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Abstract— Spiking neural networks (SNNs) are the closest 
approach to biological neurons in comparison with conventional 
artificial neural networks (ANN). SNNs are composed of neurons 
and synapses which are interconnected with a complex pattern. 
As communication in such massively parallel computational 
systems is getting critical, the network-on-chip (NoC) becomes a 
promising solution to provide a scalable and robust 
interconnection fabric. However, using NoC for large-scale SNNs 
arises a trade-off between scalability, throughput, neuron/router 
ratio (cluster size), and area overhead. In this paper, we tackle 
the trade-off using a clustering approach and try to optimize the 
synaptic resource utilization. An optimal cluster size can provide 
the lowest area overhead and power consumption. For the 
learning purposes, a phenomenon known as spike-timing-
dependent plasticity (STDP) is utilized. The micro-architectures 
of the network, clusters, and the computational neurons are also 
described. The presented approach suggests a promising solution 
of integrating NoCs and STDP-based SNNs for the optimal 
performance based on the underlying application.  
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I. INTRODUCTION

Brain is the main organ of learning and making decisions. 
Brain processes the information by taking inputs from the 
sensory organs (e.g. eyes, ears, and nose), and depending on 
these inputs it produces an output. Our brain has around 100 
billion neurons which are chemically connected to each other. 
A neuron can be connected to around 10,000 neurons in the 
circuit. Those connections are called synapses which are 
usually formed from axons to dendrites. Synapse converts an 
activity into electrical effects that excites the activity in the 
connected neurons. Large-scale artificial neural networks 
(ANNs) have been used to emulate the information processing 
function of the brain [1]. Spiking neural networks (SNNs) [2] 
are a type of ANN, which emulate real biological neural 
networks, conveying information through the communication 
of short transient pulses (spikes) between neurons via their 
synaptic connections. Each neuron maintains an internal 
membrane potential, which is a function of several parameters 
as input spikes, associated synaptic weights, current membrane 
potential, and a constant membrane potential leakage 
coefficient [2][3]. A neuron fires (emits a spike to all connected 
synapses/neurons) when its membrane potential exceeds the 
neuron’s firing threshold value. Understanding and emulating 
the behavior of the brain has received much attention not only 
from neuroscientists but also from engineers and computer 
scientists. While neuroscientists are interested in biophysical 

models, engineers and computer scientists are more interested 
in utilizing the brain’s powerful computing capability. The 
dramatic developments in brain science and neuroscience over 
the past few decades, together with the formidable 
developments in hardware and software technology, have 
brought us to the edge of building brain-like functioning 
devices and systems [4]. Developing and applying such devices 
in real-world information processing has been a dream and 
vision for quite some time though success has so far been 
limited. In recent years, computational neuroscience has 
developed rapidly and researchers are currently designing and 
studying large-scale complex brain models, thus helping to 
integrate the vast amounts of information about the brain from 
different sources and levels of description into working models 
of the brain. In recent years, supercomputers have become an 
enabling tool for simulating complex brain models with a scale 
approaching that of small and medium-sized mammals. 

Recently, the network-on-chip (NoC) paradigm has 
emerged as a promising solution to solve the on-chip 
communication problems revealed in many-core system-on-
chip (MCSoC). NoC architectures are composed of cores, 
routers, and links which are arranged in a specific topology. In 
the context of SNNs, the cores refer to the spiking neuron 
models attached to NoC routers and the NoC topology refers to 
the way those neurons are interconnected across the network. 
Most of the current projects have used NoC as an interconnect 
fabric for SNNs; however, their interconnection strategies (i.e. 
one-to-one correspondence between neurons) and expensive 
components (i.e. buffers, handshaking logic, etc.) make it 
difficult to achieve high scalability with low power 
consumption. In fact, the interconnection fabric (i.e. routers, 
channels, etc.) consumes a large portion of the total power in 
the system [5][14]. In addition, regarding the power and area 
consumption, neuron blocks consume orders of magnitude less 
power consumption than the interconnection platform [6]. 
Therefore, using NoC for large-scale SNNs arises a trade-off 
between scalability, throughput, neuron/router ratio (cluster 
size), and power-area overhead.  

