
High Performance Fault-Tolerant Routing Algorithm
for NoC-based Many-Core Systems

Masoumeh Ebrahimi, Masoud Daneshtalab, Juha Plosila
Department of Information Technology, University of Turku

{masebr, masdan, juplos}@utu.fi
Abstract— Networks-on-Chip (NoCs) has become a promising
approach for the on-chip communication infrastructure of many-
core Systems-on-Chip (SoCs). Faults may occur in the NoC both
at the router and link level. There are many fault-tolerant
approaches presented both in the off-chip and on-chip networks.
Some approaches disable some healthy components in order to
form a specific shape and others not. Regardless of all varieties,
there has always been a common assumption among them. Most
of all traditional fault-tolerant methods are based on rerouting
packets around a faulty node or region. These approaches affect
the performance significantly not only by taking longer paths but
also by creating hotspot around a fault. The focus of this paper is
to maintain the performance of NoC in the presence of faults.
The presented method takes advantage of a fully adaptive routing
algorithm using one and two virtual channels along the X and Y
dimensions. This method is able to tolerate all cases of one-faulty
node without losing the performance of NoC. According to the
experimental results, this presented fault-tolerant routing
algorithm is able to support up to six faulty nodes in the 8×8
mesh network by up to 98% reliability.

Keywords-component: Networks-on-Chip; Fully adaptive
algorithms; fault-tolerant approaches; the shortest paths

I. INTRODUCTION

As the number of processing elements integrated in a single
chip is increasing, traditional bus-based architectures in Many-
Core Systems-on-Chip (MCSoCs) are inefficient and new
communication infrastructure is needed. Networks-on-Chip
(NoC) has emerged as a promising solution for on-chip
interconnection in MCSoCs due to its scalability, reusability,
flexibility, and parallelism [1]- [4].

Transient and permanent faults are two different types of
faults that can occur in on-chip networks [5] [6]. Transient
faults are temporary and unpredictable. They are often
difficult to be detected and corrected. Permanent faults are
caused by physical damages such as manufacturing defects
and device wear-out. In this paper, permanent faults are taken
into consideration.

Routing techniques provide some degrees of fault tolerance
in NoCs which can be categorized into deterministic and
adaptive [7]- [12]. A deterministic routing algorithm uses a
fixed path for each pair of nodes resulting in increased packet
latency especially in congested networks. Implementations of
deterministic routing algorithms are simple but they are unable
to balance the load across the links in a non-uniform traffic. In
adaptive routing algorithms, a packet is not restricted to a
single path when traveling from a source node to its
destination. So they can decrease the probability of routing
packets through congested or faulty regions. That is, adaptive

routing algorithms not only can avoid congestion in the
network but also can provide better fault-tolerant
characteristics by utilizing alternative routing paths.

Virtual channels can be used for different purposes in the
network: avoiding deadlock, increasing performance, and
tolerating faults, but they are imposing extra costs.

In this paper, we present a novel routing algorithm named
High Performance Fault-tolerant Routing (HiPFaR). The
main idea of this algorithm is to tolerate faults without
affecting the performance. We take a fully adaptive routing
algorithm into account with the minimum number of virtual
channels (i.e. one and two virtual channels along the X and Y
dimensions). There are eight different positions regarding the
source and destination nodes as east, west, north, south,
northeast, northwest, southeast, and southwest. In this
category, east-, west-, north-, and south-ward packets have to
take a non-minimal path when facing faults. To support non-
minimal routing, a set of allowable turns is defined in the
network. It is proven that the network using these turns is
deadlock free. Moreover, it is shown that faulty nodes in the
network can be tolerated by northeast-, northwest-, southeast-,
and southwest-ward packets without taking non-minimal
paths. The proposed algorithm needs only the fault
information of four direct neighboring nodes in order to make
a correct decision.

The rest of this paper is organized as follows: Section II
reviews the related work. Preliminaries are given in Section
III. The proposed fault-tolerant routing algorithm is presented
in section IV. The results are investigated in Section V while
we summarize and conclude in the last section.

II. RELATED WORK

In interconnection networks, there are two different groups
of fault-tolerant routing algorithms dealing with permanent
faults. The first group, handling convex shapes, is based on
defining fault ring or fault chain around faulty regions. Some
healthy nodes might be disabled in order to form a specific
shape [13] [14] [15] [16].

