
Efficient STDP Micro-Architecture for Silicon
Spiking Neural Networks

Sergei Dytckov1, Masoud Daneshtalab1,2, Masoumeh Ebrahimi1,2, Hassan Anwar3,
Juha Plosila1, Hannu Tenhunen1,2

1University of Turku, Finland 2KTH Royal Institute of Technology, Sweden
3Ecole Polytechnique Montreal, Canada

Abstract— Spiking neural networks (SNNs) are the closest
approach to biological neurons in comparison with conventional
artificial neural networks (ANN). SNNs are composed of neurons
and synapses which are interconnected with a complex pattern.
As communication in such massively parallel computational
systems is getting critical, the network-on-chip (NoC) becomes a
promising solution to provide a scalable and robust
interconnection fabric. However, using NoC for large-scale SNNs
arises a trade-off between scalability, throughput, neuron/router
ratio (cluster size), and area overhead. In this paper, we tackle
the trade-off using a clustering approach and try to optimize the
synaptic resource utilization. An optimal cluster size can provide
the lowest area overhead and power consumption. For the
learning purposes, a phenomenon known as spike-timing-
dependent plasticity (STDP) is utilized. The micro-architectures
of the network, clusters, and the computational neurons are also
described. The presented approach suggests a promising solution
of integrating NoCs and STDP-based SNNs for the optimal
performance based on the underlying application.

Keywords: Spiking Neural Network; Networks-on-Chip; STDP;
Neuron Clustering;

I. INTRODUCTION

Brain is the main organ of learning and making decisions.
Brain processes the information by taking inputs from the
sensory organs (e.g. eyes, ears, and nose), and depending on
these inputs it produces an output. Our brain has around 100
billion neurons which are chemically connected to each other.
A neuron can be connected to around 10,000 neurons in the
circuit. Those connections are called synapses which are
usually formed from axons to dendrites. Synapse converts an
activity into electrical effects that excites the activity in the
connected neurons. Large-scale artificial neural networks
(ANNs) have been used to emulate the information processing
function of the brain [1]. Spiking neural networks (SNNs) [2]
are a type of ANN, which emulate real biological neural
networks, conveying information through the communication
of short transient pulses (spikes) between neurons via their
synaptic connections. Each neuron maintains an internal
membrane potential, which is a function of several parameters
as input spikes, associated synaptic weights, current membrane
potential, and a constant membrane potential leakage
coefficient [2][3]. A neuron fires (emits a spike to all connected
synapses/neurons) when its membrane potential exceeds the
neuron’s firing threshold value. Understanding and emulating
the behavior of the brain has received much attention not only
from neuroscientists but also from engineers and computer
scientists. While neuroscientists are interested in biophysical

models, engineers and computer scientists are more interested
in utilizing the brain’s powerful computing capability. The
dramatic developments in brain science and neuroscience over
the past few decades, together with the formidable
developments in hardware and software technology, have
brought us to the edge of building brain-like functioning
devices and systems [4]. Developing and applying such devices
in real-world information processing has been a dream and
vision for quite some time though success has so far been
limited. In recent years, computational neuroscience has
developed rapidly and researchers are currently designing and
studying large-scale complex brain models, thus helping to
integrate the vast amounts of information about the brain from
different sources and levels of description into working models
of the brain. In recent years, supercomputers have become an
enabling tool for simulating complex brain models with a scale
approaching that of small and medium-sized mammals.

Recently, the network-on-chip (NoC) paradigm has
emerged as a promising solution to solve the on-chip
communication problems revealed in many-core system-on-
chip (MCSoC). NoC architectures are composed of cores,
routers, and links which are arranged in a specific topology. In
the context of SNNs, the cores refer to the spiking neuron
models attached to NoC routers and the NoC topology refers to
the way those neurons are interconnected across the network.
Most of the current projects have used NoC as an interconnect
fabric for SNNs; however, their interconnection strategies (i.e.
one-to-one correspondence between neurons) and expensive
components (i.e. buffers, handshaking logic, etc.) make it
difficult to achieve high scalability with low power
consumption. In fact, the interconnection fabric (i.e. routers,
channels, etc.) consumes a large portion of the total power in
the system [5][14]. In addition, regarding the power and area
consumption, neuron blocks consume orders of magnitude less
power consumption than the interconnection platform [6].
Therefore, using NoC for large-scale SNNs arises a trade-off
between scalability, throughput, neuron/router ratio (cluster
size), and power-area overhead.

