
Efficient Network Interface Architecture for
Network-on-Chips

Masoumeh Ebrahimi, Masoud Daneshtalab, N P Sreejesh, Pasi Liljeberg, Hannu Tenhunen
Department of Information Technology, University of Turku, Turku, Finland

{masebr, masdan, srenai, paslil, hanten}@utu.fi

Abstract- In this paper, we present novel network interface
architecture for on-chip networks to increase memory
parallelism and to improve the resource utilization. The proposed
architecture exploits AXI transaction based protocol to be
compatible with existing IP cores. Experimental results with
synthetic test case demonstrate that the proposed architecture
outperforms the conventional architecture in term of latency.

I. INTRODUCTION
Network-on-chip (NoC) might be a feasible alternative for the

traditional bus-based communication in SoCs due to its reusability,
scalability, and parallelism in communication infrastructure [1].
NoCs are composed of routers connecting Processing Elements
(PE), to deliver the data (packets) from one place to another [2],
and Network Interfaces (NI) the communication interface between
each PE and router. The fundamental function of NIs is to provide
communication between PEs and network infrastructure. That is,
the NI translates the language between the PE and router based on a
standard communication protocol such as AXI [3] and OCP [4]. In-
order delivery should be handled when exploiting an adaptive
routing algorithm for distributing packets through the network [5],
or in obtaining memory access parallelization by sending requests
from a master IP core to multiple slave memories [6] [7]. When a
master sends requests to different memories, the responses might be
required to return in the same order in which the master issued the
addresses, and therefore a reordering mechanism in NoC should be
provided by the NI. For implementing an efficient NI, the resource
utilization must be improved because in on-chip networks we have
limitation of hardware overhead, power consumption, and network
latency. According to our observation, the utilization of reorder
buffer in NIs is significantly low. Therefore, the traditional buffer
management is not efficient enough for NIs. Hence, an
advantageous reordering mechanism and resourceful management
of buffers in the NI are demanded to increase the utilization and
efficiency of the on-chip interconnection network.

The authors in [6] present ideas of transaction ID renaming and
distributed soft arbitration in the context of distributed shared
memories. This has been improved in [10] by moving reorder
buffer resources from NI into network routers. In such systems,
because of using global synchronization in the on-chip network,
and the delay of release packets recalling data from distributed
reordering buffer, the performance might be degraded and the cost
of hardware overhead for the on-chip network is too high.
Moreover, the proposed architecture is restricted to deterministic
routing algorithms. An efficient on-chip NI supporting shared
memory abstraction and flexible network configuration is presented
by Radulescu et al [7]. The proposed architecture has the advantage
of improving reuse of IP cores, and offers ordering messages via
channel implementation. Nevertheless, the performance is
penalized because of increasing latency, and besides, the packets
are routed on the same path in NoC, which forces the routers to use
the deterministic routing. Yang et al proposed NISAR [5], a NI

architecture using AXI protocol with capability of packet
reordering mechanism based on a look up table; but NISAR used a
statically partitioned reorder buffer, thereby it had a simple control
logic but suffered from low buffer utilization in different traffic
patterns. In addition, NISAR does not support the burst transaction,
whereas burst type should be handled by the NI. The major
contribution of this paper is to propose a novel dynamic buffer
allocation architecture for the reorder buffer.

In this work, we introduce new NI architecture providing a
novel dynamic buffer allocation based on variable packet size for
improving the resource utilization and performance of the NI and
on-chip network. The proposed NI architecture enables sharing
slots of reorder buffer via a dynamic buffer management [8] [9],
thereby replacing the conventional, static resource allocation.
Besides, the proposed architecture exploits AMBA AXI protocol,
to allow backward compatibility with existing IP cores [3]. We also
present micro-architectures of the NI, particularly the reordering
mechanism to realize the idea. We believe that there are not any
documented implementations details of such reordering buffer yet.
The paper is organized as follows. In Section II, the proposed
architecture is discussed while the results are presented in Section
III, and the summary and conclusion given in the last Section.

II. MASTER AND SLAVE NI ARCHITECTURES

In the AXI transaction-based model [3] [6], IP cores can be
classified as master (active) and slave (passive) IP cores [7]. Master
IP cores initiate transactions by issuing read and write requests and
one or more slaves (memories) receive and execute each request.
Subsequently, a response issued by a slave can be either an
acknowledgment (corresponding to the write request) or data
(corresponding to the read request) [7]. The AXI protocol provides
a “transaction ID” field assigned to each transaction. Transactions
from the same master IP core, but with different IDs have no
ordering restriction while transactions with the same ID must be
completed in order. Thus a reordering mechanism in the NI is
needed to afford this ordering requirement [3] [6] [10]. Since IP
cores are classified into masters and slaves, the NI is also divided
into the master NI (Fig. 1) and slave NI (Fig. 2). Both NIs are
partitioned into two paths: forward and reverse. The forward path
transmits the AXI transactions received from an IP core to a router;
and the reverse path receives the packets from the router and
converts them back to AXI transactions. The proposed NIs for both
master and slave sides are described in detail as follows.

