
1

Efficient Design-for-Test Approach for
Networks-on-Chip

Junshi Wang, Masoumeh Ebrahimi, Letian Huang, Xuan Xie, Qiang Li, Guangjun Li, Axel Jantsch

Abstract—To achieve high reliability in on-chip networks, it is necessary to test the network continuously with Built-in Self-Tests (BIST)
so that the faults can be detected quickly and the number of affected packets can be minimized. However, BIST causes significant
performance loss due to data dependencies. We propose EsyTest, a comprehensive test strategy with minimized influence on system
performance. EsyTest tests the data path and the control path separately. The data path test starts periodically, but the actual test
performs in the free time slots to avoid deactivating the router for testing. A reconfigurable router architecture and an adaptive
fault-tolerant routing algorithm are proposed to guarantee the access to the processing core when the associated router is under test.
During the whole test procedure of the network, all processing cores are accessible, and thus the system performance is maintained
during the test. At the same time, EsyTest provides a full test coverage for the NoC and a better hardware compatibility comparing with
the existing test strategies. Under the PARSEC benchmark and different test frequencies, the execution time increases less than 5% at
the cost of 9.9% more area and 4.6% more power in comparison with the execution where no test procedure is applied.

Index Terms—network-on-chip, non-blocking testing, reliability monitoring, reconfigurable router architecture, adaptive routing
algorithm, built-in self-test.

F

1 INTRODUCTION

By the rapid scaling of many-core System-on-Chip, the
computational resources are not as crucial as before. Instead,
a communication-centric design became a challenge where a
scalable communication structure such as Network-on-Chip
(NoC) is demanded [1]. NoC is typically not perceived
as contributing to the system performance directly in the
way processing cores do. However, it should not be the
performance bottleneck and should not slow down the
operation of the cores. It is expected that NoC provides a fast
and reliable infrastructure for delivering packets between
the cores.

As technology advances, the design of integrated circuit
faces serious wear-out issues, including Electro-migration
(EM) [2] as well as Hot Carrier Injection (HCI), Negative
Bias Temperature Instability (NBTI) and Time Dependent
Dielectric Breakdown (TDDB) [3]. Wear-out slowly causes
variations on shapes or parameters of the components
which results in the misbehavior or component breakdown
in a long run. The failures caused by wear-out first appear as
the intermittent faults which eventually lead to permanent
errors. NoCs cannot escape from these trends and due to the
faults in the data path and/or the control path, data might
be delivered incorrectly, packets might be misrouted or lost,
and the integrity of packets might be damaged [4]. NoCs
usually offer natural redundancy with the potential for fault

• Junshi Wang was with University of Electronic Science and Technology
of China, Chengdu, China. He is now with Beijing Zhaoxin Electronic
Technology Co., Ltd., Beijing, China.

• Letian Huang, Xuan Xie, Qiang Li, Guangjun Li are with University of
Electronic Science and Technology of China, Chengdu, China.

• Masoumeh Ebrahimi is with KTH Royal Institute of Technology, Stock-
holm, Sweden.

• Axel Jantsch is with Technische Universität Wien, Vienna, Austria.
• Corresponding author: Letian Huang, E-mail: huanglt@uestc.edu.cn.

Manuscript received April 19, 2005; revised August 26, 2015.

tolerance. Area, power and network performance are also
critical factors for a reliability design.

There are four main steps to design a reliable NoC:
fault detection, diagnosis, reconfiguration, and recovery [5].
Fault detection methods can be implemented in different
layers of systems [6]. Although fault detection methods like
Error Correction Codes (ECC) [7], [8] and Assertion-based
methods [4] can detect errors when flits go through the
components, Built-in Self-Test (BIST) has the advantages of
fine-grain diagnosis and high fault coverage. BIST can be
triggered by fault detection methods or a timer [9]. Fault-
detection delay is defined as the difference between the
time a fault is occurred and the time it is detected. Such
delay is determined by the frequency in which the BIST
is triggered so that a more frequent BIST means a shorter
detection delay. Consequently, more frequent BIST results in
a smaller amount of fault flits because proper actions might
be taken as soon as a fault is detected. Figure 1 shows the
relationship between the test frequency and the flits’ fault
rate. Let us assume that intermittent faults occur indepen-
dently and the flits’ content is changed when packets are
delivered through a faulty component. By applying the fault
model described in [10] and the parameters provided in [11],
two scenarios are examined: FM1 =

(
10−6, 0.5, 10−5

)
and

FM2 =
(
10−6, 0.5, 10−6

)
, which means on average the

faults occur every 106 cycles, last for 105 (in FM1) or 106

(in FM2) cycles, and trigger the errors by the probability
of 0.5. The flit injection rate is 0.01 flit/cycle. Further, we
assume that BIST is able to detect all errors with the fault
coverage of 100%. As shown in Figure 1, without any test,
the fault rate is about 4.6‰for FM1 and 2.2‰for FM2.
By including BIST, the fault rate reduces when shortening
the test period (increasing the test frequency). With the test
period of 20K cycles, the fault rates have been reduced by

2

two orders of magnitude, which are around 0.03‰for both
scenarios. Therefore, increasing the test frequency helps in
detecting faults faster and thus reducing the fault rate if a
proper action is taken.

However, the NoC’s throughput is influenced signifi-
cantly by BIST because the circuit under test should be
isolated from the network. The effect of BIST can be seen
both at the network and system level. At the network layer,
BIST disturbs the connectivity and integrity of NoCs (e.g. by
disabling a router). At the system layer, the processing core
connected to the router-under-test (RUT) is isolated from
the network and disconnected from the system. Therefore,
processing cores have to wait longer to get the necessary
data. As a result, increasing the test frequency reduces the
application throughput. It is also reported in [12] that the
average packet latency of PARSEC benchmarks rapids up
as the test period reduces. Hence, suitable mechanisms are
required to increase the test frequency while maintaining
the system throughput.

Fig. 1. Flits fault Rate under periodic BIST with different test periods.

To achieve the goals of full test coverage, ignorable
performance loss and high test frequency, we propose a
novel strategy, EsyTest, shortly described as follows:

1) The test strategy is divided into two parts: the data
path test and the control path test. The data path
test focuses on the errors introduced by the links,
memories, and registers. The control path test deals
with the errors introduced by the state machines,
flow control units, routing calculation units, and
allocators. As a result, all links and routers are
covered by EsyTest.

2) During the data path test, the test vectors are pack-
aged into the test packets. Instead of injecting test
packets immediately after the test timer triggers,
the test packets are injected to the links and routers
at free time slots within a test window time. This
strategy prevents increasing packets’ latency as data
packets are delivered normally while free slots are
utilized to inject the test packets.

3) For testing the control path, the aforementioned
components are isolated from the network by wrap-
pers. Meanwhile, the connections of data paths are
active but set to the fixed configuration. In other
words, the local port will be statically connected to
the east (or west) port so that the processing core
connected to the RUT can still access the network.
North and south ports will be directly connected
to each other. To support this new configuration,
an adaptive routing algorithm is proposed which

allows packets to use these channels for the packet
delivery during the test. Since RUTs are not totally
disconnected from the network, the performance
does not drop when the network is tested with a
high frequency.

To sum, in EsyTest all processing cores including those
connected to RUTs are active all the time with their full
capacity. Thereby, EsyTest minimizes the influence of test
on the system performance. It is also able to provide a test
coverage of 100%.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the published works on BIST for NoCs.
The EsyTest strategy is explained in Section 3. In Section 4
and Section 5, the router architecture and routing algorithm
to support EsyTest are proposed. Section 6 illustrates and
discusses the simulation results. Finally, the conclusion is
given in the last section.

2 RELATED WORK

In this section, we first review some published works on the
NoC test methods and categorize them into assertion-based
methods and BIST. Then we discuss the works on the impact
of the test procedure on the network performance.

2.1 Test Methods
Fault detection methods for NoCs always drive the circuit
under test with specific test vectors. By observing and ana-
lyzing the responses, errors can be detected and diagnosed.

Some designs [7], [8] use the data packets as test vectors
and apply error detection/correction codes (EDC/ECC) to
detect faults in the data path (i.e. links and buffers). Ham-
ming codes and parity check codes are among the most com-
monly used methods, but their capabilities to detect/correct
faults are limited to a few bits. Two different assertion-based
methods are proposed in [4] and [13] to detect errors in the
data and control path. They employ some monitors and
checkers to watch the values of input and output signals.
If signals do not match certain rules, alerts are raised.
The major advantages of EDC and assertion-based fault
detection methods are the small area overhead and simple
implementation. However, both of these methods are unable
to diagnose the causes and location of faults. Moreover, EDC
and assertion-based fault detection methods cannot detect
all faults as some faults need special trigger conditions
which are not easy to be satisfied by these methods.

Built-In Self-Test (BIST) is another kind of commonly
used test method, that is based on injecting test vectors
and comparing the received responses with the expected
ones. BIST consists of more complex components, but it can
detect most of the physical failures. The unit under test
will be temporarily isolated from the rest of the network
by wrappers. Wrappers are in the form of multiplexers and
demultiplexers that are located in the inputs and outputs of
the unit under test.