In this work, we identify possible space for improvements
in hardware resources of NoC-based SNN designs. We propose
a micro-architecture of the best known learning rule for spiking
neurons, called spike-timing-dependent plasticity (STDP) [21],
based on resource sharing on a clustered NoC. The XOR
application is implemented using the STDP based
reinforcement learning technique and used as the benchmark to
explore optimal cluster size.

II. RELATED WORK

NoC is used in a number of works as an interconnection
fabric for SNNs [10]–[13].

The Neurogrid project [15], [28], [28] is an analog-based
neuron system. Ion-channel activity and STDP are simulated
by an analog circuit. Synaptic weights are stored in digital
SRAM. The overall structure consists of the main building
block (neurocore) which contains 65,536 neuron models placed
on 16 layers. Neurogrid uses FPGA and SRAM for connecting
neurocores together. The power consumption of the platform is
promising as it requires 5W for simulating activity of one
million neurons. However, because of the limitation on the size
of the layer it is not capable of offering biological real-time
(1ms inter-spike interval).

The Fast Analog Computing with Emergent Transient
States project (FACETS) is based on mixed (analog-digital)
approach [16]. The HICANN (High Input Count Analog
Neural Network) is a building block of a system incorporating
512 analog neurons and more than 131,072 synapses with 4-bit
SRAMs to store weights. Up to 384 HICANN chips are placed
on the wafer and connected through hierarchical busses. Each
chip has access to 256 2-bit bus lanes, 8-bit packets with
neuron addresses are transmitted serially through them. The
wafers can be connected in a 2D torus topology through
FPGAs that handle the Ethernet protocol. The FACETS can
work beyond biological real-time, but at the cost of power
consumption, which goes up to 1kW for a single wafer.

The SpiNNaker project (Spiking Neural Network
Architecture) [12][13] is based on utilizing Multiprocessor-
based approaches. The building block of the system comprises
18 ARM968 processor cores. Each building block requires
about 1W and can emulate 16,000 Izhikevich neurons with
STDP learning. The learning implementation is optimized to
minimize the number of computations [27]. The
interconnection between each node is handled by a NoC using
six links, which is wrapped in a triangular lattice; this lattice is
then folded onto a surface of a toroid [17]. SpiNNaker can
compute 10^9 neurons in a biological real-time.

EMBRACE (Emulating Biologically InspiRed
ArChitectures in hardwarE) utilizes hierarchical (H-NOC)
approach, which gives a good trade-off between scalability and
power consumption [18]. Like FACETS, EMBRACE is
capable of working beyond biological real-time. The H-NOC
approach offers a high throughput of spikes per second along
with the low power consumption of 13mW for a single cluster
facility. However, each module contains a fixed amount of
neurons but not an optimized amount. On top of that,
EMBRACE has not integrated any learning technique in the
network.

III. THE HIERARCHICAL REPRESENTATION OF THE
PROPOSED APPROACH

A. Networks-on-Chip and Spiking Neural Networks
An NoC consists of an interconnection of many routers to

enable a large number of processing elements (PE) to

communicate with each other. PEs communicate with each
other by propagating packets through routers in the network.
Each router is connected to the local core and to its neighbors
in the north, south, east, and west directions through
bidirectional links.

Obviously, hardware implementation of a large-scale SNN
has superior speed advantages over its software implementation
counterpart. However, one of the main challenges to implement
SNNs in hardware is the complexity of inter-neuron
connectivity and its significant wiring overhead. The packet-
switching mechanism in NoCs will simplify the complexity of
inter-neuron connectivity while reducing the area overhead. In
addition, NoC is inherently a reconfigurable and scalable
platform which is essentially suitable for large-scale SNNs.