A. Master-side NI:
As shown in the Fig. 1, the forward path of the master NI
transferring requests to the network is composed of an AXI-Queue,
a Packetizer unit, and a Reorder unit, while the reverse path,
receiving the responses from the network, is composed by a Packet-
Queue, a Depacketizer unit, and the Reorder unit. The Reorder unit
is a shared module between the forward and reverse paths.
AXI-Queue: the AXI master core transmits write address, write
data, or read address to the NI through channels. The AXI-Queue

Fig. 1. Master-side NI architecture.
unit performs the arbitration between write and read transaction
channels and stores requests into write or read request buffers. The
request messages will be sent to the packetizer unit if admitted by
the reorder unit, and on top of that a sequence number for each
request should be prepared by the reorder unit after the admittance.
Packetizer: it is configured to convert incoming messages from the
AXI-Queue unit into header and data flits, and delivers the
produced flits to the router. Since a message is composed of several
parts, the data is stored in the data buffer and the rest of the
message is loaded in corresponding registers of the header builder
unit. After the mapping unit converts the AXI address into a
network address by using an address decoder, based on the request
information loaded on relative registers and the sequence number
provided by the reorder buffer, the header of the packet can be
formed. Afterward, the flit controller wraps up a packet for
convenient transmission.
Packet-Queue: this unit receives packets from the router; and
according to the decision of the reorder unit a packet is delivered to
the depacketizer unit or reorder buffer. In fact, when a new packet
arrives, the sequence number and transaction ID of the packet will
be sent to the reorder unit. Based on the decision of the reorder unit,
if the packet is out of order, it is transmitted to the reorder buffer,
and otherwise it will be delivered to the depacketizer unit directly.
Depacketizer: the main functionality of the Depacketizer unit is to
restore packets coming from either the packet queue unit or reorder
buffer into the original data format of the AXI master core.
Reorder Unit: it is the most influential part of the NI including a
Status-Register, a Status-Table, a Reorder buffer, and a Reorder-
Table. In the forward path, preparing the sequence number for
corresponding transaction ID, and avoiding overflow of the reorder
buffer by the admittance mechanism are provided by this unit. On
the other side, in the reverse path, this unit determines where the
outstanding packets from the packet queue should be transmitted
(reorder buffer or depacketizer), and when the packets in the
reorder buffer could be released to the depacketizer unit.
Status-Register and Status-Table: Status-Register is an n-bit
register where each bit corresponds to one of the AXI transaction
IDs. This register records whether there are one or more messages
with the same transaction ID being issued or not. To record the
state of the outstanding messages, Status-Table is adopted. Each
entry of this table is considered for messages with the same

transaction ID, and includes valid tag (v), Transaction ID (T-ID),
Number of outstanding Transactions (N-T) as well as the Expecting
Sequence number (E-S). The register and table might be updated in
both forward and reverse paths described as follows. In the forward
path, when the first message of each transaction ID requests for
admittance from the reorder unit to enter the network, the
corresponding bit in the status register goes high (Fig. 3(a)). The
sequence number indicating the order of the messages within the
transaction ID is produced by the reorder unit, if the admittance is
given. Obviously, this value (Seq-Num) is equal to zero for the first
message of each transaction ID. Since only the first message of
each transaction does not need to be stored in the reorder buffer, it
always gets the admittance to enter the network. If the second
request of the same transaction ID is received by the reorder unit, a
row in the status table will be initiated for the corresponding
message, as demonstrated in Fig. 3(b). In order to prevent overflow
of the reorder buffer, if the message is granted by the reorder unit,
the required space in the reorder buffer must be reserved according
to the size of a new message (size_nm). On top of that, response
and request messages might have different sizes (different burst
size), therefore, by providing the linked list mechanism in the
reorder buffer, the network performance and buffer utilization will
be improved considerably. A register, named size_aom, is used to
keep the required size of all outstanding transactions in the
network. Indeed, this register reserves the number of buffer slots for
outstanding messages of different transaction IDs. Since the
required buffer space is dependent on the response message size,
the required space must be obtained by using the information
available in the request message. As shown in Fig. 3(b), before the
second message of transaction 2 is admitted by the reorder unit, the
reorder unit compares the size_aom value and the reorder buffer
size. Then, the message will be admitted if the required space is
available in the reorder buffer. While the sequence number of the
first message is set to 0, for subsequent messages with the same
transaction ID, the sequence number is obtained by adding N-T and
E-S values, indicated in Fig. 3(b and c). After the sequence number
is obtained, N-T will be increased. E-S indicates the next response
sequence number of the corresponding transaction ID to be
delivered to the depacketizer unit. In the reverse path, the
transaction ID and sequence number of the arriving response packet
(message) are sent to the reorder unit to find the related row in the