The size of the unit under test varies from a single
component (e.g. an arbiter) to the whole router or even the
entire network. [5] investigates wrappers that isolate one or
several components inside a router for a fine-grain diagnosis
of special components. [14] proposes a method to test the

3

input buffers in the routers while in [15] only the links are
examined by the test method. In [16] and [17], the wrappers
isolate the output register, the transmission link, and the
input buffer of the neighbor router.

Commonly, the wrapper isolates an entire router plus
some components from the neighbor routers. [18] presents
a wrapper for the whole router based on IEEE 1500. The
wrappers in [12] and [19] isolate the router along with the
neighbor ports. In [12], test packets collect faults on the
paths across the RUT. In [19], the test packets collect faults
on the paths between neighbor routers and the RUT.

In some designs, wrappers cover bigger units than a
router. For example, the wrappers in [20] and [21] cover
a 2×2 network area to detect the circuit faults in both the
data and control path. The path for delivering test packets
can be organized through the whole network [22], [23]. By
analyzing the faults captured by test packets, the faults can
be located in the granularity of routers and links. [24] and
[25] proposed different organizations of test packets based
on multicast routing algorithms to reduce the duration of
test procedures.

In this work, to test the data path, EsyTest uses wrappers
around one router and its belonging links. To test the
control path, wrappers isolate individual components (i.e.
the routing calculator, virtual channel arbiter, switch arbiter,
and buffer controller) but test them in parallel.

2.2 State-of-the-Art
In recent years, researchers and designers make special
attention to intermittent faults caused by process variation
and wear out. To capture intermittent faults, the components
should be tested periodically, which means periodic test
runs while applications use the network for packet deliv-
ery. Periodic on-line BIST [9] is very efficient to identify
the faults that appear only under specific environmental
conditions.

In on-line BIST, there is a contention between test vectors
and data communication for receiving resources. Traditional
test wrappers do not allow data communication during the
test procedure so that both the router and the connected
processing core are disconnected from the network. The dis-
abled part interrupts the normal traffic flow in the network
which causes heavy traffic congestion [12].

Most published papers have not clearly pointed it out
how and when the BIST method should be triggered. [26]
presents a token-based approach to determine the test se-
quence. Only one router is chosen at a time, and routers are
tested sequentially without interrupt.

Moreover, only a few work have discussed the influence
of the test procedure on the NoC performance. [12] pro-
posed a test method based on BIST with wrappers to discon-
nect the RUT. The token-based method is applied to control
the test sequence. Further, between the test procedure of
routers in sequence, a test interval time is considered to
allow the network to recover from the congestion and avoid
a significant performance drop. Based on simulations, [12]
reports that when the test interval time is less than 2,000 flits,
the average latency raises up by 4 times compared to the
average latency under the test interval time of 20,000 flits.
An interval of 10,000 flits is considered reasonable. How-
ever, in [12], a processing core has to be disconnected along

with the RUT, which may affect the system functionality. In
addition, packets are blocked in the input ports of the RUT,
which creates hotspot and congestion in the network.

Liu et al. [27] observe that the traffic load on the links
is not heavy. Based on this observation they suggest that
the test can be operated while a link is free. As a result, the
reliability of links can be monitored while the network is
functioning normally and thus the test does not affect the
NoC performance. The major drawback is that this method
can only test the links and it cannot be applied to test
routers.

TARRA [28] addresses the shortage of [12] by employing
bypass channels within the routers as shown in Figure 2.
During the test procedure, packets can be still delivered
through the RUT using bypass channels. The advantages
of TARRA are as: 1) the packets are not blocked during the
test; 2) the processing core connected to the RUT can still
access the network. As a result of using bypass channels,
the influence of the test procedure on performance is re-
duced significantly. In addition, by suggesting a proper test
sequence, multiple routers can be tested at the same time
and the test frequency can be increased.

Fig. 2. Router architecture in TARRA [28]. (a) A router without test. (b) A
router during the test procedure using bypass channels. (c) A router on
the northern border during the test procedure using bypass channels.

However, TARRA has some limitations as: 1) it cannot
test global links between routers as packets use the global
links during both the normal and test phases; 2) the router
architecture must have two physical channels on the north-
south directions. During the test procedure, one channel is
used for bypassing the router in the vertical direction, and
the other one is used for accessing the connected process-
ing core. Due to the requirement of physical connections,
TARRA needs adaptation to different router architectures.

EsyTest is designed for the periodic test, and the test
procedure of one router repeats on predetermined intervals.
Different from TARRA which relies on additional resources
such as bypassing channels, EsyTest takes advantage of
the available time and hardware resources in a router to
perform the test. In EsyTest, no bypassing channels are
used but rather the components of the data path are uti-
lized to deliver packets during the test. As a result, the
influence of the test procedure on performance is limited
to similar degree as TARRA. Meanwhile, EsyTest can test
all components in a router with the test coverage of 100%
and hardware compatibility to different router architectures.
Moreover, using the proposed test sequence, more routers
can be tested simultaneously. EsyTest provides mechanisms
to test all components of NoCs efficiently. Note that the
design of proper test vectors is outside the scope of this

4

paper.
Table 1 summarizes the test coverage of TAFD, TARRA,

and ESYTest. As discussed, TAFD covers the links between
routers while TARRA covers the routers but does not cover
the links. ESYTest takes advantage of both free-slots on the
data path and the reconfiguration router architecture. As a
result, ESYTest can test all circuits in NoC with a negligible
impact on the performance.

TABLE 1
Test coverage of test strategies

Components TAFD TARRA ESYTest
[27] [28]

R
ou

te
r

Input buffers ×
√ √

Crossbars ×
√ √

Output registers ×
√ √

Routing calculators ×
√ √

State machines ×
√ √

Arbiters ×
√ √

Links between routers
√

×
√

3 TEST STRATEGY

To minimize the impact of the test procedure on the system
performance, EsyTest deploys different test strategies for the
data path and the control path. Moreover, EsyTest proposes
a special test sequence for periodic BIST that increases the
test frequency significantly.

3.1 Data Path Test
In the data path, wrappers isolate one router and its links
from the other parts of the network. As shown in Figure 3,
the Test Packet Generator (TPG) is located in the output
buffer of the neighboring router while the Test Packet Ana-
lyzer (TPA) is placed in the input buffer of the neighboring
router. A TPG generates test packets that pass through the
RUT and reach the next neighbor router. The TPA checks the
content of the test packets in the receiving neighbor.

A common test approach is that the test packets are
injected directly when the test procedure starts. During the
test, the transmission of data packets is stopped which
increases the packets’ delay. This situation is shown in
Figure 4(a) where an orange and white box refer to a test and
data flit, respectively. Increasing the number of test vectors
exacerbates the problem and worsens the latency.

One alternative approach is to use the free time slots to
perform the test. Free time slots are the times when there is
no request on a channel, and thus the channel can be used
by test packets. Table 2 reports the flit injection rate and the
link utilization rate of the PARSEC benchmarks [29]. The test
environment is the same as in Section 6. The link utilization
is defined as the ratio of the time a link is occupied by
flits over the total execution time. As reported in Table 2,
the maximum link utilization is around 19% for canneal,
meaning that 80% of time slots are free and can be used for
testing. In the swaptions, the link utilization is as low as one
occupied link per thousand cycles. These results show that
in the real environment, the data path is idle for most time.
These free slots can be used to run the test without affecting
the performance.

Fig. 3. BIST for the data path test.

TABLE 2
Flit injection rate and link utilization under different PARSEC

benchmark programs

Benchmark Flit injection Link utilization
program rate (flit/cycle) Max Min

blackscholes 0.898 0.044 6.502e-05
canneal 1.582 0.190 2.517e-06
dedup 0.234 0.042 1.328e-07

fluidanimate 2.976 0.088 8.631e-05
freqmine 0.017 0.004 3.864e-07
raytrace 0.640 0.115 7.859e-07

streamcluster 0.345 0.065 4.346e-06
swaptions 0.024 0.001 2.294e-07

vips 0.053 0.014 2.469e-07

Ideally, if test vectors are only injected in the free slots,
the test procedure does not influence the system perfor-
mance at all as shown in Figure 4(b). However, it should be
guaranteed that a test packet (with 5 flits in this example) is
completely injected before serving any new packet. There-
fore, the data packets still need to wait for the test packet for
a short time, as illustrated in Figure 4(c). In this example, the
packets’ delay depends on the size of test packets. Thereby,
smaller test packets can reduce the latency of data packets
and limit the performance drop. The test packets are given
the same priority as data packets in the RUT.

Traffic load on different routers is not often the same.
The test procedure on busy routers takes longer than the
ones with a lighter load as there are fewer free time slots to
be used for the test. To limit the duration to test different
routers within a narrow range, one deadline should be
considered. As shown in Figure 4(d), a test procedure is
divided into two phases denoted as Free-Slot and Block. In
the Free-Slot phase, test packets are only injected during
the free slots. The time to inject all test packets is variable
depending on the traffic load. The maximum duration of
the Free-Slot phase is defined by Tfree. In the Block phase,
the remaining test packets are injected, and the data traffic

5

Fig. 4. The sequence of data and test packets under different test
strategies during the data path test. The data path test procedure is
triggered at t0. (a) the baseline strategy. (b) single-flit test packets are
injected at free time slots. (c) multiple-flit test packets are injected at free
time slots. (d) the EsyTest strategy.

is blocked. In an ideal case, no data packets compete with
test packets. In the worst case, the data path is so loaded in
which no test packets can be injected during the Free-Slot
phase.

