After
reaching s′ it sends back reward or punishment (a real num-
ber) to state s.

There are two methods for selecting an action from the
possible actions in every state [17] as below:

1. Exploration or non-greedy approach: Actions, which
are not chosen yet but may produce greater total re-
ward in the long run, are added to the table. There-
fore, the agent chooses an action randomly (random
selection).

2. Exploitation or greedy approach: Actions are selected
according to the explored Q-table to maximize the ex-
pected reward (Q-table based).

3.2 Q-ROUTING [6]
Q-routing is a network routing algorithm based on the Q-

learning. As the agent learns the model in Q-learning, sim-
ilarly the decision maker (router) learns the network traffic
levels in Q-routing. Q-routing learns to represent the net-
work state in terms of Q-values (Qx(y, d)) and uses these
Q-values to make route selection decisions. These Q-values
estimate and represent the quality of connected routes. The
Qx(y, d) represent a Q-value of switch x for destination d

for neighbor y. Router is able to select the least congested
path among the available paths from a source to a destina-
tion using these values. These values can be used to select
the best neighbor to route a packet; the best estimate is
in terms of a performance metric (latency, in our case). In
other words, Q-value is the measure of congestion in the net-
work. A higher Q-value than other implies that the link is
more loaded than the other link.

x
y

d

z
p

r Qz(d, d)

Qy(z, d)

Qx(y, d)

Figure 1: Example of Q-routing (solid arrows show data packets
and dashed arrows show learning packets)

Figure 1 shows an example of Q-routing. Assume that a
packet is to be routed from switch x towards the destination



d. There are two possible paths – (1) via switch p and (2)
via switch y.

The Q-routing selects the neighbor having lower Q-value
for the corresponding destination switch (d). The Q-value
is updated each time the switch x sends a data packet to
one of its neighbors (say y). The neighboring switch y, af-
ter receiving the packet, sends back a ’learning packet’ to
the switch x, as shown in Figure 1. This learning packet
contains the estimated value Qest

x (y, d) (estimated latency
or estimated congestion level) and is computed as:

Q
est
x (y, d) = Qy(ẑ, d) + qy (1)

where, Qy(ẑ, d) = minn∈N(y) Qy(n, d) (represents global
congestion value) and N(y) is the set of neighbors of switch
y, and qy (represents local congestion) is the waiting time in
the input buffer of the switch y.

After receiving the estimated value, the switch x computes
new Q-value Qx(y, d) and updates it as follows:

Q
new
x (y, d) = Q

old
x (y, d) + γ (Qest

x (y, d)−Q
old
x (y, d)) (2)

where, Qnew
x (y, d) is the updated Q-value at switch x

for destination d, Qold
x (y, d) is the old Q-value.

The Qest
x (y, d) is the best (smallest) estimated delay in-

curred in forwarding a packet to destination d from switch
x via neighbor y.

Equation 2 also uses a learning rate (γ) to perform learn-
ing of the network state by updating the Q-values. Learning
rate (γ) determines the rate at which the new information
overrides the old one. Learning rate can take a value be-
tween zero and one. The learning rate of zero indicates that
no learning is made by the algorithm while the learning rate
of one means that Q-value is the most learned value.

Although, Q-routing is congestion aware routing but it
suffers from the hysteresis problem [2] i.e. the network fails
to adapt to the shortest (optimal) path after a period of
increased network traffic. Once a packet takes the longer
path due to increased traffic it may learn to adapt to this
path in absence of packet forwarding through any minimal
path. As a result, it continues to use this as a best path even
when the traffic load reduces, unless and until the shortest
path is selected and the Q-value is updated accordingly, the
subsequent decrease in the link load remains unnoticed.

4. CrQ-ROUTING
In this section, we present Credence based Q-routing

(CrQ-routing) selection mechanism. Q-routing does not
have any parameter to specify how recently a Q-value has
been revised. Moreover, a constant learning rate is applied
throughout by Q-routing to modify the Q-values irrespective
of how recent a Q-value has been updated. As an improve-
ment to Q-routing, CrQ-routing uses variable learning rate
(computed using confidence in the Q-value) to make the Q-
value updates more efficient.