The second group utilizes the contour strategy for
addressing faults [17] [18] [19] which is divided in two
subgroups: methods using virtual channels [18] [20] [21] and
those without using virtual channels [19] [22]. The virtual
channel-based fault-tolerant routing algorithms are more
efficient than those without virtual channels.

In [17], the deterministic routing is able to tolerate all one-
faulty routers in 2D mesh network without using virtual
channels and disabling healthy nodes. In this algorithm, based
on the convex areas, a reconfigurable routing algorithm is used

to provide the possibility of routing packets through a cycle
free surrounding the convex areas. However, to support more
faulty nodes, the contours must not be overlapped and thus
faulty routers should be located far away from each other. In
addition, this method requires collecting the fault information
of at least eight neighboring nodes (direct and indirect).

In this paper, the proposed fault-tolerant routing algorithm
is based on a fully adaptive routing algorithm using the
minimum number of virtual channels. It requires collecting the
fault information of only four neighboring nodes. Based on
this knowledge, it is able to deliver packets through the
available shortest paths.

III. PRELIMINARIES

Fig. 1(a) shows a typical router in the XY network. In this
figure, each input channel is paired with a corresponding
output channel. By adding two virtual channels per physical
channel, a double-XY network is obtained (Fig. 1(b)). The
virtual channels in each dimension are differentiated by vc1
and vc2. Fig. 1(c) shows the double-Y network in which one
and two virtual channels are used along the X and Y
dimensions, respectively. Each router in the double-Y network
has seven pairs of channels, i.e. East(E), West(W), North-
vc1(N1), North-vc2(N2), South-vc1(S1), South-vc2(S2), and
Local(L). The idea of this paper is developed upon a double-Y
network. However it can be implemented on a double-XY
network or a network with a larger number of virtual channels.

Fig. 1. A router in (a) XY (b) double-XY (c) double-Y network

IV. MINIMAL PATH ROUTING IN FAULTY NETWORK

In this section, we present a routing algorithm named High
Performance Fault-tolerant Routing (HiPFaR). Unlike
traditional methods, by using HiPFaR, packets possibly have
alternative choices of minimal paths when facing a faulty
node. By this approach, all packets can be routed through the
network using the shortest paths, as long as a path exists. We
start by defining a set of allowable turns in which non-minimal
paths can be used to support faults in the case of east-, west-,

north-, and south-ward packets. Then, it is proven that
thenetwork using these allowable turns is deadlock free. We
continue by examining the possibility of choosing the shortest
paths for northeast-, northwest-, southeast-, and southwest-
ward packets.

A. Turn Models and Tolerating Faults
The proposed fault-tolerant routing algorithm is based on

fully adaptive routing algorithms. In this paper, one and two
virtual channels are used along the X and Y dimensions. This
is the minimum number of virtual channels that can be
employed to provide fully adaptiveness. In double-Y
networks, commonly the following method is used to
guarantee the deadlock freeness. The network is partitioned
into two sub-networks called +X and –X, each having half of
the channels in the Y dimension. Eastward packets are routed
through +X sub-network (i.e. by using the first virtual channel
(vc1) in the Y dimension) while westward packets are
propagated within -X sub-network (i.e. by using the second
virtual channel (vc2) along the Y dimension). Allowable and
non-allowable turns are shown in Fig. 2(a). According to this
figure the turns N1-E, E-S1, S1-E, E-N1, W-N2, S2-W, W-S2,
N2-W, S1-S1, N1-N1, S2-S2, and N2-N2 are allowable while
the others are prohibited.