In this work, we identify possible space for improvements 
in hardware resources of NoC-based SNN designs. We propose 
a micro-architecture of the best known learning rule for spiking 
neurons, called spike-timing-dependent plasticity (STDP) [21], 
based on resource sharing on a clustered NoC. The XOR 
application is implemented using the STDP based 
reinforcement learning technique and used as the benchmark to 
explore optimal cluster size. 



II. RELATED WORK

NoC is used in a number of works as an interconnection 
fabric for SNNs [10]–[13].  

The Neurogrid project [15], [28], [28] is an analog-based 
neuron system. Ion-channel activity and STDP are simulated 
by an analog circuit. Synaptic weights are stored in digital 
SRAM. The overall structure consists of the main building 
block (neurocore) which contains 65,536 neuron models placed 
on 16 layers. Neurogrid uses FPGA and SRAM for connecting 
neurocores together. The power consumption of the platform is 
promising as it requires 5W for simulating activity of one 
million neurons. However, because of the limitation on the size 
of the layer it is not capable of offering biological real-time 
(1ms inter-spike interval). 

The Fast Analog Computing with Emergent Transient 
States project (FACETS) is based on mixed (analog-digital) 
approach [16]. The HICANN (High Input Count Analog 
Neural Network) is a building block of a system incorporating 
512 analog neurons and more than 131,072 synapses with 4-bit 
SRAMs to store weights. Up to 384 HICANN chips are placed 
on the wafer and connected through hierarchical busses. Each 
chip has access to 256 2-bit bus lanes, 8-bit packets with 
neuron addresses are transmitted serially through them. The 
wafers can be connected in a 2D torus topology through 
FPGAs that handle the Ethernet protocol. The FACETS can 
work beyond biological real-time, but at the cost of power 
consumption, which goes up to 1kW for a single wafer. 

The SpiNNaker project (Spiking Neural Network 
Architecture)  [12][13] is based on utilizing Multiprocessor-
based approaches. The building block of the system comprises 
18 ARM968 processor cores. Each building block requires 
about 1W and can emulate 16,000 Izhikevich neurons with 
STDP learning. The learning implementation is optimized to 
minimize the number of computations [27]. The 
interconnection between each node is handled by a NoC using 
six links, which is wrapped in a triangular lattice; this lattice is 
then folded onto a surface of a toroid [17]. SpiNNaker can 
compute 10^9 neurons in a biological real-time. 

EMBRACE (Emulating Biologically InspiRed 
ArChitectures in hardwarE) utilizes hierarchical (H-NOC) 
approach, which gives a good trade-off between scalability and 
power consumption [18]. Like FACETS, EMBRACE is 
capable of working beyond biological real-time. The H-NOC 
approach offers a high throughput of spikes per second along 
with the low power consumption of 13mW for a single cluster 
facility. However, each module contains a fixed amount of 
neurons but not an optimized amount. On top of that, 
EMBRACE has not integrated any learning technique in the 
network. 

III. THE HIERARCHICAL REPRESENTATION OF THE
PROPOSED APPROACH 

A. Networks-on-Chip and Spiking Neural Networks
An NoC consists of an interconnection of many routers to

enable a large number of processing elements (PE) to 

communicate with each other. PEs communicate with each 
other by propagating packets through routers in the network. 
Each router is connected to the local core and to its neighbors 
in the north, south, east, and west directions through 
bidirectional links. 

Obviously, hardware implementation of a large-scale SNN 
has superior speed advantages over its software implementation 
counterpart. However, one of the main challenges to implement 
SNNs in hardware is the complexity of inter-neuron 
connectivity and its significant wiring overhead. The packet-
switching mechanism in NoCs will simplify the complexity of 
inter-neuron connectivity while reducing the area overhead. In 
addition, NoC is inherently a reconfigurable and scalable 
platform which is essentially suitable for large-scale SNNs. 

When combining NoC and SNN, a spiking neuron refers to 
the processing element. The inter-neuron connectivity is 
implemented in the forms of transmitting spike packets through 
the interconnection network. 

B. A Neuron Block
A neuron block is connected to the local port of the router.

It consists of a neuron and a synaptic block (Fig. 1). Synaptic 
block comprises a number of synapses, which are modeled as 
synaptic weights, and learning data for each synapse. In this 
work, we take advantage of the STDP method to adapt the 
synaptic weights. 