4.1 C-values
The performance CrQ-routing is enhanced by adding an

extra parameter “Credence” to each of the Q-values in the
CrQ-routing algorithm. A value Cx(y, d) called Credence
value (C-value), is associated with each and every Q-value
(Qx(y, d)) in the network. Credence value is a real num-
ber between 1 and 10. This new parameter represents how
recently a Q-value has been updated or modified, thereby

ensuring the freshness of Q-values. If the Q-value is not up-
dated over a long period of time, this stale value does not
truly represent the current state of the network. The C-
value equal to 10 or close to 10 implies high confidence in
the respective Q-value. It means that the Q-value has been
recently updated, thus more reliable to be used in making
the selection decision. However, the C-value equal to 1 or
close to 1 implies that the respective Q-value has not been
updated recently (unreliable). The credence value is the
quantified freshness and accuracy measurement of a Q-value.

C-values are also used in determining the learning rate (γ)
for the Q-value and the C-value update. C-values are up-
dated in a reflective manner of how closely the correspond-
ing Q-value represents the current state of the network. The
learning rate γ is high if either:

• Confidence in old Q-value is low, or

• Confidence in new Q-value is high.

If the learning rate is high, the confidence in the updated
Q-value is closer to that of the estimated Q-value′s confi-
dence. Also, when a Q-value with low credence value is to
be updated, it is better to update this Q-value with a higher
learning rate.

The Q-values which are not updated recently do not re-
flect the current network traffic levels. So, the confidence in
these Q-values should go down. Hence, C-value is reduced
by 1 if the corresponding Q-value is not updated. On the
other hand, every update of Q-value is associated with a
corresponding update of C-value.

4.2 Learning packet
The proposed algorithm uses two types of packets in the

network namely, data packets and learning packets. It uses
separate virtual channels to propagate the packets. The
learning packet is generated when the data packet reaches
the next hop. As shown in Figure 2, it has four main fields
described as follows:

Direction Estimated Latency
(6-bits)(1-bit) (4-bits) (6-bits)

C-value Destination Switch

Figure 2: Learning Packet Format

Direction: It stores the direction of sender switch of the
learning packet. It is 0 for x-direction and 1 for y-direction.

Estimated Latency: It is the sum of local (waiting time
in the input buffer) and global (Q-value) congestion values.

C-value: It is the C-value associated with the chosen Q-
value in the above step.

Destination Switch: It contains the destination switch
of the data packet. However, for a large mesh network the
field size can be increased.

4.3 Initialization of Q-values and C-values
Q-learning based algorithms have an initial learning du-

ration. Due to the fact that even if the network is not con-
gested it may not choose minimal paths for all the data
packets. The solution is that for all the minimal paths the
Q-values should be initialized as “000000” and non-minimal
entries are set to “100000”. Therefore, when the network is
not congested, minimal paths are selected (due to low Q-
values) and when the network traffic increases packets may
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7 8 9
Table of Switch 1
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·

8 · · · · · ·
9 3/2 3/2

1 3

4

2

5 6

7 8 9
Table of Switch 2
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·

8 · · · · · ·
9 6/3 2/2

Learning rate (γ) = 0.1 ∗max{(10 − 2), 2} = 0.8

Updated values after receiving learning packet from switch 2

Q1(2, 9) = 3 + 0.8(2 + 0− 3) = 2

C1(2, 9) = 2 + 0.8(2 − 2) = 2

C1(4, 9) = 2− 1 = 1

Figure 3: Example of CrQ-routing (Q-value/C-value of Switch 1 and Switch 2 (green arrow shows learning packet and blue arrow
shows data packet))

be routed via non-minimal paths. Initially, the correspond-
ing C-values are set to 1, as the network is not learned yet.

4.4 CrQ-routing
When the switch x sends a data packet to its neighbor y

by selecting the direction with smaller Q-value,

1. Switch y extracts the destination d from the data
packet. It looks into its Q-table for the destination
d and directions (x and y). It selects the next hop
neighbor ẑ using Equation 3.

Qy(ẑ, d) = min
n∈N(y)

Qy(n, d) (3)

where N(y) is a set of neighbors of switch y.

2. Switch y computes best estimated latency (congestion
level) Qest

x (y, d) using Equation 4.

Q
est
x (y, d) = Qy(ẑ, d) + qy (4)

where Qy(ẑ, d) represents the next neighbor latency
(global congestion information from distant switches)
and qy is the waiting time in the input buffer of switch
y (local congestion information of the input port).