When combining NoC and SNN, a spiking neuron refers to
the processing element. The inter-neuron connectivity is
implemented in the forms of transmitting spike packets through
the interconnection network.

B. A Neuron Block
A neuron block is connected to the local port of the router.

It consists of a neuron and a synaptic block (Fig. 1). Synaptic
block comprises a number of synapses, which are modeled as
synaptic weights, and learning data for each synapse. In this
work, we take advantage of the STDP method to adapt the
synaptic weights.

1) Neuron
Different mathematical models of SNNs have been

explored over time with different levels of computational
efficiency and biological plausibility [19]. Leaky integrate and
fire (L&F) and Izhikevich models [20] are two neuron models
of SNNs which are used in this work. The L&F model is one of
the most widely used models due to its simplicity, but it is
limited to a single type of response and not considered for
biologically plausible simulations. The Izhikevich model is
more complex, but it allows to achieve a large variety of
spiking patterns [20].

2) Synapse
Biological synapses connect neurons to each other,

providing a mechanism to transmit a signal between neural
cells. Variable synaptic strength - the possibility to cause
different excitation amplitude at the receiving neuron, is an
important property known as synaptic plasticity. Plasticity is
modeled in ANN as variable synaptic weight values assigned to
the inputs of the neuron model. Learning of neural networks,
both biological and artificial, is based on the changing of the
synaptic weights. STDP changes weights based on a time
difference between incoming and outgoing spikes of a neuron.
These spikes are commonly referred to as pre- and post-
synaptic, respectively. A popular exponential form of STDP
function [8] is as:

exp(t/), if t 0
exp(t/), if t 0

A
w

A
τ

τ
+ +

− −

− −Δ Δ >�
Δ = � Δ Δ <�

(1)

Fig. 1. A neuron block

where tΔ is timing between spikes; τ determines the time
intervals when changes of a weight occur; A constants
determine a maximal amount of change. According to the
formula, close spikes introduce large impact to the weight
while the impact on distant spikes is negligible. As shown in
Fig. 2, if a pre-synaptic spike is followed by a post-synaptic
one, the synapse will be strengthened. In contrast, if a pre-
synaptic spike arrives after a post-synaptic spike, the synapse is
weakened. The amount of change depends exponentially on the
distance between spikes and the polarity of change depends on
the order in the spike sequence.

Recent biological researches show that STDP depends on
the presence of specific neuromodulators like dopamine. This
factor can be considered as a control or reward signal that turns
STDP from unsupervised into a supervised learning paradigm.
A group of works [7],[22],[25] show that controlled reward
signal successfully teaches SNN to produce desired output.
Thereby, we consider STDP to be a promising rule capable of
implementing both unsupervised and reinforcement learning
while enlarging the possible application area of the system.

Fig. 2. The STDP principle

Synapses are the dominate components in such systems so
that the straight-forward implementation of each synapse with a
separate STDP calculation block is extremely expensive even
for analog implementations, what imposes a large hardware
overhead. With the assumption that one STDP operation
(calculation of Equation (1)) is calculated in a single time step,
the total number of possible STDP operations per second in the
network is S/tstep where S is the number of synapses per
neuron and tstep is a simulation step. Assuming the regularity of

spiking activities we can calculate the number of required
STDP operations, which is equal to f·S/tstep where f is a spiking
frequency. For example, the XOR implementation described at
section IV requires 5,400 STDP operations per second for each
neuron. The provided number of STDP per second for straight-
forward implementation is 60,000 operations. This difference
gives a space for improvements to reduce the number of STDP
blocks about 11 times.

