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and North directions and 1 VC in all other directions), and guarantees packet delivery as long as one healthy TSV connecting all layers
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to dramatically improve performance under low TSV availability while still using less virtual channels than state-of-the-art algorithms. A
comprehensive evaluation of the cost and performance of our algorithms is performed to demonstrate their merits with respects to
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1 INTRODUCTION

Networks-on-Chip (NoCs) [1] have effectively become
the go-to paradigm for on-chip interconnections in modern
manycore systems, offering a high-performance communi-
cation infrastructure for Chip Multiprocessors (CMPs), Mul-
tiprocessor Systems-on-Chip (MPSoCs) and even Graphics
Processing Units (GPUs) [2], [3]. If NoCs were already
perceived as a highly scalable and efficient alternative to
the traditional bus, they are even more so with the recent
emergence of 3D integration. The stacking of several silicon
layers allows for inherently low-latency three-dimensional
NoC topologies (3D-NoCs) to be considered [4], [5].

Through-Silicon Via (TSV) has been accepted as one of
the most viable technologies to enable vertical communi-
cation between different NoC layers [6]. However, due to
its non-negligible cost, the number of vertical links must be
kept to a minimum, resulting in irregular 3D-NoC topolo-
gies commonly referred to as Vertically-Partially-Connected
NoCs. In addition, due to the vulnerability of TSVs to
manufacturing defects as well as runtime failures [7], the
number of available TSVs may end up being reduced even
further.

Under such extreme conditions, a flexible routing algo-
rithm that guarantees packet delivery with a limited number
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of vertical links is necessary. Perhaps the most challenging
aspect in designing such algorithms is ensuring correct oper-
ation (deadlock-freedom, livelock-freedom, connectivity) at
a reasonable cost, without heavily limiting the flexibility of
the algorithm and the number of fault scenarios it can tol-
erate. More specifically, deadlock-avoidance often requires
adding a certain number of Virtual Channels (VCs) in each
router, which consist of disjoint flit FIFOs used to separate
different flows. As these FIFOs occupy the largest part of a
NoC router’s area [8], an algorithm that can operate using a
small number of VCs is strongly desirable.

While several algorithms requiring no or few virtual
channels have been recently proposed [9], [10], they often
follow specific routing rules that pose restrictions on the
location and the selection of vertical links, hindering both
reliability and performance. A routing algorithm capable of
relaxing these restrictions while keeping the implementation
cost to a minimum is yet to be introduced.

In this paper, we address this challenge by introducing
an efficient, adaptive and highly resilient routing algorithm
targeting partially vertically connected 3D-NoCs named
First-Last. Our algorithm requires a very low number of
virtual channels to achieve deadlock-freedom (2 VCs in the
East and North directions and 1 VC in West, South, and
Local port directions). This unique distribution of virtual
channels, which does not assume any symmetry along
dimensions, greatly increases the number of supported
topologies. It guarantees full connectivity for all regular
(a.k.a. pillar based) partially connected topologies with no
assumptions on the placement of the pillars or their as-
signment to nodes. Furthermore, we will prove that First-
Last is the optimal routing algorithm for such topologies in
terms of the number of required VCs (cost) and supported
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irregular topologies (resilience).
A preliminary version of our contribution was presented

in [11]. This paper extends and improves upon our previous
work in the following ways:
• We formally identify the condition to be met by TSV

placement in order to guarantee full connectivity. The
optimality of the algorithm for a given set of topologies
is also proven in this paper.

• An improved variant of our algorithm called Enhanced-
First-Last is presented. It uses an additional VC along
the Z dimension, not only to improve performance
but also to increase resiliency. The elevator assignment
strategy is also improved to allow for more runtime
adaptability.

• A more thorough evaluation of the proposed algo-
rithms, including real application benchmarks, hard-
ware synthesis results, and comparison with more re-
cent routing solutions is performed to demonstrate the
effectiveness of our approach.

The remainder of this paper is organized as follows:
In Section 2 we explore existing solutions in the context
of 3D routing, with an emphasis on the works that are
closest related to our contribution. Section 3 describes the
target system architecture. In Section 4, we construct the
First-Last algorithm as well as its improved version named
Enhanced-First-Last, and provide a high level view of
how the algorithm operates. Deadlock-freedom, livelock-
freedom, connectivity and optimality are addressed in detail
in Section 5. Section 6 provides details about a scalable
and distributed implementation of the proposed algorithms
consisting of an offline selection algorithm and a hardware-
friendly distributed online routing algorithm. In Section 7
we evaluate the proposed routing solution in terms of cost,
performance, temperature and power, before concluding in
Section 8.

2 RELATED WORKS

In the context of 3D-NoCs, several routing algorithms have
been proposed. From simple deterministic algorithms such
as XYZ, to fully adaptive algorithms such as 3D-FAR [12]
and DyXYZ [8]. [12] also introduces 3D-FT, which is capable
of tolerating the absence of vertical or horizontal links.
However, like 3D-FAR, it requires a very large number of
virtual channels (2, 2 and 4 along the Z, X and Y dimensions,
respectively). In [13], the authors extend the turn model
for 2D meshes [14] to the third dimension and propose
an algorithm that tolerates faults by replicating each packet
and sending it in two different virtual networks, one using
the 3D negative-first algorithm and the other using the 3D
positive-first algorithm. AFRA [15] is another algorithm that
can tolerate a certain number of faulty vertical links in fully
connected NoCs.

Only a few proposals have been made in the context of
partially vertically connected 3D-NoCs. In [16], the authors
propose to use any deterministic deadlock-free 2D mesh
routing algorithm to deliver a packet to an elevator (vertical
link), which will be used to deliver the packet to its destina-
tion layer, then to continue routing using the planar routing
algorithm until the packet reaches its destination. It was
proven to be deadlock-free using 2 virtual channels along

the X and Y dimensions. This approach, named Elevator-
First, is appealing because of its simplicity, its support for
any layer topology, and because it does not impose any
constraints on the position of healthy vertical links. Routing
a packet towards an elevator requires the insertion of a
temporary header containing the elevator’s address. Ad-
dresses of the up and down elevators are stored inside each
router [8], requiring an amount of storage that increases
with the network size. In order to reduce the requirements of
Elevator-First in terms of virtual channels, authors in [9] add
certain constraints on the usage of the elevators and show
that routing is possible without the use of virtual channels.
In [17], another algorithm that does not require the use of
virtual channels is presented, but it requires the presence of
one vertical link at the north-east corner.