3. This estimated Q-value Qy(ẑ, d) along with its C-value
Cy(ẑ, d) is encapsulated in the learning packet and is
send to the switch x.

4. After receiving the learning packet, switch x ex-
tracts the estimated C-value Cy(ẑ, d) and computes
the learning rate γ using Equation 5,

γ = 0.1 ∗max(Cy(ẑ, d), 10− Cx(y, d)) (5)

where, Cx(y, d) is previous C-value at switch x corre-
sponding to switch y and destination d.

5. The Q-value is updated using Equation 6

Q
new
x (y, d) = Q

old
x (y, d) + γ

[

(Qy(ẑ, d) + qy) − Q
old
x (y, d)

]

(6)

Using the same learning rate (γ), the C-value asso-
ciated with the above Q-value is also updated. The
learning rate (γ) lies between 0 to 1.

C
new
x (y, d) = C

old
x (y, d) + γ

[

(Cy(ẑ, d)) − C
old
x (y, d)

]

(7)

6. The C-value (for dth row) corresponding to neighbor
other than y, is decremented by 1.

Cx(y
′
, d) = Cx(y

′
, d)− 1 (8)

where y′ is all neighbors of x except y.

It should be noted that any update in C-value or Q-value
is subject to the value lying within their respective range
and their values are rounded off, if the updates give decimal
values.

Hence, CrQ-routing is able to adapt itself to the changing
network scenario by adding confidence measures in the Q-
value update rule. The variable learning rate has improved
the quality of our proposed work in two ways:

• when the Q-values are unreliable, they are updated
more and,

• when the new estimates have high confidence, they
have a larger effect.

Figures 3-6 show an instance of CrQ-Routing in which
a data packet is to be routed from switch 1 to destination
switch 9. At switch 1 (as shown in Figure 3), the data packet
can choose any direction (x or y) whichever has smaller Q-
value. Since, the Q-values for destination 9 are same for both
x and y directions, CrQ-routing selects any one direction
randomly (say x) and forwards the packet in that direction.
When switch 2 receives this data packet, it selects switch
5 as the next hop using Equation 3 and computes the best
estimated latency (2) for this next hop neighbor using Equa-
tion 4. Switch 2 sends the estimated latency (next neighbor
congestion level is 2 and waiting time in the input buffer of
switch 2 is 0) along with credence value (2) encapsulated in
the learning packet to switch 1. After receiving the learn-
ing packet, switch 1 calculates the learning rate (γ) using
Equation 5 and updates the Q-values and C-values using
Equations 6 and 7 respectively, as shown in the Figure 3.

When the data packet reaches switch 5, it selects x-
direction to forward the packet because it has lower Q-value



21 3

4 5 6

7 8 9
Table of Switch 5
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·

8 · · · · · ·
9 5/5 7/3

Learning rate (γ) = 0.1 ∗max{(10 − 2), 5} = 0.8

Updated values after receiving learning packet from switch 5

Q2(5, 9) = 2 + 0.8(5 + 2− 2) = 6

C2(5, 9) = 2 + 0.8(5− 2) = 4

C2(3, 9) = 3− 1 = 2

Figure 4: Q-value/C-value of Switch 5 (red line shows ex-
ploratory path)

than the other and forms the learning packet. As can be seen
in Figure 4, switch 5 sends the learning packet to switch 2
and the data packet to switch 6 simultaneously. Switch 2
extracts the estimated latency (Q-value) as 7 (next neighbor
congestion level is 5 and waiting time in the input buffer of
switch 5 is 2) and corresponding C-value as 5 from the learn-
ing packet. Using these values, it calculates γ and updates
Q-value and C-value accordingly.

21 3

4 5 6

7 8 9
Table of Switch 6
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·
8 · · · · · ·

9 10/6 1/5

Learning rate (γ) = 0.1 ∗max{(10 − 5), 5} = 0.5

Updated values after receiving learning packet from switch 6

Q5(6, 9) = 5 + 0.5(1 + 4− 5) = 5

C5(6, 9) = 5 + 0.5(5− 5) = 5

C5(8, 9) = 3− 1 = 2

Figure 5: Q-value/C-value of Switch 6

As shown in Figure 5, switch 5 also receives the learning
packet (next neighbor congestion level is 1, waiting time is
4 and credence value is 5) from its neighbor (switch 6). It
updates the Q-value to 5 and the C-value to 5 using the
learning rate of 0.5. The C-value which is not associated
with Q-value update, is reduced to 2.