Tblock should be long enough to inject all the test packets
into the data path considering the worst case scenario where
no packets are injected into the network during the Free-Slot
phase due to a heavy traffic. In this case, Tblock is determined
by the total number of flits in test packets. Tfree defines the
test frequency where longer(shorter) Tfree means more(less)
available free slots to inject test packets. By choosing Tblock

and Tfree, designers trade-off between the applications’
execution time and the test intervals.

3.2 Control Path Test
The control path includes buffer units’ controller, state ma-
chines, routing calculators and allocators. Testing the data
path can detect some errors on the control path but not all
of them.

To test the control path and diagnose all the faults,
test vectors should be directly injected to the circuit-under-
test as shown in Figure 5. For this purpose, wrappers are
used to disconnect the control path from the data path by
isolating state machines, buffer controllers, flow controllers,
routing units and allocators from the other components of
the router. The normal pipeline cannot operate, and the RUT
cannot route any packets. However, to reduce the impact
of the RUT on the network latency, the connections of the
data path will be fixed to enable packets passing through
the RUT in predetermined directions. For this purpose, the
port connected to network interface (NI) will be directly
connected to the east port (or connected to the west port if
the router is located in the eastern border), allowing the local
core to send/receive packets to/from the other cores. The
north port is directly connected to the South port and vice
versa. Thereby, the data path of the RUT can be seen as some
short-cut connections. The packets on W/E direction should
turn around the RUT. Due to the fact that the control units
are disabled, virtual channels cannot be utilized during the
test.

The control path test includes three phases as Emptying,
Testing, and Recovery, shown in Figure 6. First, the buffers
of the RUT should be emptied from normal packets during
the Emptying phase. Then, the control path is disconnected

Fig. 5. BIST for the control path test.

from the data path by wrappers, and the fixed connections
of the data path are established. The RUT enters the Testing
phase where test packets are injected and the control path
is tested. Meanwhile data packets pass through the RUT
using fixed connections. When the Testing phase is over, the
buffers of the RUT are emptied from the test packets during
the Recovery phase. At the end of the Recovery phase, the
control path takes control of the RUT, back to the normal
mode.

Fig. 6. Test state machine and control over the transition phases. The
FSM of the router-under-test and the neighbor routers are illustrated
using blocks in the left and right side of the figure, respectively. The
handshake signals between the router-under-test and the neighbor ports
are shown in the center.

Under the wormhole flow control, the direction of pack-
ets is determined by the head flits; and the body flits follow
that direction. During the emptying phase, if the direction
of a packet has already been decided, the packet has to be
completely delivered to the next router before entering the
testing phase. This is to avoid dropping any packets. Some
flits of one partially delivered packet are already transferred
to the router that is going to be disabled soon for the test
(RUT). The rest flits are still in the neighbor routers. Thereby,
these incomplete packets should be processed first in RUT.
Meanwhile, neighbor routers stop sending any new com-
plete packets to the RUT. Therefore, the RUT does not need
to distinguish between new or partially delivered packets.
RUT completes the delivery of partially delivered packets
but it will not receive any new packets from neighbors as

6

neighbors are asked to stop sending new packets.
Figure 6 shows the protocol between RUT and neighbor

routers to guarantee a complete delivery of incomplete
packets. At the start of the Emptying and Recovery phases,
RUT sends out Emptying requests to the neighbor routers
as well as the local port. Upon receiving this request by the
neighbor routers and the local port, they temporarily stop
sending any new packets to the RUT but proceed to deliver
all packets which have already been partially delivered. This
phase is called ”Pausing” phase in Figure 6. After delivering
the packets on-the-fly, an Emptying acknowledgment is sent
by each neighbor as well as the local port to the RUT.
In another case, a packet is located in the input buffers
of the neighbor router, but it has already been decided
that it should be routed through the RUT. This kind of
packets is rerouted first because the architecture of the RUT
is reconfigured. If these packets are still ahead to the RUT
after rerouting, they are blocked for a few cycles in the input
buffers until the new architecture is configured.

To sum up, incomplete data packets are routed in the
Emptying phase similar to the normal functioning mode.
During the testing and recovery phases, although the con-
trol path is under test, the data path is used in the North-
South and West/East-NI directions, driven by predefined
fixed control signals (to the crossbar, buffers, etc.). In this
way, the injection of new data packets is only stopped
for few cycles during the Emptying and Recovery phases.
A routing algorithm is proposed in Section 5 to support
these packets in the neighboring routers to successfully
deliver them from/to the router under test. As a result, the
impact of the test procedure is small and ignorable. This
observation is confirmed in the experiments and discussed
in the result section.

3.3 Timing control of test procedure

Figure 7 describes the test procedure of one router. The test
procedure contains five phases and the total period equals
the sum of the duration of these five phases. The duration of
Free-Slot phase Tfree, Block phase Tblock and Testing phase
Ttest is predetermined by the test strategy. The duration
of Emptying phase Dempty and Recovery phase Drecovery

is related to the network behavior. If the network is more
congested, the Dempty and Drecovery last longer. So, under
the zero-load latency, the lower bound of the test time is
Tfree + Tblock + Ttest.

Fig. 7. Timing of test procedure.

The test procedure is triggered by a test interval timer
and repeated with a test frequency of TIT (Test Interval
Time). Different routers start testing at different times,
which is controlled by the initialization value (TIV) of the
test interval timer (Figure 8(b)).

It is worth noting that the data path test of one RUT
should not overlap with the control path test of the neighbor
routers. For example in Figure 8, when Router 4 is under
test, Routers 0, 5 and 8 must not be under test. To avoid this
overlap, the status of the neighbor routers is checked prior
starting a test procedure. EsyTest introduces a four-group
test sequence and also sets some conditions on TIT and the
duration of different phases to avoid the overlap.

Figure 8(a) shows an example of the four-group test
sequence, which ensures the minimum distance of 2 hops
between RUTs. For example, Group 0 contains router 0, 2,
8 and 10. None of them is the neighbor of each other. Four
groups are tested in a loop from Group0 to Group3. Within
each group, routers are tested in sequence from top-left to
bottom-right as illustrated in Figure 8(b). The test sequence
in Figure 8(b) is:

0, 2, 8, 10︸ ︷︷ ︸
Group0

, 1, 3, 9, 11︸ ︷︷ ︸
Group1

, 4, 6, 12, 14︸ ︷︷ ︸
Group2

, 5, 7, 13, 15︸ ︷︷ ︸
Group3

Fig. 8. An example of the four-group test sequence. (a) The division of
groups. The number in circles is the router’s id. (b) Gantt chart.

The routers belong to one group form a subnetwork with
the size of xg × yg(g = 0, 1, 2, 3). xg and yg are determined
by the network size as:

xg =

 x/2 x is even
(x + 1)/2 x is odd, g=0 or 2
(x− 1)/2 x is odd, g=1 or 3

(1)

yg =

 y/2 y is even
(y + 1)/2 y is odd, g=0 or 1
(y − 1)/2 y is odd, g=2 or 3

(2)

where x and y are the network dimensions. Based on this
formulation, in Figure 8(a), the subnetwork size of each
group is 2× 2.

Let Router A start the test at time 0 and finish it at t1 =
ttest and Router B is the first router in sequence that should
not be under test during the test procedure of Router A.

As the example in Figure 8(a), the router 2 (Group 0)
can be tested together with routers 0, 8, and 10 but the
test of router 2 should be terminated before starting the
test of the router 1 (Group 1). Extending this principle,
the maximum number of routers that can be tested to-
gether is min {xgyg − 1}. The testing of Router B starts at
t2 = TIT × min{xgyg−1}

NR
, where NR is the number of routers

in the network. The router B’s test must happen after the

7

router A’s test, so that t2 > t1. Therefore, the lower bound
of TIT can be obtained by:

TITl = (Tfree + Tblock + Ttest)×
NR

min {xgyg − 1}
(3)

As Equation (3) shows, EsyTest can increase the test fre-
quency which is an indicator of a better performance. For
example, in a 10× 8 mesh network, each group contains 20
routers which form a 5×4 subnetwork (xg = 5 and yg = 4).
The maximum number of routers under test at the same
time is min {xgyg − 1} = 19. Because the network contains
NR = 80 routers, TIT should be larger than:

TITl = (Tfree + Tblock + Ttest)×
80

19
= (Tfree + Tblock + Ttest)× 4.21

(4)

The presented four-group test sequence allows testing
around one-forth of routers at the same time while only
x/2 routers can be tested simultaneously as presented in
TARRA [28]. More routers under test means a higher test
frequency.

Moreover, the test impact on the performance is mini-
mized by applying EsyTest. In traditional test procedures,
packets are blocked during the whole test run that leads to
the creation of hotspots and congestion in the network. As
a result the next test procedure cannot be started until the
network backs to its normal condition. This issue has been
addressed in EsyTest by blocking packets only for few cycles
during the Emptying and Recovery phases. EsyTest does
not lead to hotspots around the router under test and does
not impact on network performance significantly. Thus, the
test frequency can increase so that the test procedures on
different routers can run in parallel following specified test
sequence. This statement is confirmed in the result section
by observing a negligible performance loss in the case of
multiple RUTs.