Fig. 2. Slave-side NI architecture.
status table according to the transaction ID (T-ID). If the sequence
number of incoming packet is equal to E-S value, the packet is an
expected packet (in-order) and should be delivered to the
depacketizer unit; thereafter, E-S and N-T values will be increased
by +1 and -1, respectively (Fig. 3.d). If N-T value reaches zero, the
transaction will be terminated by resetting the valid bit for both
status register and status table (Fig. 3.e). However, the packet is
out-or-order and should be delivered to the reorder buffer, if the
sequence number of the packet is not equal to E-S. Additionally,
only one message with the given transaction ID should have been
sent to the network, if the given transaction ID is not matched in the
status table, thereby only the corresponding bit in the status register
will be reset.
Reorder-Table and Reorder-Buffer: As shown in Fig. 4, each
row of the reorder table corresponds to an out-of-order packet
stored in the reorder buffer. This table includes the valid tag (v), the
transaction ID (T-ID), the sequence number (S-N) as well as the
head pointer (P). In the reorder buffer, the flits of each packet are
maintained by a linked list structure providing high resource
efficiency with little hardware overhead. On top of that, the goal of
using the shared reorder buffer is to support variable packet size
and improve the buffer utilization which can also increase the
performance by feeding more packets into the network. Fig. 3
exhibits a pointer field adopted to indicate the next flit position in
the reorder buffer. Using the proposed structure in Fig. 4, each out-
of-order packet updates the reorder table and reorder buffer. The
reordering mechanism guarantees that the reorder buffer will never
be overflowed. Therefore, the reorder buffer always has enough
space to store the incoming out-of-order packets. Whenever a new
packet arrives, some information such as transaction ID and
sequence number will be extracted from the header flit and then
they will be written into a free slot in the reorder table. Also, the
pointer field of the table will be updated to point to a free slot in the
reorder buffer. Incoming flits are stored in the reorder buffer cycle
by cycle and the pointer field updates to show a next free slot in the
reorder buffer. It continues until the tail flit stores in the reorder
buffer. Whenever an in-order packet delivered to the depacketizer
unit, the depacketizer controller checks the reorder table for the
validity of any stored packet with the same transaction ID and next
sequence number. If so, the stored packet will be released from the
reorder unit to the depacketizer unit.

B. Slave-side NI:
A slave IP core cannot operates by itself. It receives requests

from master cores and responds to them. Hence, using reordering

mechanism in the slave NI is completely meaningless. But to avoid
losing the order of header information (transaction ID, sequence
number, and etc) carried by arriving requests, a FIFO has been
considered. After processing a request in the slave core, the
response packet should be created by the packetizer. As can be seen
from Fig. 2, to generate the response packet, after the header
content of the corresponding request is invoked from the FIFO, and
some parameters of the header (destination address, and packet
size, and etc) are modified by the adapter, the response packet will
be formed. However, the components of slave-side interface in both
forward and reverse paths are almost similar to the master-side
interface components, except the reorder unit.

III. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

A cycle-accurate 2D NoC simulator is implemented to assess
the efficiency of the proposed method. The simulator models all
major components of the NoC such as NI, routers, and wires. We
use a 25-node (5�5) 2D mesh on-chip network within two different
configurations for the entire architecture. In the first configuration
(A), out of 25 nodes, ten nodes are assumed to be processor (master
cores-with master NI) and other fifteen nodes are memories (slave
cores-with slave NI). For the second configuration (B), each node is
considered to have a processor and a memory (master core with
master-NI, and slave cores with slave-NI). The router has a typical
state-of-the-art structure including input buffers, a VC (Virtual
Channel) allocator, a routing unit, a switch allocator and a crossbar.
Each router has 5 input/output ports, and each input port of the
router has 2 VCs. The array size, router algorithm, link width,
number of VCs, buffer depth of each VC, and traffic type are the
other parameters which must be specified for the simulator.