Similarly (Figure 6), when switch 9 receives and processes
the data packet sent by switch 6, it sends the learning packet
to switch 6. Switch 6 updates its Q-value to 4 and C-value
to 10 at the learning rate of 1.

21 3

4 5 6

7 8 9
Table of Switch 9
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·

8 · · · · · ·
9 0/10 0/10

Learning rate (γ) = 0.1 ∗max{(10 − 5), 10} = 1

Updated values after receiving learning packet from switch 9

Q6(9, 9) = 1 + 1(4 + 0− 1) = 4

C6(9, 9) = 5 + 1(10 − 5) = 10

C6(5, 9) = 6− 1 = 5

Figure 6: Q-value/C-value of Switch 9

5. PCrQ-ROUTING
In this section, we present an extension of CrQ-routing

called Probabilistic Credence based Q-routing (PCrQ-
routing). CrQ-routing uses credence values (C-values) to
measure the uncertainty in the corresponding Q-values and
to compute the learning rate. Although, CrQ-routing im-
proves the performance of the network in comparison with
other Q-routing algorithms using variable learning rate but
these C-values are not used in the exploring Q-values. As a
result, it may, at times, use a Q-value, which has not been
updated over a long period of time, to make the selection de-
cision which in turn increases congestion. Therefore, using
random selection decisions sometimes are useful in revert-
ing back to the optimal selection policy when the network
traffic condition is recovered. Also, the network is able to
effectively adapt itself once the normal conditions are re-
stored.

When the switch x sends a data packet to its neighbor y,

1. Switch y extracts the destination d from the data
packet. For the destination d, it computes the variance
for each Q-value using corresponding C-value. Let σ2

be the variance function and is computed using Equa-
tion 9:

σ
2 =

1

Cy(n, d)
∗ k,∀n ∈ N(y) (9)

where, N(y) is a set of neighbors of switch y, k is a
user defined parameter that defines rate of change of
Q-value. For optimal results, we have used k as 0.2.

2. Using the respective variance (σ2) of each Q-value for
destination d, new Q-value is calculated at switch y

using Equation 10:

Q
′

y(n, d) = (1− σ
2)Qy(n, d),∀n ∈ N(y) (10)

3. Switch y selects the next hop neighbor ẑ using Equa-
tion 11:

Q
′

y(ẑ, d) = min
n∈N(y)

Q
′

y(n, d) (11)

where Q′

y(n, d) is the Q-value calculated in step 2.



1 2 3

4 5 6

7 8 9
Table of Switch 1
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·

8 · · · · · ·
9 12/6 13/8

1 2 3

4 5 6

7 8 9
Table of Switch 2
d x-dir y-dir
1 · · · · · ·
2 · · · · · ·

3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·
7 · · · · · ·

8 · · · · · ·
9 17/9 20/1

Q′

2(5, 9) = (1 − 0.02)17 = 17 Q′

2(3, 9) = (1− 0.2)20 = 16

Learning rate (γ) = 0.1 ∗max{1, (10 − 6)} = 0.4

Updated values after receiving learning packet from switch 2

Q1(2, 9) = 12 + 0.4(16 + 4− 12) = 15

C1(2, 9) = 6 + 0.4(1− 6) = 4

C1(4, 9) = 8− 1 = 7

Figure 7: Example of PCrQ-routing (Q-value/C-value of Switch 1 and Switch 2 (green arrow shows learning packet and blue arrow
shows data packet))

4. Switch y computes the best estimated latency
Qest

x (y, d) using Equation 12:

Q
est
x (y, d) = Q

′

y(ẑ, d) + qy (12)

5. This estimated latency Qest
x (y, d) along with the asso-

ciated C-value Cy(ẑ, d) is encapsulated in the learning
packet and is sent to the switch x.

6. PCrQ-routing further follows the same steps as fol-
lowed by CrQ-routing (steps 4 to 6).

When the confidence in a Q-value is high, the correspond-
ing variance is low (Equation 9). Thus, it can be observed
from Equation 10 that the new Q-value (Q′(n, d)) is very
close to the previous Q-value (Q(n, d)). This illustrates the
fact that the previous Q-value represents the present state
of the network.