The ETW (East-then-West) routing algorithm [10] aims
at reducing the required number of virtual channels of
Elevator-First, while maintaining a certain routing flexibility
and offering partial adaptiveness to mitigate congestion.
ETW uses 1, 2 and 1 virtual channels along the X, Y and
Z dimensions respectively. The authors have also proposed
some solutions to tolerate runtime failures using the dy-
namic elevator assignment in [18] or the propagation of
TSV status in [19]. Unfortunately, ETW poses some limiting
constraints on both the location and the selection of the
elevators. It requires the existence of at least one pillar in
the east-most column, and for packets heading downwards,
an elevator located east to the destination must be taken,
leading to inefficient routes in some cases. In addition, be-
cause the choice of the elevator depends on the destination,
3 elevator addresses need to be stored in each router.

Our algorithm uses the same total number of VCs as
ETW [19] but does not require the presence of TSV pillars,
i.e. the position of TSVs may differ from one layer to the
other. Moreover, unlike ETW, our algorithm makes it pos-
sible for packets to reach their destination node regardless
of which TSV they decide to use, allowing for much shorter
routes than those imposed by ETW.

Redelf [20] is a routing algorithm for partially connected
topologies that does not require any additional virtual
channels. To make this possible, Redelf adds restrictions on
the topology as well as the selection of the elevators. It is
connected and deadlock-free under the important assump-
tion that all the vertical connections are bidirectional [20],
which means that two unidirectional TSVs must be used
for each vertical connection. This is not a requirement for
our algorithm. Redelf also forces part of the packets to take
one specific elevator, named the Pivot elevator. In some
topologies, especially if the tiers are quite large, this can
result in many packets taking longer routes than necessary,
which heavily impacts performance as we will see in Section
7.

Finally, the 3D variant of the LBDR (Logic Based Dis-
tributed Routing) [21] was recently presented in [22]. As is
the case of LBDR, LBDR3D supports a variety of partially
adaptive routing algorithms and is fully reconfigurable to
tolerate faulty horizontal and vertical links. It was proven
deadlock- and livelock- free using the same method as
Elevator-First and requires the same minimum number of
virtual channels to separate between Upward and Down-
ward flows. However, in LBDR3D, only a fixed number of
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bits are stored within each router to locate healthy elevators.
Like LBDR3D, to keep track of healthy elevators without

having to store router addresses, in Section 6 we propose
a scalable method that uses a fixed number of bits per
router (12 bits) to guide packets to the nearest elevator.
However, we will show that the method adopted in [22]
for assigning elevators to nodes is not inherently deadlock-
free. We propose an offline selection algorithm that effec-
tively guarantees deadlock-freedom without changing the
hardware.

3 TARGET ARCHITECTURE

We consider a network comprised of several 2D Mesh layers
(or tiers) connected vertically using TSV, as shown in Fig.
1. Each layer consists of a mixture of classic 2D routers
including only 5 ports (East, West, South, North, Local), and
3D routers having either an Up port, a Down port, or both.
3D routers will also be referred to as ”Elevators” [16]. An
upward (downward) elevator is one that connects to the
upper (lower) tier.

While we assume that the channels connecting routers of
the same tier are bidirectional, we make no such assumption
on the vertical connections. In effect, with a limited number
of TSVs available, the system designer may prefer to place
an upward and a downward TSV in two different routers
instead of placing them in the same router, so as to better
balance the load. For instance, in Fig. 1, router A and router
B are connected using a bidirectional channel (2 TSVs),
whereas routers C and D are connected using only an
upward TSV. The problem of finding the best placement
strategy for TSVs is beyond the scope of this paper, and
has already been addressed in [23]. However, the solution
proposed in this paper has some specific requirements on
the placement of TSVs, although not very restrictive. These
requirements are discussed in detail in Section 5.

Due to the limited number of vertically connected nodes,
routers need to locate the elevators of their tier in order to
be able to communicate with other tiers. We also consider
the TSVs to be prone to manufacturing defects, as well as
permanent failure. The information stored in each router
regarding the location of TSVs must be updated to reflect
the new state of the network upon failure. In Section 6, we
propose a strategy that requires a fixed number of bits in
each router to locate the nearest elevators, and present the
adequate algorithms for reconfiguring and using these bits
during the routing process.

4 THE FIRST-LAST ROUTING ALGORITHM

4.1 General approach
A recently proposed method for constructing a deadlock-
free algorithm is to divide the network channels into several
virtual networks (or subnetworks) that are cycle-free, and to
make sure that these virtual networks (VNs) are visited by
packets in a predefined order. This approach, called EbDa,
was introduced in [24] and was used to construct algorithms
such as [19] and [25].

However, by ensuring that the header of the flit is always
at the head of the queue, more flexibility can be obtained.
In this work, we take a two-step approach for constructing

Fig. 1. Target NoC topology.

our routing algorithm such that virtual channels are used as
efficiently as possible. First, we identify the virtual networks
as well as the required number of virtual channels, and then
we determine the set of virtual channels that can be used by
each virtual network.

4.1.1 Step 1: Defining cycle-free virtual networks
We define a virtual network (VN) as a set of physical
channels (output ports) that the packet can use to make
progress towards its destination. The virtual network num-
ber is stored in the packet header and is used by the
route computation logic to determine the set of candidate
directions that can be taken at every hop.

Moving from one virtual network to the next is simply
performed by updating the virtual network number in the
packet, as will be shown in Section 6.

The first-last routing algorithm defines 3 virtual net-
works as shown in Fig. 2. The first and third virtual net-
works (VN0, VN2) only include the X+ and Y+ physical
channels. The second virtual network (VN1) includes all
the remaining directions (X-, Y-, Z+, Z-). Note that it is
not possible to form a cycle within any of these virtual
networks, as none of them spans two full dimensions [24].

Because the X+ and Y+ physical channels are shared
between two virtual networks, two virtual channels are
required in these directions. The two virtual channels in
the X+ direction are noted (X0+, X1+), whereas the virtual
channels in the Y+ direction are noted (Y0+, Y1+). The other
directions, which are only used by VN1, do not necessitate
additional virtual channels.