We have modeled a functional block diagram of a STDP-
based synapse with a shared calculation block among synapses
of one neuron as shown in Fig. 1. A neuron block consists of
six main components as pre- and post-synaptic tables, timer,
STDP controller, STDP calculator, synapse weight table, and
neuron cell. The synapse table consists of different partitions,
each allocated to one neuron from the previous layer. A
partition stores the time stamp of pre- or post-synaptic spikes.
There are two principal ways of calculating Equation (1): time
steps based and trace function based. In trace based, two decays
of STDP equation, corresponding to two parts of Equation (1)
are calculated for each synapse. When a pre-synaptic spike
occurs, pre-synaptic trace value is updated by some constant
(or to a constant) and a value from post-synaptic trace function
is used to update the weight and vice-versa. This mechanism is
typically implemented in analog designs. The major benefit is
that it allows considering all the spike history for STDP
updates. However, it requires a little bit more computations per
STDP in digital implementation than an alternative scheme
which uses time stamps. In this way, when a spike occurs, the
time of a spike should be saved and a time stamp from a
previous pair of the opposite synaptic type should be taken to
calculate �t for Equation (1). Only the closest neighbors are
taken into account as they produce the largest impact.
Implementation of full spike history would be too costly. We
consider the time stamp way due to its simplicity although
implementation with trace functions is similar. The synapses
weights are stored in the weight table. The STDP calculator
performs actual calculation according to a STDP model. The
controller performs scheduling of calculations.

The reaction of a synaptic block on the spike is shown in
Fig. 3. When a new spike arrives at the synapse, the
corresponding weight is injected to the neuron cell. In parallel,
the STDP process starts, first the time stamp is stored into the
corresponding synaptic table and a spike event triggers the
STDP control block. Then, the control block fetches post-
synaptic time stamps to apply the STDP rule to the newly
received pre-synaptic spike with every stored post-synaptic
spike, falling into the time window. Sequential calculation is
possible due to the sufficient period between spikes and the fact
that updated weight is required only by the next spike event on
that particular synapse. A similar procedure happens at the
post-synaptic spike event. This time, the current post-synaptic
time stamp should be saved and compared with every pre-
synaptic spike from each synapse. A pre-synaptic spike event
causes the recalculation of the single synaptic weight and a
post-synaptic spike leads to the recalculation of all the weights.
This is the main reason of using an event buffer in the
controller.

Fig. 3. Block diagram of reaction on receiving a spike

Our analysis shows that the XOR implementation with
STDP block shared among the synapses of one neuron provides
1000 STDP operations per second for each neuron. It is less
than required, but we assume that a digital implementation
allows the synaptic block to work at a higher clock rate than a
Neuron Block. For example, the clock rate of the network
should be higher to provide a lower spiking delay. With the
assumption of having more space for improvements due to
higher STDP calculation speed or lower simulation time step,
we have modeled a block diagram of STDP synaptic block
shared among neurons as shown in Fig. 4. In addition, a
possibility to share time stamps for synaptic connections
coming from one pre-synaptic neuron is also considered. In the
case of a topology with fully connected layers, such an
approach allows to reduce the amount of time stamps to S/N,
where N is the number of neurons in a cluster. When a spike
comes to a shared synapse, only one time stamp is stored and
the weighted input is applied to all neurons. When other types
of NN topologies are used, additional tables with the
connectivity information are required. The behavior of the
controller slightly changes after adding sharing modules for
pre-synaptic time stamps. A pre-synaptic event then also
triggers multiple STDP calculations. The sequence of
operations for both synaptic events is similar as depicted in Fig.
5. In case of fully connected layers, the controller can read all
the pre- and post-synaptic time stamps sequentially omitting
the communication to connectivity tables.