Similarly, when the confidence in a Q-value is low, vari-
ance is high and the new Q-value (Q′(n, d)) is far from the
previous Q-value (Q(n, d)). It means that the previous Q-
value (Q(n, d)) does not represent the present network sta-
tus, thus a new Q-value (Q′(n, d)) should be preferred. CrQ-
routing may not choose a path which was earlier more con-
gested (high Q-value and C-value) than the alternate path
(less Q-value), but now has become normal (still has same
Q-value but low C-value) and the alternate route has become
congested (but Q-value is still less than the other and high
C-value). PCrQ-routing chooses the path according to the
current state of the network as it calculates new Q-values
(Q′(n, d)) using the confidence values. Hence, it adapts the
present network in more efficient manner.

Figure 7 depicts an instance of the PCrQ-routing which
routes the data packet from switch 1 to switch 9. Switch
1 sends the data packet to switch 2 via x-direction. When
switch 2 processes this packet, it computes the variance and
new Q-value using Equation 9 and 10 respectively. The
newly computed Q-values for x and y directions are 16 and
17 respectively. PCrQ-routing chooses the next hop neigh-
bor as switch 3 due to lower Q-value (new). However, CrQ-

routing would have chosen y-direction for routing the data
packet as it has minimum Q-value of 17 in the table (with-
out any updates). Switch 2 sends the new Q-value (16)
plus waiting time in the input buffer of switch 2 (4) and
its associated C-value (1) in the learning packet to switch
1. Meanwhile, this data packet is forwarded to switch 3.
Switch 1 extracts the fields from the learning packet and
calculates the learning rate as 0.4 and thereafter, updates
its Q-value Q1(2, 9) to 15 and C-value C1(2, 9) to 4. The
other C-value C1(4, 9) which is not updated in the last step
is decremented by 1. The same procedure is followed by
other the intermediate switches until the packet reaches the
destination.

In short, PCrQ-routing is an extension of CrQ-routing in
such a way that the confidence values can be used to explore
and exploit route selection decisions. However, the usage of
new Q-values leads to exploration of new paths as the earlier
congested link might be back to normal now and as a result,
might lead to more adaption in the network.

6. EXPERIMENTAL SETUP AND RESULT

ANALYSIS
In this section, we analyze the performance achieved by

the proposed algorithms when compared with the compet-
ing routing algorithms. We use an in-house C based OCN
simulator to implement all the algorithms.

6.1 Experimental Setup
For our simulations, we use 4-stage pipelined router: IB

(storing data into the buffer), RT (route computation),
VA/SA (VC allocation/switch allocation) and X (crossbar).
The router uses wormhole flow-control with flit-level cross-
bar switching. The size of the router queues is 6 flits. We
use regular 4× 4 and 8× 8 mesh networks for the analysis.
We use two virtual networks with one virtual channel each.
To propagate data packets, one virtual network is used along
each dimension, while for learning packets, one separate vir-
tual network is utilized. Messages are 32-flits long with a
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Figure 8: Average Latency for different traffic patterns for 4× 4 mesh

 0

 100

 200

 300

 400

 500

 600

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

Injected Traffic (flits/cycles/nic)

A
v
e
r
a
g
e

la
te

n
c
y

(c
y
c
le
s
/
n
ic
)

CADuQ-routing
PCrQ-routing
CrQ-routing
Q-routing

(a) Uniform Traffic

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.05  0.1  0.15  0.2

Injected Traffic (flits/cycles/nic)

A
v
e
r
a
g
e

la
te

n
c
y

(c
y
c
le
s
/
n
ic
)

CADuQ-routing
PCrQ-routing
CrQ-routing
Q-routing

(b) Shuffle Traffic

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.05  0.1  0.15  0.2

Injected Traffic (flits/cycles/nic)

A
v
e
r
a
g
e

la
te

n
c
y

(c
y
c
le
s
/
n
ic
)

CADuQ-routing
PCrQ-routing
CrQ-routing
Q-routing

(c) Bit-Complement Traffic

Figure 9: Average Latency for different traffic patterns for 8× 8 mesh

flit size of 4 bytes. We train all the algorithms for 12000
messages and then perform the testing using another 20000
messages. We use west-first routing algorithm as the un-
derlined routing algorithm. The metric used for measuring
the performance is the latency. Latency is defined as the
time duration when the head flit is injected at the source
core to the time when the tail flit is delivered to the desti-
nation core. We analyze CrQ-routing and PCrQ-routing for
both uniform (random) and non-uniform traffic (shuffle and
bit-complement) patterns.