One of the aims of this paper is to tolerate faults using the
available shortest paths. A non-minimal route is necessitated
when the source and destination nodes are located in the same
row or column with a faulty node between them. Fig. 3(a) and
Fig. 3(b) indicate the cases where the destination of a packet is
to the east and west of the source, respectively, and there is a
faulty node in the path. In these cases, there are two options to
misroute a packet when facing a faulty node: turning to the
north direction (i.e. the given turns are E-N1, N1-E, and E-S1
in Fig. 3(a) and W-N2, N2-W, and W-S2 in Fig. 3(b)) or
turning to the south direction (i.e. the given turns are E-S1, S1-
E, and E-N1 in Fig. 3(a) and W-S2, S2-W, and W-N2 in Fig.
3(b)). By investigating the required turns to perform
misrouting, it can be obtained that all of the turns are within the
set of allowable turns (Fig. 2(a)). Therefore, east- and west-
ward packets can turn either to the north or south direction
when facing faults. The situation is different for north- and
south-ward packets since all the required turns are not in a set
of allowable turns. For example, in Fig. 3(c) and Fig. 3(d), the
turns N2-E, N1-W, S2-E, and S1-W are prohibited. One might
think that alternative turns like N1-E, N2-W, S1-E, and S2-W
are allowable and can be taken. However, according to Fig.
2(a) packets cannot switch from the first to the second virtual
channel along the Y dimension or vice versa (i.e. the turns N2-
N1, N1-N2, S1-S2, and S2-S1 are not allowable in Fig. 2(a)).

Fig. 2. Allowable and non-allowable turns in the double-Y network

Fig. 3. The possibility of tolerating faulty nodes using the allowable turns of Fig. 2(a) when the destination is in the (a) east (b) west (c) north
(d) south direction of the source node

O
nl

y
in

 L
ef

t B
or

de
rli

ne

O
nl

y
in

 L
ef

t B
or

de
rli

ne

Fig. 4. Tolerating faulty nodes by using non-minimal paths when the destination is in the (a) north (b) south direction. The exceptional cases are
shown in (c) and (d) where a fault occurs on the left borderline

To allow north- and south-ward packets to turn around
faults, two more turns are added into the set of allowable turns.
These turns are W-N1 and W-S1, indicated in Fig. 2(b). In this
way, north- and south-ward packets should be misrouted to the
west direction when facing faults (Fig. 4(a) and Fig. 4(b)).
Exceptionally, when the fault occurs in the left borderline,
packets have to take the east direction to bypass the fault. This
results in taking N1-W and S1-W turns which are prohibited by
HiPFaR. However, according to [17] a cycle cannot be
completed in borderlines and thus these non-allowable turns
can be safely taken in these cases.

B. HiPFaR is Deadlock Free
It should be proven that by allowing two additional turns in

HiPFaR, the network remains deadlock free. We use a
numbering mechanism similar to the mad-y routing
algorithm [23]. A two-digit number (a, b) is assigned to each
output channel of a switch in n×m mesh network. According to
the numbering mechanism, a turn connecting the input channel
(aic, bic) to the output channel (aoc, boc) is called an ascending
turn when (aoc>aic) or ((aoc=aic) and (boc>bic)). Fig. 5 shows how
the channels of a switch at the position (x,y) are numbered. By
using this numbering mechanism, it is guaranteed that all
allowable turns in Fig. 2(a) and Fig. 2(b) are taken in the
strictly increasing order, so that the HiPFaR routing algorithm
is deadlock free. For instance, if the W-N1 turn is taken into
consideration, the west input channel with label (aic= m+x,
bic=0) is connected to the first virtual channel of the north
output port having the label (aoc=m+x, boc=1+y). This turn
takes place in an ascending order since ((aoc=aic) and (boc>bic)).
Similarly, all the other turns allowed by HiPFaR are taken in an
ascending order.

Fig. 5. The numbering mechanism of HiPFaR, similar to mad-y [23]

C. Shortest Paths and Tolerating Faulty Nodes
Let us assume that there is a faulty node in the network. As

it is already discussed, the fault is bypassed using non-minimal
paths when the source and destination nodes are located in the
same row or column. In other cases, only the shortest paths are
taken from the source to the destination node. In Fig. 6, for the
ease of understanding we investigate HiPFaR for a northeast-
ward packet. However, as it will be shown in Subsection IV-D,
the HiPFaR routing algorithm is general and can be applied to
northwest-, southeast-, and southwest-ward packets without
any implementation differences.

Fig. 6. The basic rules for selecting among the neighboring nodes when a packet gets close to the destination node

Fig. 7. Different positions of current, destination and a faulty node

As shown in Fig. 6(a) and Fig. 6(b), the packet is one hop
away from the destination node in both the X and Y
dimensions (x-dir=1 and y-dir=1). By default, the packet is
sent to the Y direction (Fig. 6(a)). However, when the north
neighboring node is faulty, the packet is delivered to the X
direction (Fig. 6(b)). Fig. 7(a) shows the possible cases where
the distances along both the X and Y directions are one hop.
As illustrated in this figure, in positions 1 and 2, the packet is
delivered to the Y direction since the north neighboring node
is healthy. In positions 3, the packet is sent to direction X
since the north neighboring node is faulty. Thereby, in all
three positions, the packet can reach the destination using the
shortest paths.