1) Neuron
Different mathematical models of SNNs have been

explored over time with different levels of computational 
efficiency and biological plausibility [19]. Leaky integrate and 
fire (L&F) and Izhikevich models [20] are two neuron models 
of SNNs which are used in this work. The L&F model is one of 
the most widely used models due to its simplicity, but it is 
limited to a single type of response and not considered for 
biologically plausible simulations. The Izhikevich model is 
more complex, but it allows to achieve a large variety of 
spiking patterns [20]. 

2) Synapse
Biological synapses connect neurons to each other,

providing a mechanism to transmit a signal between neural 
cells. Variable synaptic strength - the possibility to cause 
different excitation amplitude at the receiving neuron, is an 
important property known as synaptic plasticity. Plasticity is 
modeled in ANN as variable synaptic weight values assigned to 
the inputs of the neuron model. Learning of neural networks, 
both biological and artificial, is based on the changing of the 
synaptic weights. STDP changes weights based on a time 
difference between incoming and outgoing spikes of a neuron. 
These spikes are commonly referred to as pre- and post-
synaptic, respectively. A popular exponential form of STDP 
function [8] is as: 
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Fig. 1. A neuron block 

where tΔ is timing between spikes; τ  determines the time 
intervals when changes of a weight occur; A constants 
determine a maximal amount of change. According to the 
formula, close spikes introduce large impact to the weight 
while the impact on distant spikes is negligible. As shown in 
Fig. 2, if a pre-synaptic spike is followed by a post-synaptic 
one, the synapse will be strengthened. In contrast, if a pre-
synaptic spike arrives after a post-synaptic spike, the synapse is 
weakened. The amount of change depends exponentially on the 
distance between spikes and the polarity of change depends on 
the order in the spike sequence. 

Recent biological researches show that STDP depends on 
the presence of specific neuromodulators like dopamine. This 
factor can be considered as a control or reward signal that turns 
STDP from unsupervised into a supervised learning paradigm. 
A group of works [7],[22],[25] show that controlled reward 
signal successfully teaches SNN to produce desired output. 
Thereby, we consider STDP to be a promising rule capable of 
implementing both unsupervised and reinforcement learning 
while enlarging the possible application area of the system.  

Fig. 2. The STDP principle 

Synapses are the dominate components in such systems so 
that the straight-forward implementation of each synapse with a 
separate STDP calculation block is extremely expensive even 
for analog implementations, what imposes a large hardware 
overhead. With the assumption that one STDP operation 
(calculation of Equation (1)) is calculated in a single time step, 
the total number of possible STDP operations per second in the 
network is S/tstep where S  is the number of synapses per 
neuron and tstep is a simulation step. Assuming the regularity of 

spiking activities we can calculate the number of required 
STDP operations, which is equal to f·S/tstep where f is a spiking 
frequency. For example, the XOR implementation described at 
section IV requires 5,400 STDP operations per second for each 
neuron. The provided number of STDP per second for straight-
forward implementation is 60,000 operations. This difference 
gives a space for improvements to reduce the number of STDP 
blocks about 11 times. 

We have modeled a functional block diagram of a STDP-
based synapse with a shared calculation block among synapses 
of one neuron as shown in Fig. 1. A neuron block consists of 
six main components as pre- and post-synaptic tables, timer, 
STDP controller, STDP calculator, synapse weight table, and 
neuron cell. The synapse table consists of different partitions, 
each allocated to one neuron from the previous layer. A 
partition stores the time stamp of pre- or post-synaptic spikes. 
There are two principal ways of calculating Equation (1): time 
steps based and trace function based. In trace based, two decays 
of STDP equation, corresponding to two parts of Equation (1) 
are calculated for each synapse. When a pre-synaptic spike 
occurs, pre-synaptic trace value is updated by some constant 
(or to a constant) and a value from post-synaptic trace function 
is used to update the weight and vice-versa. This mechanism is 
typically implemented in analog designs. The major benefit is 
that it allows considering all the spike history for STDP 
updates. However, it requires a little bit more computations per 
STDP in digital implementation than an alternative scheme 
which uses time stamps. In this way, when a spike occurs, the 
time of a spike should be saved and a time stamp from a 
previous pair of the opposite synaptic type should be taken to 
calculate �t for Equation (1). Only the closest neighbors are 
taken into account as they produce the largest impact. 
Implementation of full spike history would be too costly. We 
consider the time stamp way due to its simplicity although 
implementation with trace functions is similar. The synapses 
weights are stored in the weight table. The STDP calculator 
performs actual calculation according to a STDP model. The 
controller performs scheduling of calculations. 