C. A clustering Block
As assumed in different works [13], a neuron block is

connected to one router. This implies that the area overhead
will increase considerably as the number of neurons increases.
This is the simplest way of implementing a neural network

Fig. 4. A neuron block with shared synapses

Read post synaptic
address from event

FIFO

Find post- (pre-)
synaptic address

Read post- (pre-)
synaptic time stamp

Read pre-synaptic
time stamp

Perform STDP

Read the weightUpdate the weight

Fig. 5. Sequence of STDP operations

platform in NoCs but at the cost of considerable area overhead
and power consumption. These overheads are paid whereas
most of the times the network resources (e.g. buffers and links)
are underutilized. In the clustered approach, we connect as
many neurons as possible to a router such that to reach the
optimal point of resource utilization before approaching the
saturation point of the network. This guarantees the maximum
throughput and performance with the lowest area overhead and
power consumption in this particular aspect. Fig. 6 shows the
structure of integrating four neuron blocks.

Fig. 6. A cluster block

IV. EXPERIMENTAL RESULTS

To evaluate the proposed approach, a simulation platform
of combining SNN and mesh-based NoC is developed. RTL-
level of all major components of SNN including cluster blocks
(neurons, synapses, and the STDP learning) and NoC modules
(routers and links) have been implemented. Each cluster has an
additional area overhead of a multiplexer and a de-multiplexer.
We have measured latency, throughput, area overhead, and
power consumption of the proposed approach for different

cluster sizes and spiking injection rates. A spiking injection rate
refers to the average of spike events that a neuron produces
within a simulation time. The simulations are carried out for an
XOR problem. The XOR application is a classic benchmark for
learning algorithms of artificial neural network training. We
use it as an example of classical layered neural network
architecture.

A. XOR Application
In the XOR problem, the output 1 should be resulted when

the inputs are as {0, 1} or {1, 0}, otherwise the output 0 should
be produced [24]–[26]. Similar to [7], [24] for solving this
problem, 60 neurons in the input layer, 60 neurons in the
hidden layer, and 1 neuron in the output layer are used. As
shown in Fig. 7, each layer is fully connected to the next layer
meaning that all neurons in the input layer are connected to all
neurons in the hidden layer and all neurons in the hidden layer
are connected to the single neuron in the output layer. For
solving the XOR problem, 121 neurons are needed. For
mapping the neurons to an NoC, the first layer of neurons is
placed in borderline routers while the hidden layer neurons
along with the output neuron are mapped in the central part of
the network. We assume that such placement of a first layer
should be caused by the presence of continuous external input
(e.g. pixel data for video processing tasks). Fig. 8(a) and (b)
show the mapping of neurons in 5×5 and 5×4 NoC when 5 and
6 neurons are integrated into one cluster, respectively. The
character 0, 1, 2, and 3 stands for non-used, first-layer, hidden-
layer, and output layer, respectively. Out of 60 input neurons,
30 neurons represent logic 0 and other 30 represent logic 1. The
input 1 was represented by a Poisson spike train at different
frequencies (ranges from 25Hz to 50Hz) and the input 0 was
represented by no spiking. Each output spike was rewarded
when network was supposed to produce logic 1 output or
punished for each spike if desired output was logic 0. Upon
iterating this process for few hundred cycles, the network will
be capable of producing correct outputs. Fig. 9 shows an output
of a SNN trained to perform XOR application. As can be seen
in this figure, when the inputs are {0,1} or {1,0}, the output
neuron spikes frequently compared with the input {1,1} and
{0,0: no spike}.

Fig. 7. An XOR implementation with 60 neurons in the first layer, 60
neurons in the hidden layer and one neuron in the output layer

 (a) (b)

Fig. 8. (a) mapping of neurons in a 5×5 mesh-based NoC with 5/N/C
(b) mapping of neurons in a 5×4 mesh-based NoC with 6/N/C

Fig. 9. An XOR application in SNN

SNN has two phases: Exploration and Exploitation. During the
Exploration phase, the network is trained for the particular
application; while during the Exploitation phase, the execution
is performed according to the learned patterns.