In Fig. 6(c) and Fig. 6(d), the distance is one and two (or
greater than two) hops along the X and Y directions (x-dir=1
and y-dir>=2), respectively. The rule is similar to the previous
case in which the packet is sent to the Y direction unless the
north neighboring node is faulty (i.e. in this case, the packet is
delivered to the X direction). According this rule, in positions
1, 2, and 3 of Fig. 7(b), since the north neighboring node is
healthy, the packet is sent to the Y direction. In the next hop,
the packet stands in one of the positions of Fig. 7(a) (i.e.
already shown that packets can reach destination node using
the shortest paths in the presence of fault). In position 4, the

north neighboring node is faulty, and thus the packet is sent to
the X direction. This packet reaches the destination using the
shortest path as the faulty node is already bypassed.

Fig. 6(e) and Fig. 6(f) indicate the cases where the distances
are two hops (or greater than two) and one hop (x-dir>=2 and
y-dir=1) along the X and Y dimensions. The rule is as simple
as avoiding to send the packet in the Y direction when the east
neighboring node is healthy. Fig. 7(c) shows the different
positions of the current, destination and a faulty node. In
positions 1, 2, and 3, the packet is sent to the X direction as
the east neighboring node is healthy. In the next hop, the
packet stands in one of the positions of Fig. 7 (a). If the east
neighboring node is faulty (position 4), the packet is delivered
to the destination through the north neighboring node.

When the distances along both directions are two or greater
than two hops, the packet is sent to a non-faulty neighboring
node (Fig. 7(d)). By routing the packet with this policy, the
packet reaches one of the positions of Fig. 7(b) or Fig. 7(c). In
sum, in all faulty cases, the packet is routed to the destination
node through the shortest paths. In a case where both
neighboring nodes are healthy, one direction is chosen based
on the congestion information. Therefore, HiPFaR is fully
adaptive as long as the remaining distance along both
directions is equal or greater than two hops.

According to these rules, each node needs to know only the
fault information of the four neighboring nodes shown in Fig.
6(g).

D. The HiPFaR Routing Algoritm
The HiPFaR routing algorithm can be explained into two

parts, when the destination is in the east, west, north and south
directions of the source node (Fig. 8); and when the
destination is in the northeast, northwest, southeast, and
southwest directions of the source node (Fig. 9). In these
figures, the position is specified based on the source and
destination position. The x-dir and y-dir parameters determine
the minimal directions toward the destination node regarding
the current node. The delta-x and delta-y parameters maintain
the remaining distances from the current to the destination
node along the X and Y dimensions. Finally, vc indicates the
proper virtual channel. According to HiPFaR, the first virtual
channel of the Y dimension is used when the destination is
toward the east, northeast, and southeast directions of the
source node. Similarly, the second virtual channel is utilized
for west-, northwest-, and southwest-ward packets. The north-
and south-ward packets start routing in the second virtual
channel. They switch to the first virtual channel after
bypassing a fault. In Fig. 8 when the packets are either east- or
west-ward and delta-y is equal to zero, there are two options:
making a turn to either the north or south direction when and
there is a fault in the path; otherwise continuing in the x-dir
direction. However, when the packet is already misrouted to
the north or south direction, it has to be routed along the x-dir
until delta-x becomes zero. At this point, the packet can be
delivered to the destination node by turning to the Y direction.
The north- and south-ward packets start routing in the second
virtual channel as long as they do not face a fault. To bypass
the fault, normally the turn to the west direction is made. In a
case where the faulty node is located in the left borderline, the
turn to the east direction should be made. In the next hop, the
packet switches to the first virtual channel of the Y direction
and continue routing along this direction until delta-y becomes
zero. At this point, a turn to the east or west direction is
needed to deliver the packet to the destination node.