The reaction of a synaptic block on the spike is shown in 
Fig. 3. When a new spike arrives at the synapse, the 
corresponding weight is injected to the neuron cell. In parallel, 
the STDP process starts, first the time stamp is stored into the 
corresponding synaptic table and a spike event triggers the 
STDP control block. Then, the control block fetches post-
synaptic time stamps to apply the STDP rule to the newly 
received pre-synaptic spike with every stored post-synaptic 
spike, falling into the time window. Sequential calculation is 
possible due to the sufficient period between spikes and the fact 
that updated weight is required only by the next spike event on 
that particular synapse. A similar procedure happens at the 
post-synaptic spike event. This time, the current post-synaptic 
time stamp should be saved and compared with every pre-
synaptic spike from each synapse. A pre-synaptic spike event 
causes the recalculation of the single synaptic weight and a 
post-synaptic spike leads to the recalculation of all the weights. 
This is the main reason of using an event buffer in the 
controller. 

Fig. 3. Block diagram of reaction on receiving a spike 

Our analysis shows that the XOR implementation with 
STDP block shared among the synapses of one neuron provides 
1000 STDP operations per second for each neuron. It is less 
than required, but we assume that a digital implementation 
allows the synaptic block to work at a higher clock rate than a 
Neuron Block. For example, the clock rate of the network 
should be higher to provide a lower spiking delay. With the 
assumption of having more space for improvements due to 
higher STDP calculation speed or lower simulation time step, 
we have modeled a block diagram of STDP synaptic block 
shared among neurons as shown in Fig. 4. In addition, a 
possibility to share time stamps for synaptic connections 
coming from one pre-synaptic neuron is also considered. In the 
case of a topology with fully connected layers, such an 
approach allows to reduce the amount of time stamps to S/N, 
where N is the number of neurons in a cluster. When a spike 
comes to a shared synapse, only one time stamp is stored and 
the weighted input is applied to all neurons. When other types 
of NN topologies are used, additional tables with the 
connectivity information are required. The behavior of the 
controller slightly changes after adding sharing modules for 
pre-synaptic time stamps. A pre-synaptic event then also 
triggers multiple STDP calculations. The sequence of 
operations for both synaptic events is similar as depicted in Fig. 
5. In case of fully connected layers, the controller can read all
the pre- and post-synaptic time stamps sequentially omitting
the communication to connectivity tables.

C. A clustering Block
As assumed in different works [13], a neuron block is

connected to one router. This implies that the area overhead 
will increase considerably as the number of neurons increases. 
This is the simplest way of implementing a neural network

Fig. 4. A neuron block with shared synapses 
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Fig. 5. Sequence of STDP operations 

platform in NoCs but at the cost of considerable area overhead 
and power consumption. These overheads are paid whereas 
most of the times the network resources (e.g. buffers and links) 
are underutilized. In the clustered approach, we connect as 
many neurons as possible to a router such that to reach the 
optimal point of resource utilization before approaching the 
saturation point of the network. This guarantees the maximum 
throughput and performance with the lowest area overhead and 
power consumption in this particular aspect. Fig. 6 shows the 
structure of integrating four neuron blocks. 

Fig. 6. A cluster block 

IV. EXPERIMENTAL RESULTS

To evaluate the proposed approach, a simulation platform 
of combining SNN and mesh-based NoC is developed. RTL-
level of all major components of SNN including cluster blocks 
(neurons, synapses, and the STDP learning) and NoC modules 
(routers and links) have been implemented. Each cluster has an 
additional area overhead of a multiplexer and a de-multiplexer. 
We have measured latency, throughput, area overhead, and 
power consumption of the proposed approach for different 

cluster sizes and spiking injection rates. A spiking injection rate 
refers to the average of spike events that a neuron produces 
within a simulation time. The simulations are carried out for an 
XOR problem. The XOR application is a classic benchmark for 
learning algorithms of artificial neural network training. We 
use it as an example of classical layered neural network 
architecture. 