B. System Configuration
Each router includes input buffers, a routing unit, an

allocator, and a crossbar unit. A router has five input/output
ports without using virtual channels. Buffer depth is chosen to
be 4. For routing packets, the simple deterministic XY routing
algorithm is utilized. It is worth mentioning that performance
can be improved by employing adaptive routing algorithms as
discussed in different works but this efficiency is out of the
concept of this paper. Link width is equal to the packet length
that is 16 bits. The packet consists of two fields as source
address and destination address. The round robin arbitration is
used which provide fairness among requests from different
input buffers. As shown in [13] prioritized round-robin
arbitration outperforms the FCFS round-robin mechanism. All
these optimizations can be done in the network without
affecting the general idea of this paper as it is independent of
the network configuration such as the underlying routing
algorithm and arbitration mechanism. The network size is
initially set to 11×11 with 1 neuron per cluster (1/N/C) which
is reduced to 3×4 with 10/N/C using the clustering approach.

C. Latency Evaluation
Communication latency should be kept as low as possible

like in most other applications. One network clock cycle equals
to 1/400ms of simulated biological time. The supposed
maximum average latency should be 3ms or 1200 cycles. The

presented results can be improved by applying multicasting
routing scheme, but out of the scope of this work.

Fig. 10(a) shows the latency results for different spiking
injection rates under the XOR benchmark. As demonstrated in
this figure, several neurons can be attached to one router with
negligible impact on the latency value. With the spike injection
rate of 35Hz, the latency value increases from 310 clock cycles
with 1/N/C to 757 clock cycles (unit) with 8/N/C. This figure
indicates that under higher frequencies, a lower number of
neurons can be included into one cluster. For an instance, 6
neurons can be integrated into a cluster when the frequency is
50Hz while 10 neurons can be integrated in a cluster when the
frequency is 25Hz without even reaching the saturation point.

Fig. 10(b) shows the tradeoff between latency, frequency
and cluster size. According to this figure, for the frequencies
smaller than 35Hz, 10 neurons is the optimal number of
neurons per cluster. For the frequencies between 35Hz to 40
Hz, 8 neurons is the best option. The number of neurons per
cluster decreases to 6 neurons for the frequencies between
40Hz and 50Hz. This figure can easily show a stable level of
latency for different cluster sizes and frequencies. Thereby,
according to the application and desired frequency, the optimal
cluster size can be found.

(a)

(b)

Fig. 10. Latency measurement under different frequencies

D. Throughput Evaluation
Throughput is also measured for different frequencies and

cluster sizes. As shown in Fig. 11(a), throughput increases by
integrating more number of neurons per cluster. However, for
each frequency there is a breaking point from which throughput
starts degrading. This point shows the optimal number of
neurons per cluster for that frequency. The tradeoff between

throughput, frequency and number of neurons per cluster is
shown in Fig. 11(b). As can be seen from this figure,
throughput can be improved by integrating more neurons, but
there is a limit for this integration and beyond this limit the
network resources overflow and thus throughput decreases.
The improvements in throughput mean that network resources
are underutilized.

(a)

(b)

Fig. 11. Throughput measurement under different frequencies

E. Hardware Analysis
In this subsection, the hardware overhead is evaluated

under all configurations. The major components of the system
as NoC routers, neuron and STDP blocks are synthesized with
Synopsys Design Compiler using the UMC 90nm technology
with a timing constraint of 500MHz for the system clock and
supply voltage of 1.2V.

Two models of neurons have been implemented: L&F and
Izhikevich models. In the first configuration, the L&F model of
neurons is implemented. The area overhead and power
consumption of each individual component is listed in Table 2.
As can be seen in this table, the area overhead of the L&F
neuron is around six times smaller than a router. The area
overhead of the whole platform is listed in Table 1. Results
show that by integrating 10 neurons per cluster with a single
synaptic block per router, the area overhead of the whole
platform decreases by 36% when employing L&F neurons
while it decreases by 52% when using Izhikevich neurons. The
introduction of shared synaptic resources among neurons
provides further improvements of 46% for L&F neurons and
24% for Izhikevich neurons. These results should be considered
as raw and not suitable for comparison with other projects

although they allow presenting a possible value of the proposed
approach.