A minimal routing algorithm is used for northeast-,
northwest-, southeast-, and southwest-ward packets. Packets
can be adaptively routed within the network when they are far
away from the destination node (two or more than two hops
along both X and Y dimensions). At each intermediate node,
the congestion information is used to send a packet to one of
the non-faulty neighboring nodes which are located in the
minimal path. When the distance along the X direction reaches
one, the packet should be always sent to the Y direction. The
exception case is that the north neighboring node is faulty and
thus the packet should be delivered to the X direction. On the
other hand, when the distance along the Y direction is one
while the distance along the X direction is greater than one,
the packet should be sent to the X direction unless the east
neighboring node is faulty. When the distance reaches zero
along the X or Y direction, the packet should be sent through

the non-zero direction. All the intermediate nodes in the
remaining path would be healthy (by assuming one faulty
node in the network,) as the fault is already bypassed. If there
are more faulty nodes in the network, in most cases the packet
bypasses the faults before getting close to the destination.
However, there are some cases in which non-minimal paths
are required in order to bypass multiple faulty nodes. Since the
scope of this paper is only minimal paths, we simply assume
that these cases of multiple faulty nodes could not be
supported by HiPFaR.

Fig. 8. Pseudo VHDL code of HiPFaR when destination is in the east,
west, north, or south direction of the source node

Dx,Dy: X and Y positions of the destination node
Sx,Sy: X and Y positions of the source node
Cx,Cy: X and Y positions of the current node
E: East; W: West;
N: North; S: South;
vc: Virtual Channel;

position <= E WHEN Dx>Sx AND Dy=Sy;
position <= W WHEN Dx<Sx AND Dy=Sy;
position <= N WHEN Dx=Sx AND Dy>Sy;
position <= S WHEN Dx=Sx AND Dy<Sy;

x_dir <= E if Dx>Cx ELSE W;
y_dir <= N if Dy>Cy ELSE S;

vc <= vc1 WHEN position={E} ELSE
vc2 WHEN position={W};

delta_x <= Dx-Cx when Dx>Cx else Cx-Dx;
delta_y <= Dy-Cy when Dy>Cy else Cy-Dy;

IF position={E or W} THEN
 IF (delta_Y=0) THEN

IF neighboring_node(x_dir)=faulty THEN
 choice <= N(vc) or S(vc);

ELSE
 choice <= x_dir;
END IF;

 ELSE
IF neighboring_node(y_dir)=dest. THEN
 choice <= y_dir(vc);
ELSE
 choice <= x_dir;
END IF;

 END IF;
ELSIF position={N or S} THEN
 IF (delta_x=0) THEN

IF neighboring_node(y_dir)=faulty THEN
 IF Cx/=0 THEN

choice <= west direction;
 ELSE --left borderline

choice <= east direction;
 END IF;
ELSE
 choice <= y_dir(vc2);
END IF;

 ELSE
IF neighboring_node(x_dir)=dest. THEN
 Choice <= x_dir;
ELSE
 Choice <= y_dir(vc1);
END IF;

 END IF;
END IF;

Fig. 9. Pseudo VHDL code of HiPFaR when destination is in
northeast, northwest, southeast, or southwest direction of the source

V. EXPERIMENTAL RESULTS

To evaluate the efficiency of the proposed routing scheme,
a NoC simulator is developed with VHDL to model all major
components of the on-chip network [24] [25]. For all the
routers, the data width is set to 32 bits. Each input buffer can
accommodate 8 flits in each virtual channel. Moreover, the
packet length is uniformly distributed between 5 and 10 flits.
As a performance metric, we use latency defined as the
number of cycles between the initiation of a message issued by
a Processing Element (PE) and the time when the message is
completely delivered to the destination PE. The request rate is
defined as the ratio of the successful message injections into
the network over the total number of injection attempts. The
simulator is warmed up for 12,000 cycles and then the average
performance is measured over another 200,000 cycles.