Packets may traverse virtual networks only in increasing
order (V N0 → V N1 → V N2). The algorithm is named
First-Last, because the physical channels that are used first
(Positive channels) are also used last.

The routing algorithm can be simply described as fol-
lows: If a packet has reached the destination tier, i.e. the
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Fig. 2. Virtual network decomposition for First-Last.

tier where the destination node is located, then it should
be routed towards the destination node using the negative
directions first (VN1 then VN2). Otherwise, route the packet
towards an elevator using the positive directions first (VN0
then VN1) and use the channels of VN1 to elevate the packet
to the destination layer. Whenever a packet is headed East-
North or West-South, routing can be performed adaptively
and the least congested route is selected. Details about a
possible implementation are provided in Section 6.

4.1.2 Step 2: Assigning virtual channels
The (X-, Y-, Z+, Z-) channels are only used by packets of
VN1 and the corresponding single virtual channel in each
of these directions is fully dedicated to packets of VN1.

In our design, packets of VN0 are only allowed to use
virtual channels (X0+, Y0+), whereas packets of VN2 are
allowed to use all the virtual channels associated with the
physical channels of VN2 (X0+, X1+, Y0+, Y1+). In other
words, virtual channels (X1+, Y1+) are only used by VN2
packets, whereas virtual channels (X0+, Y0+) are shared
between VN0 and VN2 packets.

Note that unlike the traditional approaches that prohibit
cycles by dedicating each VC to a single virtual network,
here we allow extra freedom on the acquisition of virtual
channels for packets of VN2. This implies that packets that
have reached their destination layers are allowed to occupy
any VC in the network to reach their destination node.
Deadlock-freedom is preserved by ensuring that packets of
VN2 that are occupying VCs (X0+, Y0+) are at all times able
to escape to their dedicated virtual channels [26].

This can be achieved by slightly altering the flow control
mechanism, such that VCs (X0+, Y0+) are only allocated
to a VN2 packet if they are empty. This guarantees that
VN2 packets are always at the head of these VCs, and can
therefore request their dedicated (escape) VCs at any time.

4.2 Enhanced-First-Last: Boosting network perfor-
mance and resilience with vertical VCs
With a reduced number of vertical channels, elevator nodes
are very likely to turn into hotspots as several flows may
need to share a single TSV.

A simple way to mitigate this issue is to add a virtual
channel along the Z dimension to help reduce the pressure
on vertically connected nodes. This VC can be used by all
VN1 packets without any restrictions.

Because the VC is added in the vertical ports, only 3D
routers need to be modified. This means that although 3D

Fig. 3. Virtual network decomposition for Enhanced-First-Last.

routers now include as many VCs as Elevator-First [8], 2D
routers still include fewer VCs, resulting in a lower overall
cost than Elevator-First, especially for designs with a low
TSV density. Under heavy inter-layer communication, VCs
along the Z dimension will have a much higher impact on
performance than VCs in the planar ports, making them
well worth the extra cost.

Furthermore, in addition to throughput enhancement,
this extra VC, if wisely used, can also contribute to the
resilience of the routing algorithm. Consider the virtual
network definition presented in Fig 3. Compared to the
original First-Last algorithm, VN0 now also includes the
vertical dimension. This means that packets of VN0 can
now reach other layers without having to transit to VN1,
provided that an elevator could be reached using only the
positive directions. In this case, after reaching the next
layer, any elevator can be taken as packets can still use
VN0 and VN1. Fig. 4 illustrates an example network in
which layer 0 cannot reach layer 2 using the original First-
Last algorithm. However, Enhanced-First-Last is capable of
partially connecting layer 0 to layer 2.

Here again, we allow VN1 packets to use both vertical
VCs (Z0+, Z1+, Z0-, Z1-) while ensuring they can always
escape to (Z1+, Z1-), whereas packets of VN0 may only ever
use (Z0+, Z0-) in the vertical dimension. The assignment of
planar VCs remains the same as that of the original First-
Last algorithm.

5 DEADLOCK-FREEDOM, LIVELOCK-FREEDOM,
CONNECTIVITY AND OPTIMALITY

5.1 Proof of deadlock-freedom

Because each virtual network is cycle-free, it is not possible
for a deadlock configuration to involve only packets of
one virtual network. Therefore, any deadlock configuration
must involve at least two virtual networks.

Let us assume that the network is deadlocked, and
that the deadlock set includes a packet P of VN2. At any
point in time, blocked packets of VN2 are either waiting
for VCs (X0+, X1+) or (Y0+, Y1+). However, X1+ and Y1+
can only be occupied by packets of VN2. Therefore, there
is a path in the packet wait-for graph starting from P and
involving only packets of VN2 that are occupying channels
X1+ and Y1+. This path cannot include cycles due to the
absence of negative directions in VN2, and therefore packet
P has an escape path, which contradicts with the deadlock
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Fig. 4. An example in which Enhanced-First-Last improves the connectivity of the network. (A) Packet originating at layer 0 and destined for layer 2
need to reach layer 1 in VN1, and can therefore only use negative directions in layer 1. (B) Packets can reach layer 1 in VN0, making it possible to
reach any elevator in layer 1.

assumption. That is, no deadlock configuration can involve
VN2 packets.

With VN2 excluded, the same reasoning can now be
applied to exclude VN1 simply by replacing X1+ and Y1+
by Z1+ and Z1-.

Because at least two virtual networks are required to
form a deadlock, the network is deadlock-free.

5.2 Livelock-freedom
Since the individual virtual networks do not allow packets
to loop indefinitely, and because they are traversed in an
increasing order, the algorithm is also livelock-free. In the
worst case, a packet reaches the north-east corner in VN0
at the source layer (top or bottom layer in the case of
Enhanced-First-Last), then the west-south corner of either
the top or the bottom layer in VN1 and then end up in the
north-east corner of the same layer in VN2.

5.3 Condition of connectivity
The network is connected if the routing algorithm is able to
provide a path for all source-destination pairs. We will iden-
tify the condition that must be met by the TSV placement
strategy in order for the network to be connected using the
First-Last algorithm.