4 DESIGN-FOR-TEST ROUTER ARCHITECTURE

Each router has a Test Control Unit (TCU) to control the
test procedure such as activating/deactivating components,
enabling/disabling wrappers, and triggering the timer. The
TCU controls the timer for the test interval time and the
phases of the test procedure.

4.1 Test wrapper for the data path

In EsyTest, the global links are also included into the test
wrapper of the RUT. Test packets are generated in TPGs,
located in output ports of neighbor routers, and injected into
the data path (Figure 9). In the data path, a test packet goes
through the global link of the input port, the input buffer,
the crossbar and the global link of the output port. In detail,
the switch allocator receives the requests from TPGs and
determines the granted port. Except for the Free-Slot and
Block phase, the switch allocator does not give any grant to
TPGs at all. During the Free-Slot phase, the switch allocator
gives the lower priority to the requests from TPGs. In other
words, the TPG can access an output port and inject the test
packets only if there is no request to this port from the input
ports. The test packets are injected continuously as long as

there is no request to that output port, or all the test packets
are injected. On the other hand, during the Block phase,
a higher priority is given to the requests from the TPG in
order to inject all test packets in the given test period and to
meet the test frequency. The matrix arbiter can easily apply
the adjustment of priority [30].

Fig. 9. Test wrapper of the data path. components in red color are under
test. Wrapper components are marked by blue color.

TPAs are implemented in the input ports to check the
responses from the RUT and to detect errors. TPAs send the
results back to the TCU to activate a proper fault-tolerant
method. A TEST bit is added to the head flit in order
to distinguish between test and data packets. Demuxes
switch between input buffers and TPAs by the TEST bit.
Handshake signals are driven by the TPA as well to release
flow control signals to the RUT.

4.2 Test wrapper for the control path

The control path includes the state machines, buffer con-
troller, routing unit, and switch allocator. As shown in Fig-
ure 10(a), the control path collects the necessary information
from the data path by checking the status signals (e.g. buffer
full/empty and head flit) and controls the data path by
control signals (e.g. buffer read/write and crossbar request).

BIST test units are integrated inside routers. TCU sends
out the enable signals to the BIST test units to start the
test. When the router is not under test, state and control
signals directly cross the test wrappers (Figure 10(c)) so that
the control path takes the full control over the data path.
The connections during the test procedure are shown in
Figure 10(d). The state signals are driven by BIST test units
to inject test vectors. The control signals from the control
path are also connected to BIST test units so that BIST test

8

Fig. 10. Test wrapper of the control path. (a) and (b) show the architecture of test wrappers. (c) and (d) show the circuit within the test wrappers.
(a) and (c) highlight the connections for data transmission, which are colored by green. (b) and (d) highlight the connections for test. The red
components are under test while the data path and credit signals controlled by fixed signal are marked by blue color.

units can check the responses from the control path and thus
diagnosing faults.

During the control path test, the data path is controlled
by predetermined fixed signals as shown in Figure 10(b).
The buffers’ pointers are constant, and the write and read
operations are always enabled. Thereby, the buffer units
pipe out the flits through one-flit registers. The crossbar is
also fixed because the control signals are constant. There-
fore, the RUT becomes two shortcut paths: north-south,
local-west/east. The credit signals and handshake signals
are directly connected from the output ports to the input
ports to maintain the correct behavior of the flow control.

4.3 Synchronous Signals

This section introduces the signals that are used for the
synchronization between the RUT and the neighbor routers.
Direct neighbor routers are the north, south, east and west
neighbors. Indirect neighbor routers are the routers at the
corners (NW, NE, SW, and SE).

A TCU sends two-bit signals TestPhase (TP) to neigh-
bor routers to control the test procedure. Different values
of the two-bit signal are as: ”00” normal functioning mode;
”01” Free-Slot phase in the data path test; ”11” Block phase
in the data path test; and ”10” the control path test. TPAs
send results (TR) back to the TCU, using the test vectors.

During Emptying and Recovery phases, RUTs request
their neighbors to clear the output ports through handshake
signals EmptyRequest (ER) and EmptyAck (EA). ER re-
quests the neighbor router to empty the port connected to
the RUT while EA acknowledges the receipt of the empty
signal from the neighbor router.

To limit the influence of the RUT on the net-
work performance, this work defines a 3 × 3 dis-
tinct region with an adapted routing algorithm. The de-
fault adaptive routing algorithm applies to all the ar-
eas that are outside of the distinct region. Each di-
rect and indirect router should know the RUT status.
A router sends/receives DirectNeighborStatus(DNS)
and IndirectNeighborStatus(INS) signals through two
unidirectional wires (four wires in total). DNS signals trans-
fer the status of the local router to the neighbor routers
and vice versa. INS signals transfer the status of a neighbor
router to the next neighbor router as shown in Figure 11. For
example, the status of the east neighbor router is transferred
to the north neighbor router as the red line in Figure 11. The
routing algorithm based on the distinct region is described
in Section 5.

Fig. 11. (a) Propagation of DNS and INS signals. (b) Synchronous
signals between two routers.

9

5 ADAPTIVE ROUTING ALGORITHM FOR TEST

An adaptive routing algorithm to support the reconfigurable
router architecture is proposed in this section. The algorithm
tries to maintain the network connectivity and maximize the
performance while the routers are under test.

Similar to DyXY, the proposed routing algorithm is fully
adaptive, and packets can be routed through the shortest
paths between the source and destination routers. Unlike
DyXY, the proposed algorithm is able to tolerate RUT with
fixed connections in the crossbar during the control path
test. For simplicity, we call the RUT with fixed crossbar FC-
RUT.

As shown in Figure 12(a), each router has five ports:
one port per neighbor router and one port connected to the
processing core. Each port has one physical/virtual channel
except the north and south ports which have two channels.
The extra channels on north and south ports are utilized to
avoid deadlock in the adaptive routing algorithm. Because
the processor connected with the RUT has to access the
network through the east neighbor router, we define the east
neighbor of RUT as the ladder router (Figure 12(b)) unless
the RUT is on the eastern border in which the west neighbor
will be the ladder router (Figure 12(c)).

Fig. 12. The baseline topology. (a) without RUT. (b) fixed crossbar of
RUT during the control path test- the general case. (c) fixed crossbar of
RUT during the control path test- if RUT is on the eastern border.

5.1 Routing rules
This section introduces the routing rules applied in EsyTest.
We refer to Figure 13 and the corresponding lines in the
pseudo-code (Appendix) as we explain.

The status of FC-RUT is propagated to the direct and
indirect neighbors within a 3×3 distinct area with the FC-
RUT in the center. The routing algorithm should be able
to deliver packets to all destinations inside and outside the
distinct region (Figure 13). Packets choose a direction based
on the following rules. Note that each subfigure may be
applied to more than one rule.

RULE 1: This is the default rule when the current node is
not in the distinct region. Packets choose the shortest paths
to the destinations (line 1-3). Among possible directions,
packets choose the one with less congestion (e.g. more free
slots in the input buffer of the neighbor router). To prove
deadlock freedom, we assume two virtual subnetworks as A
and B. North, South, West, Northwest and Southwest-bound
packets are assigned to Subnetwork B covering the channel
sets (W, N2, S2) while East, Northeast and Southeast-bound
packets are assigned to Subnetwork A covering the channel

sets (E, N1, S1) (line 4). Figure 13(a) illustrates the example
paths for RULE 1 where Subnetworks A and B are differen-
tiated by the blue and green colors, respectively.

In addition, to tolerate FC-RUT, packets need to follow
RULE 2 and RULE 3 inside district regions as follow:

RULE 2: When the current router is in the distinct region,
packets choose the direction which is not connected to
an FC-RUT and has the least congestion (line 8, 14, 22,
42). Packets are delivered through FC-RUTs if there is no
more possible direction. If the FC-RUT is the west/east
neighbor of the current router, packets choose north and
south direction to turn around the FC-RUT (Figure 13(b7-
b8)) (line 14). Moreover, packets can directly pass through
the FC-RUT in the north-south direction when the data path
connections are fixed (Figure 13(b1-b6)) (line 22).

RULE 3: If the destination router of a packet is an FC-
RUT, packets are routed to the ladder router first (line 10,
20, 31). When they reach the north and south neighbor
of the destination router, these packets are switched to
Subnetwork A (E, N1, S1) as shown in Figure 13(b10) (line
20).

Normally packets are delivered to destinations using
RULE 1. Following RULE 2 and RULE 3, packets can
be delivered to all routers inside a distinct region. Thus,
this routing algorithm provides the reachability to tolerate
one FC-RUT within the distinct region. As discussed in
Section 3.3, the test sequence and TIT make sure that two
routers within a distinct region are not under test simulta-
neously. Therefore, this routing algorithm can guarantee the
reachability to all destinations.

To avoid deadlock, some turns are prohibited in this
algorithm. First, U-turns are not allowed in RULE 4. Second,
packets can switch from Subnetwork B to Subnetwork A but
not vice versa. Packets from/to the routers in the eastern
border follow RULE 5.