We defined our baseline as a detour strategy similar to [17].
To have a fair comparison, one and two virtual channels are
used along the X and Y directions, respectively, for the
baseline model. A virtual channel is selected based on the free
number of buffer slots at the input buffer of the neighboring
routers. Unlike HiPFaR, the baseline method is based on a
detour strategy and thereby packets may take unnecessary
longer paths to reach destinations.
A. Performance Analysis under Uniform Traffic Profile

In the uniform traffic profile, each processing element (PE)
generates data packets and sends them to another PE using a
uniform distribution [26]. The mesh size is considered to be
4×4. The average communication latency of HiPFaR and the
baseline method are compared with zero- and one-faulty node
cases. As observed from the results shown in Fig. 10(a), the
performance of both methods is comparable since both
methods are not fully adaptive. Although the baseline method
is based on a deterministic routing algorithm, it performs
slightly better than HiPFaR. The reason is that in the baseline
method, packets can switch between the virtual channels in the
Y dimension while in HiPFaR the packet adaptivity (between
the X and Y dimensions) is limited when the packet gets close
to the destination node. But, as the network enlarges both
algorithms behave with a similar performance. In a one-faulty
case, HiPFaR outperforms the baseline method. This is due to
the fact that HiPFaR can route packets through the shortest
paths while in the baseline method, packets may take longer
paths when facing a faulty node.
B. Performance Analysis under Hotspot Traffic Profile

Under the hotspot traffic pattern, one or more nodes are
chosen as hotspots receiving an extra portion of the traffic in
addition to the regular uniform traffic. In simulations, given a
hotspot percentage of H, a newly generated message is
directed to each hotspot node with an additional H percent
probability. We simulate the hotspot traffic with a single
hotspot node at (2, 2) in 4×4 2D mesh network. The
performance of the HiPFaR and the baseline method is
measured for fault-free and one-faulty node cases. The
performance of each network with H = 10% is illustrated in
Fig. 10(b). As observed from the figure, in the hotspot traffic
and in both faulty and non-faulty cases, the performance gain
of HiPFaR is larger than the detour-based scheme (baseline).
C. Reliability Evaluation under Uniform Traffic Profile

To evaluate the reliability of HiPFaR, the number of faulty
nodes increases from 1 to 6. All faulty nodes are selected
using a random function. The results are obtained using 10000
iterations in an 8×8 mesh network when the traffic is uniform
random. Reliability is measured based on the number of
successful packet arrivals at the destination nodes into the total
number of delivered packets. In simulation, we assume that
faulty nodes can act as a source and destination node but not
as an intermediate node. In other words, they can send and
receive packets but packets cannot be passed through them. As
shown in Fig. 11, HiPFaR can tolerate up to six faulty nodes
by more than 98% reliability.

Dx,Dy: X and Y positions of the destination node
Sx,Sy: X and Y positions of the source node
Cx,Cy: X and Y positions of the current node
E: East; W: West;
N: North; S: South;
vc: Virtual Channel;

position <= NE WHEN Dx>Sx AND Dy>Sy;
position <= NW WHEN Dx<Sx AND Dy>Sy;
position <= SE WHEN Dx>Sx AND Dy<Sy;
position <= SW WHEN Dx<Sx AND Dy<Sy;

x_dir <= E WHEN Dx>Cx ELSE W;
y_dir <= N WHEN Dy>Cy ELSE S;

vc <= vc1 WHEN position={NE or SE} ELSE
vc2 WHEN position={NW or SW};

Delta_x <= Dx-Cx WHEN Dx>Cx else Cx-Dx;
Delta_y <= Dy-Cy WHEN Dy>Cy else Cy-Dy;

IF position={NE, NW, SE, or SW} THEN
 IF (delta_x>=1 AND delta_y=0) THEN

choice <= x_dir;
 ELSIF (delta_x=0 AND delta_y>=1) THEN

choice <= y_dir(vc);
 ELSIF (delta_x=1 AND delta_y>=1) THEN

IF neighboring_node(y_dir)=faulty THEN
 choice <= x_dir;
ELSE
 choice <= y_dir(vc);
END IF;

 ELSIF (delta_x>1 AND delta_y=1) THEN
IF neighboring_node(x_dir)=faulty THEN
 choice <= y_dir(vc);
ELSE
 choice <= x_dir;
END IF;

 ELSIF (delta_x>=2 AND delta_y>=2) THEN
IF neighboring_node(x_dir)=faulty THEN
 choice <= y_dir(vc);
ELSIF neighboring_node(y_dir)=faulty THEN
 choice <= x_dir;
ELSE

 choice <= x_dir or y_dir(vc);
END IF;

 END IF;
END IF;

Fig. 10. Performance analysis of HiPFaR and the baseline method in 4×4 mesh network (a) under uniform traffic profile (b) hotspot traffic
profile in fault-free and one-faulty cases