A. XOR Application
In the XOR problem, the output 1 should be resulted when

the inputs are as {0, 1} or {1, 0}, otherwise the output 0 should 
be produced [24]–[26]. Similar to [7], [24] for solving this 
problem, 60 neurons in the input layer, 60 neurons in the 
hidden layer, and 1 neuron in the output layer are used. As 
shown in Fig. 7, each layer is fully connected to the next layer 
meaning that all neurons in the input layer are connected to all 
neurons in the hidden layer and all neurons in the hidden layer 
are connected to the single neuron in the output layer. For 
solving the XOR problem, 121 neurons are needed. For 
mapping the neurons to an NoC, the first layer of neurons is 
placed in borderline routers while the hidden layer neurons 
along with the output neuron are mapped in the central part of 
the network. We assume that such placement of a first layer 
should be caused by the presence of continuous external input 
(e.g. pixel data for video processing tasks). Fig. 8(a) and (b) 
show the mapping of neurons in 5×5 and 5×4 NoC when 5 and 
6 neurons are integrated into one cluster, respectively. The 
character 0, 1, 2, and 3 stands for non-used, first-layer, hidden-
layer, and output layer, respectively. Out of 60 input neurons, 
30 neurons represent logic 0 and other 30 represent logic 1. The 
input 1 was represented by a Poisson spike train at different 
frequencies (ranges from 25Hz to 50Hz) and the input 0 was 
represented by no spiking. Each output spike was rewarded 
when network was supposed to produce logic 1 output or 
punished for each spike if desired output was logic 0. Upon 
iterating this process for few hundred cycles, the network will 
be capable of producing correct outputs. Fig. 9 shows an output 
of a SNN trained to perform XOR application. As can be seen 
in this figure, when the inputs are {0,1} or {1,0}, the output 
neuron spikes frequently compared with the input {1,1} and 
{0,0: no spike}. 

Fig. 7. An XOR implementation with 60 neurons in the first layer, 60 
neurons in the hidden layer and one neuron in the output layer 



            (a)                                       (b) 

Fig. 8. (a) mapping of neurons in a 5×5 mesh-based NoC with 5/N/C 
(b) mapping of neurons in a 5×4 mesh-based NoC with 6/N/C

Fig. 9. An XOR application in SNN 

SNN has two phases: Exploration and Exploitation. During the 
Exploration phase, the network is trained for the particular 
application; while during the Exploitation phase, the execution 
is performed according to the learned patterns. 

B. System Configuration
Each router includes input buffers, a routing unit, an

allocator, and a crossbar unit. A router has five input/output 
ports without using virtual channels. Buffer depth is chosen to 
be 4. For routing packets, the simple deterministic XY routing 
algorithm is utilized. It is worth mentioning that performance 
can be improved by employing adaptive routing algorithms as 
discussed in different works but this efficiency is out of the 
concept of this paper. Link width is equal to the packet length 
that is 16 bits. The packet consists of two fields as source 
address and destination address. The round robin arbitration is 
used which provide fairness among requests from different 
input buffers. As shown in [13] prioritized round-robin 
arbitration outperforms the FCFS round-robin mechanism. All 
these optimizations can be done in the network without 
affecting the general idea of this paper as it is independent of 
the network configuration such as the underlying routing 
algorithm and arbitration mechanism. The network size is 
initially set to 11×11 with 1 neuron per cluster (1/N/C) which 
is reduced to 3×4 with 10/N/C using the clustering approach. 

C. Latency Evaluation
Communication latency should be kept as low as possible

like in most other applications. One network clock cycle equals 
to 1/400ms of simulated biological time. The supposed 
maximum average latency should be 3ms or 1200 cycles. The 

presented results can be improved by applying multicasting 
routing scheme, but out of the scope of this work. 

Fig. 10(a) shows the latency results for different spiking 
injection rates under the XOR benchmark. As demonstrated in 
this figure, several neurons can be attached to one router with 
negligible impact on the latency value. With the spike injection 
rate of 35Hz, the latency value increases from 310 clock cycles 
with 1/N/C to 757 clock cycles (unit) with 8/N/C. This figure 
indicates that under higher frequencies, a lower number of 
neurons can be included into one cluster. For an instance, 6 
neurons can be integrated into a cluster when the frequency is 
50Hz while 10 neurons can be integrated in a cluster when the 
frequency is 25Hz without even reaching the saturation point.  