First, we know that routing from any source to any
elevator in the same layer, which is done using VN0 and
VN1, is always possible. Similarly, routing from any elevator
to any destination on the same layer is possible using VN1
and VN2. This means that for the network to be connected,
it is enough to ensure that every layer in the network can
reach every other layer.

Although Enhanced-First-Last makes it possible to tra-
verse layers in VN0 for some packets, in the general case,

packets may need to go to VN1. So to guarantee connec-
tivity, we consider the worst case, wherein packets need to
move to VN1 to reach other layers.

Let us consider a network consisting of L layers, with
Ul and Dl being the set of upward elevators and the set of
downward elevators of layer l, respectively. The condition
can then be expressed as follows:

The network is connected if and only if
∀l ∈]0, L− 1[,
∃u−(x−, y−) ∈ Ul−1, such that ∃u(x, y) ∈ Ul with x ≤

x−, y ≤ y−
and
∃d+(x+, y+) ∈ Dl+1, such that ∃d(x, y) ∈ Dl with x ≤

x+, y ≤ y+.
That is, each layer must be able to forward packets

coming from a previous layer through a certain elevator
Ein, to the next layer through an elevator that is reachable
using only the negative channels (VN1), i.e. that is located
south-east to the incoming elevator Ein.

Fig. 5 illustrates a few examples of connected networks.
In the first example (Fig. 5 (a)), two TSVs are used to connect
each consecutive layers. The network is connected because
the bottom layer can reach the top layer through elevators
1→ 2, and the top layer can reach the bottom layer through
elevators A→ B.

The second example (Fig. 5 (b)) shows that it is possible
to connect the network using only one TSV ”pillar”. Note
that the network is connected regardless of the position of
the pillar.

5.4 Optimality

We can further show that, for a certain set of partially
connected 3D topologies, in particular, the topologies where
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Fig. 5. Examples of connected networks using First-Last.

TSVs are placed as pillars (as in Fig. 5 (B)), and where the
vertical channels are not necessarily bidirectional, First-Last
is the optimal routing algorithm. That is:

1) In the presence of one upward (downward) pillar
placed at any X,Y coordinates, any node can reach any
node in the upper (lower) tiers. One upward pillar
and one downward pillar guarantee full connectivity,
regardless of the position of the two pillars in the
network, and of their positions with respect to each
other.

2) During the routing process, any pillar in the network
can be used to reach other tiers. No restrictions apply
on the assignment of elevators.

3) Ignoring symmetries, it is the only possible routing
algorithm that satisfies 1) and 2) with this number of
virtual channels. That is, removing or displacing one
virtual channel would result in either 1) or 2) or both
being false.

4) It is the most adaptive at the source and destination
layers.

5) It is the most resilient to TSV failures.

From 2) we can deduce two important requirements on the
routing algorithm:
(a) At the source tier, any elevator must be reachable from

any node. This implies that the routing function used
to route a packet from the source towards an elevator
must use all the planar directions {East, West, South,
North}.

(b) At the destination tier, any destination node must be
reachable from any elevator. This means that the rout-
ing function used to route a packet from the source
elevator to the final destination also uses all the planar
directions {East, West, South, North}.

Lemma 5.1. If at least one dimension of the plane (X, Y) contains
no virtual channels, then the routing algorithm is not deadlock-

free.

Proof. Given (a) and (b), it is always possible to form a cycle
using Up, Down and the two directions from the dimension
that contains no virtual channels.

From Lemma 5.1, it follows that at least one VC is
required per planar dimension. This proves that First-Last
is indeed using the minimum required number of VCs to
satisfy 2), and subsequently 1).

We now demonstrate that under this minimal VC con-
figuration (a VC in one of the directions of each planar
dimension), First-Last is optimal in terms of adaptiveness
as well as the number of supported irregular topologies, i.e.
resilience to TSV failures.

The First-Last algorithm is adaptive in two out of the
four quadrants that constitute the mesh tiers, both when
routing at the source tier and the destination tier.

Theorem 5.2 (Maximum adaptiveness). Under this VC con-
figuration, it is not possible for a routing algorithm to be adaptive
in more than two quadrants.

Proof. Without loss of generality, let us assume that the 2
VCs are included in the North and East directions.

If the routing algorithm is adaptive in more than two
quadrants at the destination tier, then one of these two
quadrants must be adaptive: South-East, North-West. If we
consider symmetries, the two cases are equivalent, so let us
consider the case where the South-East quadrant is adaptive.

Then, one of the two following cases must be true:
• Case 1) The North-East quadrant is not adaptive, which

means that the North-West quadrant is adaptive.
• Case 2) The North-West quadrant is not adaptive,

which means that the North-East quadrant is adaptive.
In case 1, a cycle can be formed as follows:
East → South → Down → North → West → Up →

East.
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We now explain why each of the turns involved in this
cycle is always possible:
• East → South because we are under the assumption

that the South-East quadrant is adaptive. We assume
the packet making this turn is at its destination tier.

• South→ Down because any elevator should be reach-
able following minimal distance at the source tier. The
packet making the turn is therefore at its source tier. It
is worth reminding that the West and South channels
only include one VC, shared between packets at their
source tier and packets at intermediate and destination
tiers.

• Down → North is possible for a packet in its desti-
nation tier, to ensure all destinations are reachable. The
packet making the turn is at its destination tier.

• North → West because the North-West quadrant is
assumed adaptive in this case.

• West → Up because packets at their source tier can
reach any elevator. Again, the packet must be at its
source tier.

• Up→ East because packets at their destination tier can
take any direction.

Following a similar reasoning, in case 2, the following
cycle can be formed:

North → East → South → Down → West → Up →
North.

Which is always possible since the North-East and
South-East quadrants are both adaptive.

The East and North channels are occupied by packets
at their destination tier. Note that because we made sure
that the up and down directions are only taken after the
south and west directions, which is always possible due to
requirement (a) presented above, this cycle can be formed
regardless of which restrictions are applied on the usage of
the two VCs in the East and North directions.

This proves that at the destination tier, the algorithm
cannot be adaptive in more than two quadrants.

At the source tier, different cycles can be formed for case
1) and case 2):

Case 1)
West → North → Down → South → East →

East→ Up→West.
Case 2)
Down → South → East → Up → West → North →

Down.
Here, the East and North channels are occupied by

packets at their source tiers. Note that the rules imposed
on the use of VCs is irrelevant here, as we are exploiting
the dependencies towards channels with single VCs (the
vertical directions).