6.2 Performance Evaluation

6.2.1 Traffic Patterns

In this section, we evaluate the latency results for the
different traffic patterns. Figures 8 and 9 show the average
end-to-end latency for 4 × 4 and 8 × 8 mesh sizes. In the
uniform traffic pattern, a switch sends a packet to other
switches with a uniform probability distribution.

We can observe from Figure 8 that for low flit-injection
rate all the algorithms almost exhibit low latency. Later
on, as the flit-injection rate increases both CrQ-routing and
PCrQ-routing perform better than other algorithms for uni-
form, shuffle and bit-complement traffic patterns due to
the fair load distribution in the mesh. It should be noted
that PCrQ-routing performs better than CrQ-routing as for-
mer uses random Q-values which improves its adaption and
performance in comparison to CrQ-routing and other algo-
rithms.

Similarly in Figure 9 for low and medium traffic loads, we
observe that the Q-routing schemes (Q-routing, CADuQ)
behave same as CrQ-routing and PCrQ-routing. As the
load increases, Q-routing variants are unable to tolerate
the high traffic load condition, while PCrQ-routing outper-
forms by learning the network efficiently. CrQ-routing also
performs better than other routing schemes (except PCrQ-
routing). PCrQ-routing leads to the lowest latency as it
increases adaptability manifold and distributes traffic more
efficiently than the competing routing algorithms. In Q-
routing, CADuQ and CrQ-routing, packets use a Q-value
which has not been updated over a long time (low C-value).
But PCrQ-routing performs considerably better than other
variants as the selection decision uses the C-value to cap-
ture the congestion precisely. Hence, it quickly adapts the
network and alleviates congestion in the network. The CrQ-
routing and PCrQ-routing algorithms saturate at higher
traffic load levels as compared to other algorithms.

6.2.2 Area Analysis

Table 1 shows the area requirement for different mesh sizes
for all the algorithms. It should be noted that the size of
Q-table is calculated using n×m× k, where n is number of
switches, m is number of output channels and k is the size of
each entry in the table. For Q-routing and CADuQ-routing,
the value of k used is 6 bits, while CrQ-routing and PCrQ-
routing uses k as 10 bits (6 bits for Q-value and 4 bits for
C-value). We observe that the proposed algorithms have an
acceptable area overhead.



Table 1: Area of Q-tables for Different Mesh Sizes

Algorithms/Size Q-routing [9] CADuQ [7] CrQ-routing PCrQ-routing

5×5 150 bytes 150 bytes 250 bytes 250 bytes

10×10 600 bytes 600 bytes 1000 bytes 1000 bytes

15×15 1350 bytes 1350 bytes 2250 bytes 2250 bytes

6.3 Implementation Analysis
To estimate the hardware cost of all algorithms, we have

implemented routing logic of each algorithm with Verilog
and synthesized with FPGA xilinx vivado tool for kintex-7
board with device xc7k325t-fbg900. The device area utiliza-
tion and power consumption for each scheme is shown in
Table 2. It can be observed that the proposed algorithms
consume slightly more power with small area overhead

Table 2: Area and Power Analysis

Algorithms Area (in LUTs) Power (in Watt)

Q-routing [9] 525 0.152

CADuQ [7] 760 0.155

CrQ-routing 860 0.156

PCrQ-routing 988 0.158

7. CONCLUSIONS AND FUTURE WORK
In the existing Q-learning based approaches, some non-

congested paths are avoided by the packets as their Q-values
do not reflect the current network scenario. Thus, the selec-
tion decisions can be inaccurate on these stale Q-values as
they do not represent the current congestion state of the net-
work. To address this issue, we have proposed techniques to
adjust the learning rate with the network condition (CrQ-
routing) and to select a less congested output channel on
the basis of its reliability (PCrQ-routing). The results show
that the proposed algorithms are able to route packets more
effectively by alleviating congestion and achieve significant
performance improvement over traditional Q-learning based
algorithms with slight area and power overheads. In future,
we plan to reduce the area overhead at the switches.
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