RULE 4: If packets arrive at the indirect neighbors of
an FC-RUT, the routing algorithm considers the status of
FC-RUT in advance to avoid taking a U-turn (line 40).
For example in Figure 13(b11), packets are routed to the
west direction if delivered from the current router toward
the ladder router. As a result, packets will not reach the
east neighbor of the FC-RUT. A similar case applies to
Figure 13(b12).

RULE 5: If the destination router is on the eastern border,
packets are routed to the west neighbor of the destination
first (line 19, 30, 36). The dot lines in Figure 13(a) are not
allowed if the destination router is in the eastern border
unless packets meet other FC-RUTs during the transmission.
If the packets meet FC-RUTs on the adjacent column of the
eastern border, the packets can turn to the eastern border
(line 37). Moreover, if a packet is north or south-bound
packet and the source router is an FC-RUT on the eastern
border, packets are delivered to the west column of the
destination through the fixed channel. The packet does not
turn east until it reaches the destination row (line 12). The
example is shown in Figure 13(c6).

RULE 4 and RULE 5 sacrifice adaptiveness to guarantee
the livelock and deadlock-freedom, and they do not affect
the reachability.

10

Fig. 13. Examples of routing rules. (a) the default path selection and virtual channel assignment. Dot lines are not allowed if the destination is
on the eastern border. (b1-b12) examples of routes within the distinct region. (c1-c6) examples of routes within the distinct region if the FC-RUT
is on the eastern border. Each subfigure shows possible paths from one router (marked as the current router) to several routers (marked as the
destination router). The path between the ladder routers to the NI connected to FC-RUT is marked by purple color. The marks of ’-’ and ’=’ on the
path distinguish the chosen virtual channels. packets are assumed currently at the current router and going to be delivered to a destination marked
by D or FC-RUT. Packets follow the paths highlighted in the figures and reach the destination router. From the destination routers, they are either
delivered to other routers outside the distinct region or NI.

5.2 Proof of deadlock-freedom

If the allowed turns in the network have the possibility of
forming a closed cycle, the NoC faces the risk of deadlock.
On the other hand, forbidding turns limits the adaptiveness
of packets and thus the performance. To prove the freedom
from deadlock, we divide the network into disjoint subnet-
works, each includes a set of channels. Only three directions
are used in each subnetwork to prevent a closed cycle. This
method of proof is inspired from the EbDa theory [31].

The allocation of channels is in a way that north and
south directions have two virtual/physical channels (N1/S1
and N2/S2) while the east and west directions have one
virtual/physical channel. The network can be partitioned
into two disjoint subnetworks: Subnetwork A covers chan-
nel sets (E, N1, S1) and Subnetwork B covers channel sets
(W, N2, S2), respectively. RULE 1 ensures that each packet
is assigned to one subnetwork. The allowable turns in the
Subnetwork A are as E-N1, E-S1, N1-E and S1-E while the
allowable turns in Subnetwork B are as W-N2, W-S2, N2-W
and S2-W. In addition, packets can switch from Subnetwork
B to Subnetwork A, allowing the turns N2-E and S2-E. Based
on the proof on [31], this transition does not close a cycle.

If the source of a north/south-bound packet is a FC-RUT,
packets are first routed to the ladder router, located on the
east side of the destination. Deadlock can be avoided by
assigning the north/south-bound packets into Subnetwork
B (Figure 13(b9)). West/northwest/southwest-bound pack-
ets are also assigned to the same subnetwork. Figure 13(b7-
b8) illustrate the allowed turns in each subnetwork. As de-
scribed in RULE 2, to reroute packets around the FC-RUT on
the east-west direction, some turns are needed. For example,
the west-bound packets may require turns between W and
N2/S2 directions which are already allowed.

If the destination is FC-RUT, packets should be first
delivered to the ladder router (that is the east neighbor
of the destination). For the west-bound packets, it is nec-
essary to deliver them from north/south neighbor to the
east neighbor of the destination as Figure 13(b5-b6) shows.
RULE 3 allows the turns from N2/S2 to E but the oppo-
site directions are forbidden, which means packets switch
from Subnetwork B to Subnetwork A but not vice versa.

These packets stay in Subnetwork A until they reach their
destinations as shown in Figure 13(b10). However, if the
destination is on eastern border, the ladder router will be
the west neighbor of the destination, which means the turns
from E to N2/S2 appear under the RULE 1 and 2. Thus,
RULE 5 is set so that the turn from N2/S2 to E is allowed
between two subnetworks (Figure 13(c6)).

To sum up, the network is divided into two disjoint
subnetworks and packets are assigned to one of these sub-
networks depending on the position of the source and des-
tination nodes. Packets in subnetwork B can safely switch
to the Subnetwork A but packets in Subnetwork A cannot
switch to Subnetwork B. In this routing algorithm, we use
the turns that can be formed in Subnetwork A, Subnetwork
B, and by switching from Subnetwork B to A. According
to [31], this routing algorithm does not lead to a deadlock
because there is no possibility of a closed cycle.

6 EXPERIMENT AND DISCUSSION

In this section, EsyTest is analyzed and evaluated from
five aspects: test coverage, hardware compatibility, network
performance, system performance and hardware overhead.
EsyTest is compared with test strategies adapted from [12],
[27], [28] and details are given in Section 6.1.

6.1 Experiment Setup

The experiments are performed by simulation environment
built with Simplescalar [32] and ESYNet [33]. Table 3 sum-
marizes the parameters for the experimental setup. The
experimental environment is a 64-core many-core system.
The system is consist of 64 Alpha 21264 processing cores
and 4 memory controllers. Each processing core contains a
private 32KB L1 cache. The entire system shares the 8MB
L2 cache. L2 cache is distributed into processing cores, each
containing part of it (128KB). The interconnection architec-
ture of this system is a 10x8 mesh NoC. The routers in the
western and eastern border are used to connect memory
controllers, and the inner eight columns (8x8 mesh) are
used to connect the processing cores. Each router has 5
physical ports connecting to local, east, west, north and

11

south directions. The local, east, and south ports have two
virtual channels while the north and south ports have only
one virtual channel. Each virtual channel has a 12-flit buffer.
The implemented routing algorithm is DyXY. The PARSEC
benchmarks [29] are executed on the system.

TABLE 3
Table of Parameters

Parameters Value
Number of cores 64
L1 cache 32 KB
total L2 cache 8 MB
L2 cache in each core 128KB
Network size and topology 10×8 Mesh
Number of physical ports 5
Number of VC channel 1(E,W,L) or 2(N,S)
Size of input buffer 12
Routing algorithm DyXY

We compare EsyTest with three other methods as Base-
line [12], TAFD [27] and TARRA [28]. TAFD is a selected
acronym for Traffic-Aware Fault Detection method [27]. The
Baseline, TAFD and EsyTest methods have the same router
architecture and test wrapper as shown in Figure 3. These
methods are adapted to fit the router architecture of EsyTest
with some modifications described as follows. The Baseline
and TAFD methods utilize DyXY as the routing algorithm
while new routing algorithms are developed for EsyTest and
TARRA. Unlike EsyTest, in the Baseline method, packets
have to be blocked in the neighbor routers of the RUT
during the entire test procedure including both data and
control path test. On the other hand, TAFD presents the idea
of using the free slots to test the data path, but packets are
still blocked during the test of the control path. Obviously,
the duration of blocking in TAFD is shorter than the Baseline
method.

The router architecture of TARRA is different from
EsyTest as it requires seven physical ports in total. It requires
two channels in North/South direction, and one channel
in East/West direction, thus it has seven physical ports in
total. During the test procedure, packets pass through the
RUT using bypass channels. An adaptive routing algorithm
is designed to optimize the network performance.

In this section, the test methods published in [12]
and [13] are adapted to the EsyTest, TARRA, and Base-
line test strategies. [12] suggests test packets with 34 test
vectors for the data path. Each test vector has 34 bits the
same as the width of the data path. These packets are sent
from neighbor routers and the NI of the RUT to the other
neighbor routers and NIs. We assume that it needs about
1,000 cycles to run test to cover all data paths through
the RUT as shown in Figure 3. [13] proposes one method-
ology to optimize and minimize the test procedure of a
router. For each module in router (e.g. routing calculator
and arbiters), only 2,000 vectors are necessary to achieve
100% fault coverage. Because these modules are tested in
parallel, the test procedure needs about 2,000 cycles. The
Tfree and Tblock are set to 1,000 cycles so that the test can
be finished even with heaviest traffic load, and Ttest is set
to 2,000 cycles. According to Equation 1, the lower bound
of TIT is (1, 000 + 1, 000 + 2, 000) × 4.21 = 16, 840 cycles.

Thereby, we selected TIT from 20K to 1000K cycles. The
TAFD method uses the same timing sequence as EsyTest.
However, the packets are blocked during the control path
test (2,000 cycles) but are not blocked during the data path
test (2,000 cycles). With the Baseline and TARRA, the test
procedure needs 3,000 cycles (1,000 cycles for the data path
test and 2,000 cycles for the control path) to finish both the
data path and control path tests.