Fig. 11. Reliability evaluation of HiPFaR in 8×8 mesh network under uniform traffic profile

D. Hardware Analysis
To assess the area overhead and power consumption, the

whole platform of each method is synthesized by Synopsys
Design Compiler. We compared the area overhead and power
consumption of HiPFaR with the baseline method. The power
consumption of both methods is measured in one-faulty node
case. For each scheme we include network interfaces, routers,
and communication channels. For synthesizing we use the
UMC 90nm technology at the operating frequency of 1GHz
and supply voltage of 1V. We perform place-and-route, using
Cadence Encounter, to have precise power and area
estimations. The power dissipation is calculated using
Synopsys PrimePower in a 6×6 2D mesh. The layout area and
power consumption of each platform are shown in Table 1. As
indicated in the table, HiPFaR has a lower area overhead than
the baseline method. It is because of using a more complex
router in the baseline method.

Table 1. Details of hardware implementation

Network platforms Area (mm2) Power (W)
dynamic & static

HiPFaR 6.794 2.39

baseline 6.903 2.53

VI. CONCLUSION
In this paper, we present a fault-tolerant routing algorithm

named HiPFaR. This algorithm is built upon a fully adaptive
routing algorithm with the minimum number of virtual
channels (i.e. one and two virtual channels along the X and Y
dimensions). This idea is general and can be applied to a
network with a higher number of virtual channels. HiPFaR
uses the shortest paths from the source to the destination node
in the faulty network. When the packet is east-, west-, north-,
or south-ward, a non-minimal path is necessitated to bypass a
fault. It was proven that, the non-minimal paths can be taken
in the network without creating any cycle. The analyses under
the uniform random and hotspot traffic indicate that HiPFaR
maintains the performance of NoC in the presence of faults.
Finally, the reliability analyses show that HiPFaR is highly
resilient under multiple faulty nodes by more than 98%
reliability when there are six faulty nodes in the 8×8 mesh
network.

ACKNOWLEDGMENT

 The authors wish to acknowledge Nokia, Elisa, and Kaute
Foundations for the partial financial support during the course
of this research.

0

50

100

150

200

250

300

350

0 0,1 0,2 0,3 0,4 0,5

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycles)
(a)

HiPFaR: 0-fault
Baseline: 0-fault
HiPFaR: 1-fault
Baseline: 1-fault

0

50

100

150

200

250

300

350

0 0,05 0,1 0,15 0,2 0,25 0,3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycles)
(b)

HiPFaR: 0-fault
Baseline: 0-fault
HiPFaR: 1-fault
Baseline: 1-fault

96

97

98

99

100

1-faulty node 2-faulty node 3-faulty node 4-faulty node 5-faulty node 6-faulty node

Re
lia

bi
lit

y
(%

)

REFERENCES
[1] Xu, Jiang, W. Wolf, J. Hankel, S. Charkdhar, “A Methodology

for design, modeling and analysis for networks-on-Chip,” IEEE
International Symposium on Circuits and Systems, pp. 1778-
1781, 2005.

[2] M. Daneshtalab et al., “Adaptive Input-output Selection Based
On-Chip Router Architecture,” Journal of Low Power
Electronics (JOLPE), Vol. 8, No. 1, pp. 11-29, 2012.

[3] W. Tsai, D. Zheng, S. Chen, and Y.H. Hu, “A fault-tolerant
NoC scheme using bidirectional channel”, in Proc. DAC,
pp.918-923, 2011.

[4] E. Rijpkema et al., “Trade offs in the design of a router with
both guaranteed and best-effort services for networks on chip,”
in Proc. DATE’03, pp. 350-355, 2003.

[5] M.H Neishaburi et al., “A HW/SW Architecture to Reduce the
Effects of Soft-Errors in Real-Time Operating System Services,”
in Proceedings of IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS), pp.1 - 4, Apr
2007, Poland.

[6] M. H. Neishaburi, Z. Zilic, “An enhanced debug-aware network
interface for Network-on-Chip,” in proc. of International
Symposium on Quality Electronic Design (ISQED), pp. 709-
716, 2011.

[7] J. Duato, S. Yalamanchili, L. Ni, “Interconnection networks: an
engineering approach”, Morgan Kaufmann Publishers, 2003.