The existence of such cycles independently of the rules
applied to acquire VCs proves the theorem.

Therefore, First-Last has the maximum possible adap-
tiveness at the source and destination tiers.

The difference between regular and irregular topologies
is that the routing algorithm needs to use the planar chan-
nels not only at the source and destination tiers, but at
the intermediate tiers as well. The number of supported
topologies therefore depends on how many channels can be
used in the intermediate tiers. First-last uses two channels

(West and South) to route in the intermediate layers. We
demonstrate that under this VC configuration, it is the
maximum number of channels that can be used for routing
in intermediate layers.

Theorem 5.3 (Maximum resilience). When routing towards an
elevator at a tier located between the source tier and the destination
tier, then at most two physical channels can be used.

Proof. Let E be the set of directions that include escape VCs,
and let Ē be the set of directions not including VCs. If more
than two directions are used for routing in intermediate
layers then there must be at least two directions that are
opposite to each other (same dimension). Let d one of these
two directions such that d ∈ E, and let d̄ be the second
direction such that d̄ ∈ Ē.

A cycle can be formed between two intermediate layers
using d, down, d̄ and up. Note that directions d̄, up and down
only include one VC, so the cycle can be formed regardless
of how many VCs are present in direction d.

This proves that First-Last is the most resilient algorithm
that satisfies the previously described criteria.

6 IMPLEMENTATION DETAILS

In order to reliably forward packets to other layers, every
router in the network must contain some information about
the location of elevators in the same layer. While it is
possible to provide each router with the addresses of all
elevators and have it select the best one at runtime, it will
incur a very hardware overhead. A more feasible approach
is to perform the selection offline, and to provide limited
information about the location of elevators to the routers, so
that they can use it online.

In this section, we present a mechanism for perform-
ing TSV selection for the First-Last and Enhanced-First-
Last routing algorithms, that uses a fixed number of bits
regardless of the tier sizes and selects an elevator at runtime
in a fully distributed manner.

6.1 Manhattan-Distance-Based TSV selection

One sensible criterion of selection is the distance of the
elevator from the current router. That is, each router for-
wards a packet towards an elevator located at minimum
Manhattan distance. The main idea behind this choice is
to make sure packets spend as little time as possible at
intermediate layers, and are able to reach their destination
layer as quickly as possible.

6.1.1 Storage requirements
Packets that enter a new layer in virtual network VN0 are
able to reach an elevator located at any position. There-
fore, each router stores the location of the upward and
downward nearest elevators as two 4-bit vectors named
Elevator Up and Elevator Down, respectively. The 4 bits
{East, South,West,North} indicate whether the selected
elevator is located East, South, West or North, respectively.

However, for packets that enter a layer in VN1, an
elevator that is reachable only in VN1 must be used. Because
Elevator Up and Elevator Down may point to arbitrary
positions, they cannot be relied on for routing packets
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that have arrived from other layers in VN1. Therefore, we
also need to provide information about the nearest upward
and downward elevators reachable only using the negative
channels (West, South). Since VN1 only includes two planar
directions, two bits {South,West} per elevator are re-
quired. The two 2-bit vectors are named Elevator Up Neg
and Elevator Down Neg.

In sum, each router must include 12 reconfigurable bits
to locate the nearest eligible elevator. These bits are config-
ured offline for each router to point to its nearest elevator
using the method described next.

6.1.2 Offline selection algorithm
It should be taken into consideration that the distributed
nature of this selection method allows different routers
to point to different nearest elevators, and consequently,
one router that forwards a packet in the direction of its
nearest elevator cannot guarantee that it will reach that same
elevator after traversing the next hops.

Since there can be several elevators with an equal Man-
hattan distance from a given node, we show that the method
used to break the ties can actually have an impact on
reachability.

In effect, if ties are broken in a fully randomized manner
as suggested in [22], the inconsistencies between several
nodes can lead to the violation of the routing rules, poten-
tially leading to deadlocks.

Consider the example shown in Fig. 6. Here, elevators
E1 and E2 are at equal distance from both nodes A and
B. If the selection algorithm assigns elevator E1 to node
A and elevator E2 to B as shown in the example, node B
will route packets in VN1 to reach E2. After reaching node
A, however, these packets are routed closer to E1 in VN0.
Taking VN0 channels after visiting VN1 is a violation of the
routing rules, and will eventually result in deadlocks.

Alternatively, the routing logic could be altered to explic-
itly ensure that the routing rules do not get violated. In this
case however, in addition to the extra hardware complexity,
if a situation occurs where an illegal turn is required to
reach the nearest elevator, then the routing logic would be
incapable of selecting a new elevator on the fly due to its
limited knowledge about the TSV locations.

For instance, going back to the example in Fig. 6, even if
router A were designed to never forward a packet coming
from the East port to the North, it would not be able to
determine if the packet was meant for an elevator in the
West, or in the South, as both are valid VN1 channels.

One way to solve this issue offline without changing
the hardware is to break the ties by giving priority to the
elevators that are reachable using only VN1 channels. The
offline selection algorithm used to set the Elevator Up and
Elevator Down vectors is presented in Algorithm 1.

According to Algorithm 1, an elevator requiring VN0
channels is only selected if there are no nearest elevators
reachable using only VN1 channels. If a node A sends a
packet to another node B to reach an elevator EA using
the negative directions (VN1), then the receiving router B
is guaranteed to also point to an elevator EB reachable in
VN1. If B had another elevator E′B that requires VN0, then
E′B must be closer to B than EB , which means it is also
closer to A than EA and would have been selected as the

Algorithm 1 Setting the Elevator Bits
Output:

Elevator[LayerNodes] : Elevator location bits
(Elevator Up or Elevator Down)

1: for all node i do
2: Initialize Elevator[i] to {0, 0, 0, 0}
3: end for
4: for all node i of coord (x, y) do
5: E ← Set of eligible upward (or downward) elevators
6: Sort E By distance from i
7: Min← e ∈ E/distance(e, i) = distance(E[0], i)
8: Neg ← (x′, y′) ∈Min/x′ ≤ x and y′ ≤ y
9: if Neg is empty then

10: (xE, yE)← random elevator from Min
11: else
12: (xE, yE)← random elevator from Neg
13: end if
14: Elevator[i].North← (yE > y)
15: Elevator[i].South← (yE < y)
16: Elevator[i].West← (xE < x)
17: Elevator[i].East← (xE > x)
18: end for

elevator of A instead of EA. Therefore, conflicts can never
arise.