For the data path test, test packets contain all or part of
the test vectors. Two extreme cases are experimented: one
test packet contains only one test vector, or one test packet
contains all test vectors. In addition to the test vectors, one
test packet has one head flit and one tail flit. Therefore, there
are two different sizes of test packets: 34 packets with 3 flits
(1 head flit, 1 body flit and 1 tail flit, which is called EsyTest-
3) and 1 packet with 36 flits (1 head flit, 34 body flits and
1 tail flit, which is called EsyTest-36). For each experiment,
only one size of packet is used. EsyTest-3 and EsyTest-36
are two extreme cases with largest and smallest possible
packets.

6.2 Analysis of Test Coverage and Hardware Compati-
bility

By the test coverage, we mean the components that can be
tested during the test procedure. In the Baseline method, all
the components can be tested in the network. Meanwhile,
the RUT is completely isolated during the test procedure.
This full test coverage comes at the cost of blocking packets
in the neighbor routers during the test which leads to a
significant performance loss. The test coverage in the TAFD
method is limited to only global links, as reported in Table 1.
In this section, we mainly discuss the test coverage and
hardware compatibility of EsyTest and TARRA because both
methods do not block packets during the test.

In TARRA, bi-directional bypass channels are used to
maintain the connections in the north-south direction, east-
west direction and access to the local core. The bypass chan-
nels connect the input ports and output ports of the routers.
These bypass channels can be tested when the router is not
under test as shown in Figure 14(a). On the other hand, the
components within the router, including the data path and
control path can be tested by BIST during the test procedure
(Figure 14(b)). However, the global links (router-to-router
links) cannot be tested and must be available all the time,
both in the normal and test modes.

As shown in Figure 9 and Figure 10, EsyTest tests the
data path and control path separately. The test wrappers
of data paths contain not only the buffers, crossbars, and
registers within the router but also the global links. The test
vectors can detect the faults on the wires, memories, and
registers. The test wrappers of the control path cover all the
control logic which should be tested by well-designed test
cases. By applying the test procedure of the data and control
path, all components in the network can be tested.

Both TARRA and EsyTest have extra circuits to imple-
ment the function of non-blocking BIST. These additional
circuits change the micro-architecture of a router. TARRA
requires two physical ports on the North and South direc-
tions such that one port is used to access the local NI while
the other port is used to make the connection in the North

12

Fig. 14. Test coverage of TARRA. Components in red color are under
test. (a) During the Normal phase, the router operates normally, and the
bypass channels can be tested. (b) During the Test phase, the packets
are delivered through bypass channels, and the components within the
RUT can be tested.

and South direction. Therefore, in TARRA, the topology
must be adjusted to meet the requirement of additional
physical ports. On the other hand, EsyTest does not require
additional physical channel and thus it is compatible with
different router architectures. The hardware compatibility is
one of the advantages of EsyTest over TARRA.

In both TARRA and EsyTest, the additional circuits
added for the test can be examined during the Normal
phase.

6.3 NoC Performance under Synthetic Traffic
In this section, the performance of NoC is simulated sep-
arately under six synthetic traffic profiles as listed in Ta-
ble 4. The 8 × 8 mesh network is used for the exper-
iments. To keep the destination addresses, generated by
synthetic rules, within the network, the network should be
a square shape under BitReversal, Shuffle, and Butterfly
traffic patterns. To examine the methods for higher injec-
tion rates than PARSEC, the packet injection rate is set to
0.03 packet/router/cycle in synthetic traffics. Each packet
contains 5 flits which is approximately 9.6 flit/cycle. The
simulation takes 100,000 cycles, and about 192,000 packets
will be injected into the network. The reported latency is the
average latency of these 192,000 packets.

Table 4 reports the characteristics of traffic profiles used
in the simulation. First, the rules to generate the traffic is
described where these rules determine the destination of
each packet. Second, the average latency without the test
procedure is reported. The maximum link utilization raises
up to 0.630 that is more than 3 times higher than the link
utilization under PARSEC. Only one-third time-slots can be
used for test procedures. The experiment under synthetic
traffic presents the situation when the link is under heavy
traffic.

In Figure 15, each point demonstrates the average packet
latency under a specific traffic pattern and TIT. The latency
of test packets is not considered in the reported latency
values but their resource occupations affect the latency of
data packets. The points belonging to the same test strategy
and test packet size are connected by one curve. The average
latency without any test procedure is also illustrated in the
figure for comparison.

The Baseline and TAFD methods have a serious impact
on the NoC performance. As shown in Figure 15, the

TABLE 4
Traffic profiles used in simulation

Traffic Rule to generate Latency Link utilization
profile traffic (cycles) Max Min

Uniform To each router cho-
sen randomly. 22.31 0.387 0.015

Transpose1 (x,y)→ (7-y,7-x). 23.14 0.602 0.001
Transpose2 (x,y)→ (y,x). 23.14 0.630 0.001

BitReversal
Destination id is
the bit reversal of
source id.

22.89 0.630 0.001

Shuffle
Destination id is the
right loop shift of
source id.

18.63 0.447 0.001

Butterfly

Get destination id
by swapping the
LSB and MSB of
source id.

14.24 0.460 0.001

average latency increases rapidly as the test interval time
reduces (i.e. the test frequency increases). By decreasing the
TIT to 200K cycles, we observe a dramatic latency increase
under all traffic patterns, except the shuffle traffic that shows
a smoother latency change. The TAFD method blocks the
packets only during the control path test (2,000 cycles) while
the Baseline method blocks packets for the whole test period
(3,000 cycles). This is the main reason why the Baseline
method leads to a higher latency than the TAFD method.

Regarding the EsyTest, when the TIT is 1000K cycles,
the average latency increases no more than 1 cycle. As TIT
decreases, the average latency increases accordingly. The
latency does not grow more than 5 cycles when TIT is as low
as 60K cycles. When TIT is 20K cycles, the average latency
increases for over 10 cycles. This is the result of both high-
frequency testing and high traffic pressure.

Moreover, the growing range of EsyTest-3 is smaller than
the growing range of EsyTest-36. In fact each test packet
has to carry a head and a tail flit in addition to the test
vectors. Assuming 34 test vectors in this paper, EsyTest-3
requires nearly 3 times more flits (34 packets, each with 3
flits) than EsyTest-36 (1 packet with 36 flits). However, as
was discussed in Section 3.1, small test packets introduce a
lower delay on data packets as the waiting time to receive
resources becomes shorter. In general, the performance loss
in the EsyTest method is influenced by both test interval
time and traffic load.

Similar to EsyTest, the performance of TARRA drops
when the TIT gets lower than 60K cycles. TARRA has a
marginal better performance than EsyTest, shown in sub-
plots of Figure 15. A better performance is mainly due to
using an extra channel in the north and south directions and
also the adaptive routing algorithm with a higher adaptive-
ness. TARRA even shows better results than NoTest. This
is due to the fact that bypass channels skip the latency
of a router, and resulting in a lower latency [28]. On the
other hand, TARRA is unable to test global links and has a
limitation on the choice of the router architecture.

6.4 System Performance Under PARSEC benchmark
In this section, the execution time of the PARSEC benchmark
on the Baseline, TAFD, TARRA and EsyTest test strategies
is measured to evaluate the influence of test on the system

13

Fig. 15. Average latency of Network-on-Chip under synthetic traffic. Subplots zoom the graph on low test interval times. EsyTest-3 means the test
vectors are packaged into 34 packets of 3-flit; EsyTest-36 means the test vectors are packaged into 1 packet of 36-flit.

Fig. 16. The execution time of PARSEC benchmarks. Execution time is normalized to the situation where no router is under test. EsyTest-3 means
the test vectors are packaged into 34 3-flit packets; EsyTest-36 means the test vectors are packaged into 1 36-flit packet.

performance. Benchmarks run for 10M instructions for dif-
ferent TITs. The execution times for the same benchmark
are normalized by the execution time without any test
procedure. 1.0 means the execution time in the presence of
the test procedure is equal the one in the absence of the test
procedure, meaning that the test strategy does not influence
the system performance.

Each subfigure in Figure 16 gives the normalized execu-
tion times of simulations for different TIT and test strategies.
Each point indicates the normalized execution time for a
valuation of TIT and test strategy. Points for the same test
strategy and test packet size are connected in one line.
To get a smooth curve, four experiments are executed for
each combination of the test method and test interval time.

Each experiment has a different offset on the test sequence.
For example, experiment 0 starts at router 0 in group 0;
experiment 1 starts at router 1 in group 1, experiment 3 starts
at router 10 in group 2 and experiment 4 starts at router 11
in group 3. By taking an average on these four experiments,
the curves are smooth enough and demonstrate the trend of
EsyTest and TARRA.

The Baseline and TAFD methods show a rapid growth
in the execution time under all benchmark programs as
TIT reduces. The reason is that packets are blocked during
the whole test procedure in Baseline (3,000 cycles) and the
control path test in TAFD (2,000 cycles). The trend of the
Baseline and TAFD methods confirms the fact that tradi-
tional methods have a major problem in running periodic

14

BIST at high frequency.
In contrast, EsyTest shows small fluctuations on the

execution time; and the curve remains close to the value of
1.0. In the account of all simulations, the execution time of
EsyTest increases less than 1% in 83% of simulations and less
than 5% in 99% of simulations. The maximum increase in the
execution time (5.1%) is observed when the test strategy is
EsyTest-36, the traffic pattern is fluidanimate, and TIT is 20K
cycles. The growth of execution time, even negligible, is due
to three reasons: 1) packets are blocked for only a few cycles
during the Emptying and Recovery phases; 2) prioritizing
test packets over data packets in the Block phase of testing;
and 3) sacrificing some degree of routing adaptiveness to
tolerate FC-RUTs and guarantee deadlock freedom.