The routers adopt XY routing and wormhole switching. For all
routers, the data width (flit) was set to 32 bits, and the buffer depth
of each VC is 5 flits. The baseline architecture (with fixed packet
length) uses 1 flit for messages related to read requests and write
responses, and 5 flits for data messages, representative of read
responses and write requests; the size of read request messages
typically depends on the network size and memory capacity of the
configured system. As discussed in the previous section, the
message size of the proposed mechanism is variable and depends
on the request/response length produced by the master/slave core.
As the performance metric, we use latency defined as the number of
cycles between the initiation of a request operation issued by a

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Request Rate (fraction of capacity)

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Baseline - config A

Proposed - config A

Baseline - config B

Proposed - config B

Fig. 3. Updating process of the status register and status table of reorder unit. Fig. 4. Dynamic buffer allocation

master and the time when the response is completely delivered to
the master from the memory. And the request rate is defined as the
ratio of the successful read/write request injections into the NI over
the total number of injection attempts. All the cores and routers are
assumed to operate at 2GHz. We also set the size of the reorder
buffer to 48 words, able to embed 6 outstanding requests with burst
size of 8. To evaluate the performance of the proposed schemes, the
uniform synthetic traffic pattern has been considered separately for
both configurations (A and B). The random traffic represents the
most generic case, where each processor sends in-order read/write
requests to memories with uniform probability. Hence, the
memories and request type (read or write) are selected randomly.
Eight burst sizes, among 1 to 8, are stochastically chosen regarding
the data length of the request. Fig. 5 reveals that compared with the
baseline architecture [5] [6] the proposed architecture reduces the
average latency when the request rate increases in both of
configuration A and B under uniform traffic. One of the foremost
reasons of such an improvement is that because the size of packets
is not fixed and depends on the request and response lengths, the
resource utilization is high and thus, the latency is reduced. Another
subtle reason for improving the performance is that getting more
free slots in the reorder buffer provides more messages to enter the
network. For appraising the area overhead of the proposed
architecture, the NI was synthesized by Synopsys D.C. using the
UMC 0.09�m technology. In addition to the aforementioned
configuration of the NI, the tran_id and seq_id were set to 4-bit and
3-bit respectively. Comparing the area cost of the baseline model
for each proposed NI indicates that the hardware overhead of
implementing the proposed scheme is less than 0.5%.

IV. SUMMARY AND CONCLUSION
The resource utilization of the conventional reordering methods

is not efficient enough; thus, in this work, we presented high
performance NI with a novel dynamic buffer allocation which
improve the resource utilization, and overall on-chip network
performance. Also, the micro-architectures of the proposed master-
side and slave-side NIs which are compatible with AMBA AXI
protocol have been introduced. A cycle-accurate simulator was
used to evaluate the efficiency of the proposed architecture. Under
uniform traffic model, in high traffic load, the proposed
architectures had lower average communication delay in
comparison with the baseline architecture.

Fig. 5. Performance evaluation of both configurations.

REFERENCES
[1] B.Towles and W.Dally, “Route packets, not wires: on-chip

interconnection networks”, Proc. DAC 2001.
[2] C. A. Zeferino, M. E. Kreutz, and A. A. Susin, “RASoC: A

Router Soft-Core for Networks-on-Chip”, Proceedings of
DATE’04, pp. 1530-1591, 2004.

[3] ARM, AMBA AXI Protocol Specification, Mar. 2004.
[4] OCP International Partnership, Open Core Protocol

Specification. 2.0 Release Candidate, 2003.
[5] X. Yang, Z. Qing-li, F. Fang-fa, Y. Ming-yan, L.

Cheng, “NISAR: An AXI compliant on-chip NI architecture
offering transaction reordering processing”, in Proc. ASICON,
pp. 890-893, 2007, Greece.

[6] W. Kwon, et al., “A Practical Approach of Memory Access
Parallelization to Exploit Multiple Off-chip DDR Memories”,
Proc. DAC, 2008.

[7] A. Radulescu, and et al., “An Efficient On-Chip NI Offering
Guaranteed Services, Shared-Memory Abstraction, and Flexible
Network Configuration”, in Proc IEEE TCAD, 24(1), January
2005.

[8] M. H. Neishaburi, Z. Zilic, “Reliability aware NoC router
architecture using input channel buffer sharing”, in Proc.
GLSVLSI, pp. 511-516, 2009.

[9] M. Lai, Z. Wang, L. Gao, H. Lu, K. Dai, "A Dynamically-
Allocated Virtual Channel Architecture with Congestion
Awareness for On-Chip Routers," in Proceedings of the 46th
Design Automation Conference (DAC), pp. 630-633, 2008.

[10] W. Kwon, S. Yoo, J. Um, and S. Jeong, “In-network reorder
buffer to improve overall NoC performance while resolving the
in-order requirement problem”, In proc. DATE’09, pp. 1058 –
1063, France, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