Table 1. Area overhead of the whole platform in �m2 using two
models of neuron as L&F and Izhikevich

Neuron
per

Cluster

Area (�m2)
L&F

Savings
%

Area (�m2)
Izhikevich

Savings
%

Single Shared Single Shared

1 3,703 3,703 0,0 5,336 5,336 0,0

2 2,739 2,251 17,8 4,458 3,970 10,9

3 2,291 1,666 27,2 3,991 3,367 15,6

4 2,035 1,343 34,0 3,654 2,963 18,9

5 2,016 1,287 36,1 3,702 2,974 19,7

6 1,872 1,116 40,4 3,492 2,737 21,6

7 2,129 1,352 36,5 4,018 3,242 19,3

8 1,899 1,106 41,7 3,626 2,834 21,8

9 2,104 1,301 38,2 4,047 3,244 19,8

10 1,746 0,935 46,4 3,366 2,555 24,1

Table 2. Area overhead (A: nm2) and power consumption (P: �w) of
individaul components

Router L&F
neuron

Izhikevich
neuron

Synaptic Cluster
Overhead
(10N/R)

A 13,012 2,647 16,140 10,203 2,055

P 223 102 1,892 375 85

V. CONCLUSION

In this paper, we presented micro-architectures of Spike-
Timing Dependent Plasticity (STDP) based Spiking Neural
Network (SNN). A model of sharing synaptic resources for
clustered network-on-chip (NoC) is introduced. It improves
hardware utilization and cost of STDP computational block.
The XOR application is programmed through reinforcement
learning technique. An operational regime that guarantees the
maximum throughput with the lowest cost is found. Area
consumption of the main components of the system is
extracted. The results show a significant area reduction.

VI. ACKNOWLEDGEMENT

This work was supported by VINNOVA (Swedish Agency
for Innovation Systems) within the CUBRIC and ERoT
projects, and academy of Finland.

REFERENCES
[1] H. Markram, W. Maass, and Stephen Grossberg, “Introduction:

Spiking Neurons in Neuroscience and Technology.,” Neural Netw.,
vol. 14, no. 6–7, p. 587, 2001.

[2] W. Maass and T. U. Graz, “Networks of Spiking Neurons: The Third
Generation of Neural Network Models,” Neural Netw., vol. 10, pp.
1659–1671, 1997.

[3] W. Gerstner and W. M. Kistler, Spiking Neuron Models Single
Neurons, Populations, Plasticity. Cambridge, U.K., Cambridge
University Press, 2002.

[4] T. Trappenberg, Fundamentals of Computational Neuroscience, 2nd
ed., Oxford, U.K., Oxford University Press, 2010.

[5] G. Indiveri, B. Linares-Barrancoet, T.J. Hamilton, et. al.,
“Neuromorphic Silicon Neuron Circuits,” Front. Neurosci., vol. 5,
2011.

[6] P. Livi and G. Indiveri, “A current-mode conductance-based silicon
neuron for address-event neuromorphic systems,” in IEEE Int. Symp.
on Circuits and Systems, 2009. ISCAS 2009, 2009, pp. 2898–2901.

[7] R. V. Florian, “Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity,” Neural Comput., vol. 19, no. 6,
pp. 1468–1502, 2007.

[8] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity,” Nat.
Neurosci., vol. 3, no. 9, pp. 919–926, 2000.

[9] H. Anwar, S. M. A. H. Jafri, S. Dytckov, M. Daneshtalab, M.
Ebrahimi, A. Hemani, “Exploring Spiking Neural Network on Coarse-
Grain Reconfigurable Architectures,” in proc. of International
Workshop on Manycore Embedded Systems (MES), pp. 64-67, US,
2014.

[10] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin, and V.
Srikantam, “A generic reconfigurable neural network architecture
implemented as a network on chip,” in IEEE Int. System-On-Chip
Conference, 2004, pp. 191–194.