Setting the Elevator Up Neg and
Elevator Down Neg vectors for packets in VN1 is
done using Algorithm 2.

Algorithm 2 Setting the intermediate (VN1) Elevator Bits
Output:

Elevator[LayerNodes] : Elevator location bits
(Elevator Up Neg or Elevator Down Neg)

1: for all node i do
2: Initialize Elevator[i] to {0, 0}
3: end for
4: for all node i of coord (x, y) do
5: E ← Set of eligible upward (or downward) elevators
6: N ← (x′, y′) ∈ E/x′ ≤ x and y′ ≤ y
7: Sort N By distance from i
8: Min← e ∈ N/distance(e, i) = distance(V [0], i)
9: assert(Min is not empty)

10: (xE, yE)← random elevator from Min
11: Elevator[i].South← (yE < y)
12: Elevator[i].West← (xE < x)
13: end for

6.2 Route computation logic
The route computation logic is presented in Algorithm 3.
As an input, the algorithm takes a bit vectorDest describing
the position of the destination (Up, Down, East, West, South,
North), and the current virtual network number vin. The
Dest vector is obtained by comparing the position of the
current router to that of the destination indicated in the
packet header. The packet header also stores the virtual
network number vin, as mentioned in section 4. The algo-
rithm outputs the set of possible output ports, and possibly
a new virtual network number, if moving to the next virtual
network is necessary.
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Fig. 6. Example of making an illegal turn due to an incorrect selection
algorithm.

If the destination is on the same layer as the current
router (Algorithm 3 - Line 32), routing is performed fol-
lowing the Positive Last routing algorithm presented in
Algorithm 5. Otherwise, the algorithm first computes the
position of the appropriate elevator according to the destina-
tion layer (up or down) and whether the packet has entered
virtual network 1 or not (Algorithm 3 - Lines 2 to 17).

If the current router is an elevator (Algorithm 3 - Line
18), then the packet is forwarded appropriately either to the
up or down port. With Enhanced-First-Last, moving up and
down is possible in both VN0 and VN1, so changing the
virtual network is not necessary. However, in the First-Last
algorithm (Algorithm 3 - Line 20), moving vertically can
only be done in VN1, so the VN number must be updated.

If the current router is not an elevator, the packet
is routed towards the selected elevator following the
Positive F irst routing algorithm presented in Algorithm
4. It is worth noting that the routing algorithm is very simple
and does not check where the packet comes from to enforce
the turn restrictions. The routing rules are guaranteed to
never be violated thanks to the offline selection algorithms
presented previously.

7 EXPERIMENTAL RESULTS

In this section, we compare First-Last to two routing al-
gorithms from the literature, namely Elevator-First [8] and
Redelf [20]. Elevator-First uses two virtual channels per
planar direction, i.e. two more virtual channels per router
compared to First-Last. However, it offers partial adaptive-
ness in all the tiers, including intermediate tiers. It poses
no restrictions on the placement or selection of TSVs and
is general enough to support any layer topology. Redelf, by
contrast, uses only one VC per direction but restrictions are
imposed on the selection of TSVs. We will be comparing
First-Last to variants of these algorithms both in terms of
implementation cost and performance.

Algorithm 3 Route computation logic
Input:

Dest: Destination position bits
v in: Current virtual network

Output:
R : Set of possible output channels
v out : Output virtual network

1: if Dest.Up or Dest.Down then
2: if v in = 0 then . Have not moved to V1 yet
3: if Dest.Up then
4: Elevator ← Elevator Up
5: else
6: Elevator ← Elevator Down
7: end if
8: else
9: Elevator ← {0, 0, 0, 0}

10: if Dest.Up then
11: Elevator.West← Elevator Up Neg.West
12: Elevator.South← Elevator Up Neg.Sout
13: else
14: Elevator.West← Elevator Dn Neg.West
15: Elevator.South← Elevator Dn Neg.Sout
16: end if
17: end if
18: if Elevator = {0, 0, 0, 0} then . Self is elevator
19: v out← v in
20: if not using Enhanced-First-Last then
21: v out← 1 . Must move to VN1 to go vertical
22: end if
23: if Dest.Up then
24: R← {Z+}
25: else
26: R← {Z−}
27: end if
28: else
29: (R, v out)← Positive F irst(Elevator, v in)
30: end if
31: else
32: (R, v out)← Positive Last(Dest, v in)
33: end if

7.1 Hardware synthesis

To analyze the hardware cost of the proposed solutions,
we have extended the Netmaker library [27] to support 3D
router architectures. Netmaker is a library of parameteriz-
able and synthesizable NoC routers written in SystemVer-
ilog. This library was used to implement the First-Last
and Enhanced-Fist-Last routing algorithms described in this
paper, as well as the Elevator-First algorithm described in [8]
and Redelf presented in [20].

All routers include 4-flit deep virtual channel FIFOs
and perform virtual channel allocation followed by switch
allocation (2 cycles). To evaluate the area overhead, we syn-
thesize the Elevator-First, First-Last, Enhanced-First-Last,
and Redelf routers using Synopsys Design Compiler. The
designs were setup to work with an operating frequency of
1GHz, a power supply of 0.8V, and a NanGate Open Cell
15nm Library [28]. The resulting area and power estimates
for each router are summarized in Table 1. The three types
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Algorithm 4 The Positive First routing function
Input:

Dest : Destination position bits
v in : Current virtual network

Output:
R : Set of possible output channels
v out : Output virtual network

1: v out← v in
2: if Dest.East and Dest.North then
3: R← {X+, Y+}
4: else if Dest.East then
5: R← {X+}
6: else if Dest.North then
7: R← {Y+}
8: else
9: v out← 1

10: if Dest.West and Dest.South then
11: R← {X−, Y−}
12: else if Dest.West then
13: R← {X−}
14: else if Dest.South then
15: R← {Y−}
16: else
17: R← ∅
18: end if
19: end if

Algorithm 5 The Positive Last routing function
Input:

Dest: Destination position bits
v in: Current virtual network

Output:
R : Set of possible output channels
v out : Output virtual network

1: v out← v in
2: if Dest.West and Dest.South then
3: R← {X−, Y−}
4: else if Dest.West then
5: R← {X−}
6: else if Dest.South then
7: R← {Y−}
8: else
9: v out← 2

10: if Dest.East and Dest.North then
11: R← {X+, Y+}
12: else if Dest.East then
13: R← {X+}
14: else if Dest.North then
15: R← {Y+}
16: else
17: R← {L} . Local port
18: end if
19: end if

of routers described in Section 3 were considered: 5 port 2D
routers, 6 port 3D routers with one vertical connection, and 7
port 3D routers with two vertical connections. Furthermore,
the 6 and 7 port 3D router have serial block circuit in the up
and down ports, considering a sender and a receiver, serial-
izing and deserializing data, respectively. Based on the work
given in [29] and [30], we have adopted a 4:1 Serializer-
Deserializer block, where 4 data bits are transmitted on one
serial line, reducing the number of interconnect TSVs in each
3D router by four.

First, we compare the area overhead for a 5-port router.
The area for First-Last and Enhanced-First-Last is the same
because, in a 2D router, both algorithms require the same
number of virtual channels and use the same routing logic.
On the other hand, although Elevator-First uses a simple
XY routing function for routing, it includes one extra virtual
channel in the South and West directions, which increases
the area and power overhead by 12% and 18% respectively.
Since Redelf does not require extra virtual channel, the
synthesis results present less area and power than others
routing algorithms.

A similar comparison can be done for a 6-port router. In
this case, Elevator-First has two more virtual channels than
First-Last and one more virtual channel than Enhanced-
First-Last. Those additional virtual channels can explain the
area and power overhead observed for Elevator-First, which
are of approximately 10% and 13% compared with First-
Last, and 4% and 6% with respects to Enhanced-First-Last.
However, when comparing Elevator-First and Enhanced-
First-Last in the case of a 7-port router, where the total
number of virtual channels is the same, we note a slightly
larger area (less than 1%) and power (less than 2%) when
using Enhanced-First-Last, due to its more complex routing
logic when compared to the simple XY algorithm used by
Elevator-First.

In sum, the Enhanced-First-Last algorithm can be con-
sidered an appealing alternative to Elevator-First, as it not
only reduces the area and power, especially for designs that
use more 5-port and 6-port routers than 7-port routers, but
also is capable of attaining higher levels of performance, as
will be shown in the rest of this section.

7.2 Performance evaluation

We use an in-house cycle-accurate NoC simulator based
on [31] to compare First-Last and Enhanced-First-Last to
Elevator-First and Redelf. To make sure the tested topologies
are compatible with all three algorithms, we only generate
regular partially connected topologies. All the topologies
consist of only TSV pillars, i.e. TSVs are placed on the same
X,Y coordinates across all layers and all the vertical channels
are bidirectional, as in Fig. 5 (B). The latter restriction is re-
quired for Redelf to be deadlock-free. The X,Y coordinates of
the TSVs are selected randomly, so that we do not advantage
any of the algorithms. We consider 4 different TSV densities
(12.5%, 25%, 50% and 75%), and 30 random topologies are
tested for each TSV density. We evaluate the algorithms
under two different network sizes: 4x4x4, 8x8x4 with three
types of synthetic traffic (Uniform, Complement, Shuffle).
Adaptive algorithms select the least congested output port
among available options based on a local congestion metric.
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TABLE 1
Hardware synthesis results

Type Elevator-First First-Last Enhanced-First-Last Redelf
# Ports Area Power Area Power Area Power Area Power

(µm2) (mW ) (µm2) (mW ) (µm2) (mW ) (µm2) (mW )

5 ports 11982 9.3 10646 7.9 10646 7.9 8793 6.3
6 ports 16283 12.1 14813 10.6 15659 11.4 13041 9.6
7 ports 20792 14.8 19303 13.4 20958 15.1 17607 12.7

A congestion metric is associated with each output port and
is computed as follows: Whenever a packets requests the
associated output port, the metric is incremented by twice
the number of flits in the packet. Then, whenever a flit leaves
from the output port, the metric is decremented by one.
Finally, the metric is decremented by one when the flit leaves
the downstream router, i.e. when a credit is received. The
metric therefore accounts for the number of flits requesting
a given output port as well as the number of flits contained
in the downstream buffers. It is worth mentioning that all
the simulations end with a drain phase, during which all
the packets remaining in the network are ejected. This is to
make sure that no deadlocks have occurred in any of the
simulated scenarios.

For First-Last and Redelf, two versions are considered.
The first version (First-Last and Redelf) uses the minimum
number of VCs required for the algorithm to be deadlock-
free. In the second version (First-Last-2VC and Redelf-2VC),
the same number of virtual channels as Elevator-first is used
(2 VCs at each planar port). Any extra VCs that are not
required for deadlock-avoidance are used to reduce head-
of-line blocking and improve performance. For Enhanced-
Elevator-First, on the other hand, we do not add extra VCs
in the planar ports due to its particular distribution of VCs.

Results are presented in Fig. 9 and Fig. 10. An interesting
first observation is that Enhanced-Elevator-First offers the
best performance in most of tested scenarios. This confirms
our prediction on the importance of relaxing the pressure
on vertical channels by adding an extra VC along the Z
dimension (see Section 4.2). The only cases where Enhanced-
Elevator-First is outperformed by First-Last-2VC and/or
Elevator-First are with the Shuffle traffic pattern. In shuffle
traffic, many nodes communicate with nodes on the same
tier, which means that the number of VCs in the planar
channels is more important in this case, especially when
the tiers are quite large (8x8). Both Elevator-First and First-
Last-2VC include 2 VCs in all the planar directions, unlike
Enhanced-Elevator-First which includes only 1VC in the
South and West directions.

We notice that Elevator-First sometimes performs better
than First-Last-2VC under uniform and complement traffic.
These types of traffic are known to favor direction order
routing over adaptive routing.

The second thing to take note is that Redelf exhibits,
most of the time, a higher latency than the other solutions,
even when using extra VCs (Redelf-2VC). This highlights
the importance of the two restrictions imposed by Redelf to
avoid using virtual channels:
• Packets can only take south-eastern elevators if any.