The execution time of EsyTest reduces under canneal,
streamcluster and vips (Figure 16(b, g, i)) when TIT de-
creases. The reason is that a packet needs three cycles to
pass through a normal router while only one cycle is needed
to pass through FC-RUT because it is not necessary to do
routing calculation, virtual channel allocation and switch
allocation. This reduced number of cycles helps in lowering
the traffic and thus a better performance.

The execution times of EsyTest-3 and EsyTest-36 are very
close. As shown in Figure 16, the curves of EsyTest-3 and
EsyTest-36 are mostly overlapped. The small difference is
because of the longer test packets in EsyTest-36 that forces
data packets to wait longer to receive the resources, as was
discussed in Section 3.1.

To conclude, EsyTest can increase the test frequency sig-
nificantly while keeping the performance in the same level.
The small fluctuations of execution times are because of the
communication characteristics, the use of fixed channels,
and cache behaviors.

The results shown in Figure 15 and Figure 16 also
illustrate the performance loss caused at different packet
injection rates. As shown in Table 2, the average flit injection
rate in the PARSEC benchmark is between 0.017 flit/cycle
and 2.976 flit/cycle, and the maximum link utilization of
the PARSEC benchmark under the DyXY routing algorithm
is no more than 0.2. Hence, the link is free most of the
time. Table 4 shows that the maximum link utilization under
synthetic traffic can reach 0.63, which means the link is
occupied most of the time. As discussed in the paper, if
there are more free slots on the data path, more test packets
can be delivered in free slots, and fewer test packets need
to be delivered during the Blocking phase. Since the packet
injection rate is lower under the PARSEC benchmark, the
performance loss caused by the testing procedures is also
lower than the synthetic traffic patterns. In general the
performance loss is very small regardless of the business
of the data path.

6.5 Hardware Overhead
Table 5 lists the area overhead and power consumption
of EsyTest, TARRA, TAFD, Baseline and NoTest (a router
without a test structure). The data is provided by Synopsys
Design Compiler under TSMC45nm technology. The over-
head of the BIST circuit is not included since the test circuit
design is outside the scope of this paper.

As the values in Table 5 shows, test strategies do not
have a high area overhead. Baseline and TAFD increase

TABLE 5
Power and area analysis

NoTest Baseline TAFD TARRA EsyTest
Area 0.0251 0.0258 0.0258 0.0273 0.0275

(mm2) (2.79%) (2.86%) (9.02%) (9.88%)
Power 391.00 399.77 400.18 409.27 409.10
(µW) (2.24%) (2.35%) (4.67%) (4.63%)
*The area and power of BIST circuits are not considered.

the area and power by nearly 3% that is mainly because
of the test wrappers. TAFD has a larger area due to the
required logic to detect free slots on links. TARRA needs
about 9% more area and 4.67% more power due to the
bypass channels and the adaptive routing algorithm.

Table 5 shows that EsyTest costs 9.88% more area and
4.63% more power, belonging to the test wrappers, test
sequence controller and routing calculator units. It also
indicates that EsyTest does not need significant overhead
but it benefits reliability with full test coverage, higher test
frequency, and better hardware compatibility.

7 CONCLUSION

Built-In Self-Test (BIST) is commonly used in NoC to test
and diagnose the faults and improve the reliability. In
traditional BIST design, the test procedure imposes a large
negative impact on performance so that test cannot be
performed at high frequency or in parallel. We proposed
the EsyTest strategy to minimize the impact of test proce-
dures on the system performance and to increase the test
frequency. EsyTest applies different test wrappers on the
data path and the control path so that all components can
be tested. During the data path test, test vectors are injected
at the free time slots of the router to minimize the impact on
regular traffic. During the control path test, the network can
still guarantee the reachability to all destinations including
the cores connected to the router under test. This is achieved
by proposing a reconfigurable router architecture and an
adaptive routing algorithm. During the test procedure of the
control path, the data path is configured to fixed connections
and thus can be used to deliver packets to neighbors. A
special test sequence is proposed as well so that routers can
be tested in parallel, e.g. at most one-fourth of routers can be
tested simultaneously. The experiments under the PARSEC
benchmark show that the EsyTest strategy maintains the
performance level at the cost of negligible hardware over-
head. On top of that, the test frequency can be increased
dramatically which can enhance the network reliability.

APPENDIX
∗The value of X increases from left to right. The value of Y
increases from top to bottom.
∗DNR(n): direct neighbor router on direction n.
∗INR(mn): indirect neighbor router on direction mn.

Require: Current: (XC ,YC); Source: (XS ,YS); Destination:
(XD ,YD); ∆X : |XD −XC |; ∆Y : |YD − YC |;in: input
port;

Ensure: Selected port: Sel;

15

1: pos ← L, N, S, E, W, NE, NW, SE, or SW according to
the current and destination position.

2: dirX ⇐ E when XD > XC else W; . RULE 1
3: dirY ⇐ S when YD > YC else N; . RULE 1
4: vc⇐ vc1 when XD > XS else vc2; . RULE 1
5: if pos = L then Sel←L;
6: else if pos = E or W then
7: if DNR(dirx) is available then
8: Sel← dirX ; . RULE 2
9: else if DNR(W) is destination then

10: Sel←W ; . RULE 3
11: else if DNR(E) is destination and on the eastern

border then
12: Sel← E; . RULE 5
13: else Sel← N(vc) or S(vc) according to
14: congestion and availability; . RULE 2
15: end if;
16: else if pos = N or S then
17: if DNR(dirY) is FC-RUT and DNR(dirY) is destina-

tion then
18: if DNR(dirY) is on the eastern border column

then
19: Sel←W ; . RULE 5
20: else Sel← E; . RULE 3
21: end if;
22: else Sel← dirY (vc); . RULE 2
23: end if;
24: else if pos = NE, SE, NW or SW then
25: if ∆X = 1 and ∆Y = 1 and INR(pos) is FC-RUT

then
26: if pos = NW or SW then
27: Sel← dirY (vc); . RULE 3
28: else
29: if Destination is on the eastern border column

then
30: Sel← dirY (vc); . RULE 5
31: else Sel← dirX ; . RULE 3
32: end if;
33: end if;
34: else if ∆X = 1 and destination is on the eastern

border column then
35: if DNR(dirY) is available then
36: Sel← dirY (vc); . RULE 5
37: elseSel← dirX . RULE 5
38: end if;
39: else if ∆Y = 1 and INR(pos) is FC-RUT then
40: Sel← dirX ; . RULE 4
41: else Sel← dirX or dirY (vc) according to
42: congestion and availability; . RULE 2
43: end if;
44: end if;

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive and helpful suggestions and com-
ments. This paper was supported by the National Nat-
ural Science Foundation of China under grant (NSFC)
No.61534002, No.61761136015, No.61701095, Central Uni-
versities under Grant ZYGX2016J042, ZYGX2015J007. This
work is also supported by VR and VINNOVA-MarieCurie.

REFERENCES

[1] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys (CSUR),
vol. 38, no. 1, p. 1, 2006.

[2] R. Baumann, “Soft errors in advanced computer systems,” IEEE
Design Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[3] J. Keane and C. H. Kim, “An odomoeter for cpus,” IEEE Spectrum,
vol. 48, no. 5, pp. 28–33, 2011.

[4] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “No-
calert: An on-line and real-time fault detection mechanism for
network-on-chip architectures,” in 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. ACM/IEEE, 2012, pp.
60–70.

[5] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and
G. Chen, “A reliable routing architecture and algorithm for nocs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 5, pp. 726–739, 2012.

[6] G. Schley, A. Dalirsani, M. Eggenberger, N. Hatami, H.-J. Wun-
derlich, and M. Radetzki, “Multi-layer diagnosis for fault-tolerant
networks-on-chip,” IEEE Transactions on Computers, vol. 66, no. 5,
pp. 848–861, 2017.

[7] Q. Yu and P. Ampadu, “A dual-layer method for transient and
permanent error co-management in noc links,” IEEE Transaction
on Circuits and System II, vol. 58, no. 1, pp. 36–40, 2011.

[8] L. Xie, K. Mei, and Y. Li, “Repair: A reliable partial-redundancy-
based router in noc,” in IEEE 8th International Conference on Net-
working, Architecture and Storage (NAS). IEEE, 2013, pp. 173–177.

[9] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “Online bist for
embedded systems,” IEEE Design Test of Computers, vol. 15, no. 4,
pp. 17–24, 1998.

[10] J. Wang, M. Ebrahimi, L. Huang, A. Jantsch, and G. Li, “Design
of fault-tolerant and reliable networks-on-chip,” in IEEE Computer
Society Annual Symposium on VLSI, 2015, pp. 545–550.