[8] M. Ebrahimi et al., “CATRA-Congestion Aware Trapezoid-
based Routing Algorithm for On-Chip Networks,” in
Proceedings of 15th ACM/IEEE Design, Automation, and Test
in Europe (DATE), pp. 320-325, 2012.

[9] M. Ebrahimi et al. “HARAQ: Congestion-Aware Learning
Model for Highly Adaptive Routing Algorithm in On-Chip
Networks,” in Proceedings of 6th ACM/IEEE International
Symposium on Networks-on-Chip (NOCS), pp. 19-26, 2012.

[10] X. Chang et al. “PARS – An Efficient Congestion-Aware
Routing Method for Networks-on-Chip,” in Proceedings of 16th
IEEE International Symposium on Computer Architecture and
Digital Systems (CADS), pp. 166-171, 2012.

[11] M. Dehyadegari et al. “An Adaptive Fuzzy Logic-based Routing
Algorithm for Networks-on-Chip,” in Proceedings of 13th
IEEE/NASA-ESA International Conference on Adaptive
Hardware and Systems (AHS), pp. 208-214, 2011.

[12] M. Daneshtalab et al. “Distributing Congestions in NoCs
through a Dynamic Routing Algorithm based on Input and
Output Selections,” in Proceedings of 20th IEEE International
Conference on VLSI Design (VLSID), pp. 546-550, 2007.

[13] D. Fick et al. “Vicis: a reliable network for unreliable silicon”,
in Proc. of Design Automation Conference, pp. 812-816, 2009.

[14] S. Chalasani, R.V. Boppana, “Fault-tolerant wormhole routing
algorithms for mesh networks”, IEEE Trans on Computers,
44(7):848–64, 1995.

[15] PH. Sui, SD. Wang, “An improved algorithm for fault-tolerant
wormhole routing in meshes,” IEEE Trans on Computers
x;46(9):1040–2, 2011.

[16] S. Park, JH. Youn, B. Bose, “Fault-tolerant wormhole routing
algorithms in meshes in the presence of concave faults”, in Proc.
of International Parallel and Distributed Processing Symposium
(IPDPS), p. 633–8, 2000.

[17] Z. Zhang, A. Greiner and S. Taktak, “A reconfigurable routing
algorithm for a fault-tolerant 2D-mesh Network-on-Chip”, in
Proc. DAC, pp. 441-446, 2008.

[18] M. Koibuchi, H. Matsutani, H. Amano, and T.M. Pinkston, “A
Lightweight Fault-Tolerant Mechanism for Network-on-Chip”,
in Proc. NOCS, pp.13-22, 2008.

[19] J. Wu, “A Fault-Tolerant and Deadlock-Free Routing Protocol
in 2D Meshes Based on Odd-Even Turn Model”, in Proc. IEEE
transaction on computers, v. 52, pp.1154-1169 ,2003.

[20] M. Ebrahimi et al., “MAFA: Adaptive Fault-Tolerant Routing
Algorithm for Networks-on-Chip,” in Proceedings of 15th IEEE
Euromicro Conference On Digital System Design (DSD), pp.
201-206, 2012.

[21] M. Ebrahimi, M. Daneshtalab, J. Plosila, F. Mehdipour, “MD:
Minimal path-based Fault-Tolerant Routing in On-Chip
Networks,” in Proceedings of 18th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2013.

[22] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester and D.
Blaauw, “A highly resilient routing algorithm for fault-tolerant
NoCs”, in Proc. DATE, pp. 21-26, 2009.

[23] C. Glass and L. Ni, ”Maximally Fully Adaptive Routing in 2D
Meshes,” In Proc. of Parallel Processing, pp.101-104, 1992.

[24] M. Daneshtalab et al. “A Low-Latency and Memory-Efficient
On-Chip Network,” in Proceedings of 4th ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), pp.
99-106, 2010.

[25] M. Ebrahimi et al. “HAMUM – A Novel Routing Protocol for
Unicast and Multicast Traffic in MPSoCs,” in Proceedings of
18th IEEE Euromicro Conference on Parallel, Distributed and
Network-Based Computing (PDP), pp. 525-532, 2010.

[26] C.J. Glass et al., “The Turn Model for Adaptive Routing”, in
Proc. 19th Int'l Symp. Computer Architecture, pp. 278-287,
1992.