[11] R. Emery, A. Yakovlev, and G. Chester, “Connection-centric network
for spiking neural networks,” in of the 3rd ACM/IEEE Int. Symp. on
Networks-on-Chip, Washington, DC, USA, 2009, pp. 144–152.

[12] J. Harkin, F. Morgan, L. McDaid, S. Hall, B. McGinley, and S.
Cawley, “A Reconfigurable and Biologically Inspired Paradigm for
Computation Using Network-On-Chip and Spiking Neural Networks,”
Int. J. Reconfigurable Comput., vol. 2009, pp. 1–13, 2009.

[13] S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, B. McGinley,
and F. Morgan, “Advancing interconnect density for spiking neural
network hardware implementations using traffic-aware adaptive
network-on-chip routers,” Neural Networks Off. J. Int. Neural Netw.
Soc., vol. 33, pp. 42–57, 2012.

[14] M. Palesi and M. Daneshtalab (Eds.), “Routing Algorithms in
Networks-on-Chip, ” Springer 2014.

[15] S. Choudhary, S. Sloan, S. Fok, A. Neckar, E. Trautmann, P. Gao, T.
Stewart, C. Eliasmith, and K. Boahen, “Silicon Neurons That
Compute,” in Artificial Neural Networks and Machine Learning –
ICANN 2012, 2012, pp. 121–128.

[16] J. Schemmel, D. Bru derle, A. Gru bl, M. Hock, K. Meier, and S.
Millner, “A wafer-scale neuromorphic hardware system for large-scale
neural modeling,” in IEEE Int. Symp. on Circuits and Systems
(ISCAS), 2010, pp. 1947–1950.

[17] K. Dugan, J. Reeve, A. Brown, and S. Furber, “Interconnection system
for the spiNNaker biologically inspired multi-computer,” IET Comput.
Digit. Tech., vol. 7, no. 3, 2013.

 [18] S. Carrillo, J. G. Harkin, L. J. McDaid, S. Pande, S. Cawley, B.
McGinley, and F. Morgan, “Hierarchical Network-on-Chip and
Traffic Compression for Spiking Neural Network Implementations,”
in ACM/IEEE International Symposium on Networks-on-Chip (NoC),
2012, pp. 83–90.

[19] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,”
IEEE Trans. Neural Networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[20] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans.
Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[21] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,”
Scholarpedia, vol. 5, no. 2, p. 1362, 2010.

[22] E. M. Izhikevich, “Solving the Distal Reward Problem through
Linkage of STDP and Dopamine Signaling,” Cereb. Cortex, vol. 17,
no. 10, pp. 2443–2452, 2007.

[23] R. Legenstein, D. Pecevski, and W. Maass, “A learning theory for
reward-modulated spike-timing-dependent plasticity with application
to biofeedback,” PLoS Comput. Biol., vol. 4, no. 10, Oct. 2008.

[24] H. S. Seung, “Learning in spiking neural networks by reinforcement
of stochastic synaptic transmission,” Neuron, vol. 40, no. 6, pp. 1063–
1073, 2003.

[25] X. Xie and H. S. Seung, “Learning in neural networks by
reinforcement of irregular spiking,” Phys. Rev. E Stat. Nonlin. Soft
Matter Phys., no. 69, pp. 1–10, 2004.

[26] S. Hong, L. Ning, L. Xiaoping, and W. Qian, “A cooperative method
for supervised learning in Spiking neural networks,” in 2010 14th Int.
Conf. on Computer Supported Cooperative Work in Design (CSCWD),
2010, pp. 22–26.

[27] J. Xin, A. Rast, F. Galluppi, S. Davies, S. Furber, "Implementing
spike-timing-dependent plasticity on SpiNNaker neuromorphic
hardware," The 2010 Int. Joint Conf. on Neural Networks (IJCNN),
vol., no., pp.1,8, 18-23 July 2010

[28] J. Arthur, K. Boahen, “Learning in Silicon: Timing is Everything,”
Advances in Neural Information Processing Systems 18, MIT Press,
pp 75-82, 2006.