[11] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Characteriz-
ing the impact of intermittent hardware faults on programs,” IEEE
Transactions on Reliability, vol. 64, no. 1, pp. 297–310, 2015.

[12] M. Kakoee, V. Bertacco, and L. Benini, “At-speed distributed
functional testing to detect logic and delay faults in nocs,” IEEE
Transactions on Computers, vol. 63, no. 3, pp. 703–717, 2014.

[13] P. Saltarelli, B. Niazmand, J. Raik, V. Govind, T. Hollstein, G. Jer-
van, and R. Hariharan, “A framework for combining concurrent
checking and on-line embedded test for low-latency fault detec-
tion in noc routers,” in 9th International Symposium on Networks-on-
Chip, 2015, pp. 1–8.

[14] S. R. Suja and M. Deivakani, “Testing of fifo buffer of noc router
using bist,” in IEEE International Conference on Electrical, Instrumen-
tation and Communication Engineering (ICEICE), 2017, pp. 1–6.

[15] B. Aghaei, A. Khademzadeh, M. Reshadi, and K. Badie, “Link
testing: a survey of current trends in network on chip,” Journal
of Electronic Testing, vol. 33, no. 2, pp. 209–225, 2017.

[16] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi, and
F. Pecheux, “On-the-field test and configuration infrastructure for
2-d-mesh nocs in shared-memory many-core architecture,” IEEE
Tramscations on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 6, pp. 1364–1376, 2014.

[17] N. Caselli, A. Strano, D. Ludovici, and D. Bertozzi, “Cooperative
built-in self-testing and self-diagnosis of noc bisynchronous chan-
nels,” in IEEE 6th Internal Symposium on Embedded Multicore SoCs.
IEEE, 2012, pp. 159–166.

[18] H. Yi and S. Kundu, “Core test wrapper design to rreduce test
application time for modular soc testing,” in IEEE International
Symposium on Defect and Fault Tolerant of VLSI System. IEEE, 2008,
pp. 412–420.

[19] A. Strano, C. Gómez, D. Ludovici, M. Gavalli, M. Comez, and
D. Betozzi, “Exploiting network-on-chip structural redundancy
for a cooprative and schalable built-in self-test architecture,” in
Design, Automation & Test in Europe Conference & Exhibition. IEEE,
2011, pp. 1–6.

[20] E. Cota, F. Kastensmidt, M. Cassel, and M. Herve, “A high-fault-
coverage approach for the test of data, control, and handshake
interconnects in mesh networks-on-chip,” IEEE Transactions on
Computers, vol. 57, no. 9, pp. 1202–1215, 2008.

[21] B. Bhowmik, J. K. Deka, and S. Biswas, “Towards a scalable test so-
lution for the analysis of interconnect shorts in on-chip networks,”
in IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2016, pp. 394–399.

16

[22] Y. Zheng, H. Wang, S. Yang, C. Jiang, and F. Gao, “Accelerating
strategy for functional test of noc communication fabric,” in 19th
IEEE Asian Test Symposium. IEEE, 2010, pp. 224–227.

[23] M. Botelho, F. Kastensmidt, M. Lubaszewski, E. Cota, and L. Carro,
“A broad strategy to detect crosstalk faults in network-on-chip
interconnects,” in 18th IEEE/IFIP VLSI System on Chip Conference
(VLSI-SoC). IEEE/IFIP, 2010, pp. 298–303.

[24] C. Grecu, A. Ivanov, R. Saleh, and P. Pande, “Testing network-on-
chip communication fabrics,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 26, no. 12, pp. 2201–
2214, 2007.

[25] M. Ke, Y. Zhang, and J. Jiang, “High-level fault diagnosis on
network-on-chip using path tracking,” in International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), 2017, pp. 1–4.

[26] X. Tran, Y. Thonnard, J. Durupt, V. Beroulle, and C. Robach,
“Design-for-test approach of an asynchronous network-on-chip
architecture and its associated test pattern generation and applica-
tion,” IET Computers & Digital Techniques, vol. 3, no. 5, pp. 487–500,
2009.

[27] J. Liu, J. Harkin, Y. Li, and L. Maguire, “Online traffic-aware fault
detection for networks-on-chip,” Journal of Parallel and Distributed
Computing, vol. 74, no. 1, pp. 1984–1993, 2014.

[28] L. Huang, J. Wang, M. Ebrahimi, M. Daneshtalab, X. Zhang, G. Li,
and A. Jantsch, “Non-blocking testing for network-on-chip,” IEEE
Transactions on Computers, vol. 65, no. 3, pp. 679–692, 2016.

[29] the PASRC Benchmark Suite, http://parsec.cs.princeton.edu/.
[30] W. J. Dally and B. P. Towles, Principles and practices of interconnection

networks. Elsevier, 2004.
[31] M. Ebrahimi and M. Daneshtalab, “Ebda: A new theory on design

and verification of deadlock-free interconnection networks,” in
44th International Symposium on Computer Architecture (ISCA), 2017,
pp. 1–13.

[32] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure
for computer system modeling,” Computer, vol. 35, no. 2, pp. 59–
67, 2002.

[33] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, and
G. Li, “Visualnoc: A visualization and evaluation environment for
simulation and mapping,” in the Third ACM International Workshop
on Many-core Embedded Systems, 2016, pp. 18–25.

Junshi Wang was born in Liaoning, China in
1989. He received the Ph.D and B.S. degree in
communication engineering from the University
of Electronic Science and Technology of China
(UESTC), Chengdu, China in 2017 and 2012. He
is currently working at Beijing Zhaoxin Electronic
Technology Co., Ltd. His research interests in-
clude reliability of network-on-chip, many-core
system and micro-architecture modeling.

Masoumeh Ebrahimi received a PhD degree
with honours from University of Turku, Finland
in 2013. She is currently a senior researcher
at KTH Royal Institute of Technology, Sweden.
Her scientific work contains more than 80 pub-
lications including book chapters, journal arti-
cles and conference papers. The majority of
work has been performed on interconnection
networks, fault-tolerant methods, multicast com-
munication, and congestion-aware techniques.
She is a member of the IEEE.

Letian Huang was born in Sichuan Province,
China, in 1984. He received the M.S. and Ph.D.
degrees from University of Electronic Science
and Technology of China (UESTC), Chengdu,
China in 2009 and 2016, respectively, in Com-
munication and Information System. He is an As-
sociate Professor of UESTC. His scientific work
contains more than 40 publications including
book chapters, journal articles and conference
papers. His research interests include Hetero-
geneous Multi-Core System-on-Chips, Network-

on-Chips, and Mixed Signal IC Design.

Xuan Xie received the M.S. and Ph.D. degrees
from University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, China in
2009 and 2016, respectively. She is currently
working with UESTC. Her scientific work con-
tains more than 20 publications including journal
articles and conference papers. Her research
interests include signal processing, fault diagno-
sis, and information theory.

Qiang Li received the B.Eng. degree in Elec-
trical Engineering from Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2001, and the Ph.D. degree from
Nanyang Technological University (NTU), Singa-
pore, in 2007. Since 2001, he has been work-
ing on analog/RF circuits in both academia and
industry, holding positions of Engineer, Project
Leader and Technical Consultant in Singapore,
and Associate Professor in Denmark. He is cur-
rently a full Professor at the University of Elec-

tronic Science and Technology of China (UESTC), heading the Institute
of Integrated Circuits and Systems. His research interests include low-
voltage and low-power analog/RF circuits, data converters, and mixed-
mode circuits for biomedical and sensor interfaces. Dr. Li was a recipient
of the Young Changjiang Scholar award in 2015, the National Top-
Notch Young Professionals award in 2013 and the UESTC Teaching
Excellence Award in 2011. He serves on the Student Research Preview
(SRP) committee of ISSCC and the Technical Program Committee of
ESSCIRC. He is the Founding Chair of IEEE Chengdu SSCS/CASS
Joint Chapter.

Guangjun Li received M.S. degree from the Uni-
versity of Electronic Science and Technology of
China (UESTC), Chengdu, in 1985. Since then,
he has been with UESTC. From 1991 to 1992,
he was a visiting scholar with RETH Aachen Uni-
versity, Aachen, Germany. He has published var-
ious papers in the area of communication sys-
tems, wireless communication networks, SoC
and NoC for wireless communication systems.

Axel Jantsch received the Dipl. Ing. and
Dr.Tech. degrees from the Technical University
of Vienna, Vienna, Austria, in 1988 and 1992, re-
spectively. He has been an Associate Professor
(1997-2000) and a Full Professor (2000-2014)
with the Royal Institute of Technology (KTH),
Stockholm, Sweden. Now, he is a Full Profes-
sor with Technical University of Vienna, Vienna,
Austria. He has published over 200 papers in
international conferences and journals, and one
book. He has served on a large number of tech-

nical program committees of international conferences, such as FDL,
DATE, CODES ISSS, SOC, NOCS, and others. He has been the TPC
Chair of SSDL/FDL 2000, the TPC Co-Chair of CODES ISSS 2004, the
General Chair of CODES ISSS 2005, and the TPC Co-Chair of NOCS
2009. From 2002 to 2007, he was a Subject Area Editor for the Journal
of System Architecture.