Fig. 10(b) shows the tradeoff between latency, frequency 
and cluster size. According to this figure, for the frequencies 
smaller than 35Hz, 10 neurons is the optimal number of 
neurons per cluster. For the frequencies between 35Hz to 40 
Hz, 8 neurons is the best option. The number of neurons per 
cluster decreases to 6 neurons for the frequencies between 
40Hz and 50Hz. This figure can easily show a stable level of 
latency for different cluster sizes and frequencies. Thereby, 
according to the application and desired frequency, the optimal 
cluster size can be found. 

(a) 

(b) 

Fig. 10. Latency measurement under different frequencies 

D. Throughput Evaluation
Throughput is also measured for different frequencies and

cluster sizes. As shown in Fig. 11(a), throughput increases by 
integrating more number of neurons per cluster. However, for 
each frequency there is a breaking point from which throughput 
starts degrading. This point shows the optimal number of 
neurons per cluster for that frequency. The tradeoff between 



throughput, frequency and number of neurons per cluster is 
shown in Fig. 11(b). As can be seen from this figure, 
throughput can be improved by integrating more neurons, but 
there is a limit for this integration and beyond this limit the 
network resources overflow and thus throughput decreases. 
The improvements in throughput mean that network resources 
are underutilized. 

(a) 

(b) 

Fig. 11. Throughput measurement under different frequencies 

E. Hardware Analysis
In this subsection, the hardware overhead is evaluated

under all configurations. The major components of the system 
as NoC routers, neuron and STDP blocks are synthesized with 
Synopsys Design Compiler using the UMC 90nm technology 
with a timing constraint of 500MHz for the system clock and 
supply voltage of 1.2V.  

Two models of neurons have been implemented: L&F and 
Izhikevich models. In the first configuration, the L&F model of 
neurons is implemented. The area overhead and power 
consumption of each individual component is listed in Table 2. 
As can be seen in this table, the area overhead of the L&F 
neuron is around six times smaller than a router. The area 
overhead of the whole platform is listed in Table 1. Results 
show that by integrating 10 neurons per cluster with a single 
synaptic block per router, the area overhead of the whole 
platform decreases by 36% when employing L&F neurons 
while it decreases by 52% when using Izhikevich neurons. The 
introduction of shared synaptic resources among neurons 
provides further improvements of 46% for L&F neurons and 
24% for Izhikevich neurons. These results should be considered 
as raw and not suitable for comparison with other projects 

although they allow presenting a possible value of the proposed 
approach. 

Table 1. Area overhead of the whole platform in �m2 using two 
models of neuron as L&F and Izhikevich 

Neuron
per 

Cluster 

Area (�m2)
L&F

Savings 
% 

Area (�m2)
Izhikevich

Savings
% 

Single Shared Single Shared

1 3,703 3,703 0,0 5,336 5,336 0,0 

2 2,739 2,251 17,8 4,458 3,970 10,9 

3 2,291 1,666 27,2 3,991 3,367 15,6 

4 2,035 1,343 34,0 3,654 2,963 18,9 

5 2,016 1,287 36,1 3,702 2,974 19,7 

6 1,872 1,116 40,4 3,492 2,737 21,6 

7 2,129 1,352 36,5 4,018 3,242 19,3 

8 1,899 1,106 41,7 3,626 2,834 21,8 

9 2,104 1,301 38,2 4,047 3,244 19,8 

10 1,746 0,935 46,4 3,366 2,555 24,1 

Table 2. Area overhead (A: nm2) and power consumption (P: �w) of 
individaul components 

Router L&F 
neuron 

Izhikevich 
neuron 

Synaptic Cluster
Overhead 
(10N/R) 

A 13,012 2,647 16,140 10,203 2,055 

P 223 102 1,892 375 85 

V. CONCLUSION

In this paper, we presented micro-architectures of Spike-
Timing Dependent Plasticity (STDP) based Spiking Neural 
Network (SNN). A model of sharing synaptic resources for 
clustered network-on-chip (NoC) is introduced. It improves 
hardware utilization and cost of STDP computational block. 
The XOR application is programmed through reinforcement 
learning technique. An operational regime that guarantees the 
maximum throughput with the lowest cost is found. Area 
consumption of the main components of the system is 
extracted. The results show a significant area reduction. 
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