When several elevators are available, Elevator-First or
First-Last are able to select an elevator in any direction,
resulting in a better load balance between elevators.
This translates to a large difference in performance for
large layer sizes (8x8).

• When no elevators are available in the south-east di-
rection, the pivot elevator must be taken. This typically
results in both a high pressure on the pivot elevator, and
longer paths for many packets. The other algorithms
can not only select elevators in any directions, but
choose the closest elevator to minimize the traveled
distance.

To back this up, we perform an extra set of measure-
ments to obtain more information about the distribution of
packets over elevators. For each simulated algorithm, and

Fig. 7. Average packet latency in a 4x4x4 network.

Fig. 8. Average packet latency in a 4x4x4 network.
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for a given TSV density, we generate 1000 random partially
connected topologies of size 8x8x2 (two tiers are enough to
perform this experiment). We then inject a fixed number of
packets (300 packets/node) with random destinations and
count the number of times that each elevator was used, then
we estimate the load imbalance between elevators based on
two metrics: Percent imbalance (υ) and Standard deviation
(σ). Such that:

υ =
Umax

Ū
− 1 (1)

where Umax is the maximum elevator usage across all
elevators, and Umax the mean elevator usage.

σ =

√∑E−1
i=0 (Ui − Ū)2

E − 1
(2)

where E is the total number of elevators, Ū is the mean
elevator usage, and Ui the number of times elevator i was
used.

Table 2 shows the results obtained with different algo-
rithms. First, we observe that none of the algorithms is
able to achieve good balance between the different eleva-
tors. This is because even in Elevator-First and First-Last,
elevators are assigned according to their distance from the
source, therefore it is not possible to ensure that the load is
distributed evenly among the elevators since they are placed
at arbitrary positions. Interestingly, we notice that under
high elevator availability, First-Last does not distribute the
load among elevators as well as Elevator-First. This is due to
the algorithm used to assign elevators (Algorithm 1), which
gives priority to elevators located in a given direction when
breaking ties between several nearest elevators. However,
the difference is minor and should not have a significant
impact on performance.

In all cases, imbalance is much more severe in the case of
Redelf. The most used elevator has nearly 100% more load
than the most used elevator in Elevator-First and First-Last,
thereby confirming our claim that the performance of Redelf
is most likely impacted by high traffic concentration around
the pivot elevator.

There are a few cases where Redelf is expected to per-
form better than other algorithms. This is the case when
the layer size is sufficiently small, and few elevators are
available. Chances are that all the algorithms will utilize
the same set of elevators, and take the same paths in these
cases. We observe that for a 4x4 layer size, Redelf-2VC
sometimes performs slightly better than First-Last-2VC and
Elevator-First. In most of these cases, however, First-Last-
2VC performs as well as Redelf-2VC, even in presence of 1
elevator (12.5% TSV density). Two factors come into play
here. First, although First-Last-2VC uses the VCs in the
North and East direction for deadlock-avoidance, it does
not strictly partition the VCs as it is the case in Elevator-
First. At the destination tier, all VCs can freely be used just
like Redelf-2VC. Second, unlike Redelf-2VC which strongly
relies on deterministic routing, First-Last is adaptive and is
capable of reducing congestion.

These results clearly demonstrate the benefits of the
proposed routing solutions, as well as the outstanding per-
formance they can offer while using the strict minimum

TABLE 2
Elevator load balance

Algorithm Elevator-First First-Last Redelf
# Elevators σ υ σ υ σ υ

4 1169.89 0.60 1137.99 0.54 2429.72 1.41
8 637.38 0.86 637.30 0.88 1156.19 1.99

16 395.33 1.62 399.59 1.64 552.37 2.57
24 197.59 1.17 210.03 1.26 302.64 2.41

number of VCs to guarantee connectivity and total freedom
on TSV selection in the simulated topologies (See Section
5.4).

7.3 Evaluation under realistic traffic

To confirm these conclusions under more realistic scenarios,
we also evaluate the algorithms with real application traf-
fic from the PARSEC benchmark suite. We use the traces
provided by Netrace [32] to capture packet dependencies.

For each algorithm, the first 20 million cycles of the
region of interest for each benchmark are simulated. This
corresponds to the time stamp contained in the traces them-
selves, not to the actual simulation time, as the latter may
differ from one algorithm to the other. We therefore ensure
that the same portion of the benchmark is executed for all
algorithms.

The average latencies are captured by simulating 10
Random topologies for each application. Normalized results
are presented in Fig. 7 and Fig. 8.

One observation that can be made is that the relative per-
formance of the different routing solutions heavily depends
on the type of benchmark and the TSV availability. For the
topologies we tested with 50% TSV density, we observe
that First-Last-2VC, Enhanced-First-Last, and Redelf per-
form better than Elevator-First. As pointed out previously,
because the number of TSVs is low, all three algorithms
are likely to take similar paths, and the difference mainly
relies on the intra-layer performance (number of planar VCs,
freedom of VC selection and adaptivity), which is why First-
Last-2VC and Redelf perform the best for most benchmarks.

An interesting observation is that in benchmarks like
swaptions and x264, Redelf-2VC performs better than First-
Last-2VC and/or Enhanced-First-Last at low TSV density.
However, note that the relative performance of our solutions
changes as soon as the number of TSVs is increased. This
can be explained by the fact that our solutions are able to
distribute the traffic better among the available TSVs, and
benefit from a more significant gain in performance.

8 CONCLUSION

We have presented a novel algorithm targeting partially
vertically connected 3D-NoCs named First-Last, that guar-
antees packet delivery as long as one TSV pillar is available
anywhere in the network. Through a unique assignment
of VCs, we have managed to avoid all the restrictions that
related works impose on either the placement of the pillars,
their selection during runtime, or both. Moreover, we have
shown, through Enhanced-First-Last, that by adding one VC
in the vertical dimension, it was possible to dramatically
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Fig. 9. Average packet latency in a 4x4x4 network.
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Fig. 10. Average packet latency in a 8x8x4 network.
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boost the NoC’s performance in presence of few vertical
connections, while still ensuring a lower implementation
cost than state-of-the-art algorithms. Both hardware synthe-
sis and comprehensive cycle-accurate simulations were per-
formed to demonstrate the merits of our routing approach.
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